1 /*
2  * wpa_supplicant/hostapd / common helper functions, etc.
3  * Copyright (c) 2002-2007, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 
11 #include "common/ieee802_11_defs.h"
12 #include "common.h"
13 
14 
hex2num(char c)15 static int hex2num(char c)
16 {
17 	if (c >= '0' && c <= '9')
18 		return c - '0';
19 	if (c >= 'a' && c <= 'f')
20 		return c - 'a' + 10;
21 	if (c >= 'A' && c <= 'F')
22 		return c - 'A' + 10;
23 	return -1;
24 }
25 
26 
hex2byte(const char * hex)27 int hex2byte(const char *hex)
28 {
29 	int a, b;
30 	a = hex2num(*hex++);
31 	if (a < 0)
32 		return -1;
33 	b = hex2num(*hex++);
34 	if (b < 0)
35 		return -1;
36 	return (a << 4) | b;
37 }
38 
39 
hwaddr_parse(const char * txt,u8 * addr)40 static const char * hwaddr_parse(const char *txt, u8 *addr)
41 {
42 	size_t i;
43 
44 	for (i = 0; i < ETH_ALEN; i++) {
45 		int a;
46 
47 		a = hex2byte(txt);
48 		if (a < 0)
49 			return NULL;
50 		txt += 2;
51 		addr[i] = a;
52 		if (i < ETH_ALEN - 1 && *txt++ != ':')
53 			return NULL;
54 	}
55 	return txt;
56 }
57 
58 
59 /**
60  * hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
61  * @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
62  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
63  * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
64  */
hwaddr_aton(const char * txt,u8 * addr)65 int hwaddr_aton(const char *txt, u8 *addr)
66 {
67 	return hwaddr_parse(txt, addr) ? 0 : -1;
68 }
69 
70 
71 /**
72  * hwaddr_masked_aton - Convert ASCII string with optional mask to MAC address (colon-delimited format)
73  * @txt: MAC address with optional mask as a string (e.g., "00:11:22:33:44:55/ff:ff:ff:ff:00:00")
74  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
75  * @mask: Buffer for the MAC address mask (ETH_ALEN = 6 bytes)
76  * @maskable: Flag to indicate whether a mask is allowed
77  * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
78  */
hwaddr_masked_aton(const char * txt,u8 * addr,u8 * mask,u8 maskable)79 int hwaddr_masked_aton(const char *txt, u8 *addr, u8 *mask, u8 maskable)
80 {
81 	const char *r;
82 
83 	/* parse address part */
84 	r = hwaddr_parse(txt, addr);
85 	if (!r)
86 		return -1;
87 
88 	/* check for optional mask */
89 	if (*r == '\0' || isspace((unsigned char) *r)) {
90 		/* no mask specified, assume default */
91 		os_memset(mask, 0xff, ETH_ALEN);
92 	} else if (maskable && *r == '/') {
93 		/* mask specified and allowed */
94 		r = hwaddr_parse(r + 1, mask);
95 		/* parser error? */
96 		if (!r)
97 			return -1;
98 	} else {
99 		/* mask specified but not allowed or trailing garbage */
100 		return -1;
101 	}
102 
103 	return 0;
104 }
105 
106 
107 /**
108  * hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
109  * @txt: MAC address as a string (e.g., "001122334455")
110  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
111  * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
112  */
hwaddr_compact_aton(const char * txt,u8 * addr)113 int hwaddr_compact_aton(const char *txt, u8 *addr)
114 {
115 	int i;
116 
117 	for (i = 0; i < 6; i++) {
118 		int a, b;
119 
120 		a = hex2num(*txt++);
121 		if (a < 0)
122 			return -1;
123 		b = hex2num(*txt++);
124 		if (b < 0)
125 			return -1;
126 		*addr++ = (a << 4) | b;
127 	}
128 
129 	return 0;
130 }
131 
132 /**
133  * hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
134  * @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
135  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
136  * Returns: Characters used (> 0) on success, -1 on failure
137  */
hwaddr_aton2(const char * txt,u8 * addr)138 int hwaddr_aton2(const char *txt, u8 *addr)
139 {
140 	int i;
141 	const char *pos = txt;
142 
143 	for (i = 0; i < 6; i++) {
144 		int a, b;
145 
146 		while (*pos == ':' || *pos == '.' || *pos == '-')
147 			pos++;
148 
149 		a = hex2num(*pos++);
150 		if (a < 0)
151 			return -1;
152 		b = hex2num(*pos++);
153 		if (b < 0)
154 			return -1;
155 		*addr++ = (a << 4) | b;
156 	}
157 
158 	return pos - txt;
159 }
160 
161 
162 /**
163  * hexstr2bin - Convert ASCII hex string into binary data
164  * @hex: ASCII hex string (e.g., "01ab")
165  * @buf: Buffer for the binary data
166  * @len: Length of the text to convert in bytes (of buf); hex will be double
167  * this size
168  * Returns: 0 on success, -1 on failure (invalid hex string)
169  */
hexstr2bin(const char * hex,u8 * buf,size_t len)170 int hexstr2bin(const char *hex, u8 *buf, size_t len)
171 {
172 	size_t i;
173 	int a;
174 	const char *ipos = hex;
175 	u8 *opos = buf;
176 
177 	for (i = 0; i < len; i++) {
178 		a = hex2byte(ipos);
179 		if (a < 0)
180 			return -1;
181 		*opos++ = a;
182 		ipos += 2;
183 	}
184 	return 0;
185 }
186 
187 
hwaddr_mask_txt(char * buf,size_t len,const u8 * addr,const u8 * mask)188 int hwaddr_mask_txt(char *buf, size_t len, const u8 *addr, const u8 *mask)
189 {
190 	size_t i;
191 	int print_mask = 0;
192 	int res;
193 
194 	for (i = 0; i < ETH_ALEN; i++) {
195 		if (mask[i] != 0xff) {
196 			print_mask = 1;
197 			break;
198 		}
199 	}
200 
201 	if (print_mask)
202 		res = os_snprintf(buf, len, MACSTR "/" MACSTR,
203 				  MAC2STR(addr), MAC2STR(mask));
204 	else
205 		res = os_snprintf(buf, len, MACSTR, MAC2STR(addr));
206 	if (os_snprintf_error(len, res))
207 		return -1;
208 	return res;
209 }
210 
211 
212 /**
213  * inc_byte_array - Increment arbitrary length byte array by one
214  * @counter: Pointer to byte array
215  * @len: Length of the counter in bytes
216  *
217  * This function increments the last byte of the counter by one and continues
218  * rolling over to more significant bytes if the byte was incremented from
219  * 0xff to 0x00.
220  */
inc_byte_array(u8 * counter,size_t len)221 void inc_byte_array(u8 *counter, size_t len)
222 {
223 	int pos = len - 1;
224 	while (pos >= 0) {
225 		counter[pos]++;
226 		if (counter[pos] != 0)
227 			break;
228 		pos--;
229 	}
230 }
231 
232 
wpa_get_ntp_timestamp(u8 * buf)233 void wpa_get_ntp_timestamp(u8 *buf)
234 {
235 	struct os_time now;
236 	u32 sec, usec;
237 	be32 tmp;
238 
239 	/* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
240 	os_get_time(&now);
241 	sec = now.sec + 2208988800U; /* Epoch to 1900 */
242 	/* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
243 	usec = now.usec;
244 	usec = 4295 * usec - (usec >> 5) - (usec >> 9);
245 	tmp = host_to_be32(sec);
246 	os_memcpy(buf, (u8 *) &tmp, 4);
247 	tmp = host_to_be32(usec);
248 	os_memcpy(buf + 4, (u8 *) &tmp, 4);
249 }
250 
251 /**
252  * wpa_scnprintf - Simpler-to-use snprintf function
253  * @buf: Output buffer
254  * @size: Buffer size
255  * @fmt: format
256  *
257  * Simpler snprintf version that doesn't require further error checks - the
258  * return value only indicates how many bytes were actually written, excluding
259  * the NULL byte (i.e., 0 on error, size-1 if buffer is not big enough).
260  */
wpa_scnprintf(char * buf,size_t size,const char * fmt,...)261 int wpa_scnprintf(char *buf, size_t size, const char *fmt, ...)
262 {
263 	va_list ap;
264 	int ret;
265 
266 	if (!size)
267 		return 0;
268 
269 	va_start(ap, fmt);
270 	ret = vsnprintf(buf, size, fmt, ap);
271 	va_end(ap);
272 
273 	if (ret < 0)
274 		return 0;
275 	if ((size_t) ret >= size)
276 		return size - 1;
277 
278 	return ret;
279 }
280 
281 
wpa_snprintf_hex_sep(char * buf,size_t buf_size,const u8 * data,size_t len,char sep)282 int wpa_snprintf_hex_sep(char *buf, size_t buf_size, const u8 *data, size_t len,
283 			 char sep)
284 {
285 	size_t i;
286 	char *pos = buf, *end = buf + buf_size;
287 	int ret;
288 
289 	if (buf_size == 0)
290 		return 0;
291 
292 	for (i = 0; i < len; i++) {
293 		ret = os_snprintf(pos, end - pos, "%02x%c",
294 				  data[i], sep);
295 		if (os_snprintf_error(end - pos, ret)) {
296 			end[-1] = '\0';
297 			return pos - buf;
298 		}
299 		pos += ret;
300 	}
301 	pos[-1] = '\0';
302 	return pos - buf;
303 }
304 
305 
_wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len,int uppercase)306 static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
307 				    size_t len, int uppercase)
308 {
309 	size_t i;
310 	char *pos = buf, *end = buf + buf_size;
311 	int ret;
312 	if (buf_size == 0)
313 		return 0;
314 	for (i = 0; i < len; i++) {
315 		ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
316 				  data[i]);
317 		if (os_snprintf_error(end - pos, ret)) {
318 			end[-1] = '\0';
319 			return pos - buf;
320 		}
321 		pos += ret;
322 	}
323 	end[-1] = '\0';
324 	return pos - buf;
325 }
326 
327 /**
328  * wpa_snprintf_hex - Print data as a hex string into a buffer
329  * @buf: Memory area to use as the output buffer
330  * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
331  * @data: Data to be printed
332  * @len: Length of data in bytes
333  * Returns: Number of bytes written
334  */
wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len)335 int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
336 {
337 	return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
338 }
339 
340 
341 /**
342  * wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
343  * @buf: Memory area to use as the output buffer
344  * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
345  * @data: Data to be printed
346  * @len: Length of data in bytes
347  * Returns: Number of bytes written
348  */
wpa_snprintf_hex_uppercase(char * buf,size_t buf_size,const u8 * data,size_t len)349 int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
350 			       size_t len)
351 {
352 	return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
353 }
354 
355 
356 #ifdef CONFIG_ANSI_C_EXTRA
357 
358 #ifdef _WIN32_WCE
perror(const char * s)359 void perror(const char *s)
360 {
361 	wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
362 		   s, (int) GetLastError());
363 }
364 #endif /* _WIN32_WCE */
365 
366 
367 int optind = 1;
368 int optopt;
369 char *optarg;
370 
getopt(int argc,char * const argv[],const char * optstring)371 int getopt(int argc, char *const argv[], const char *optstring)
372 {
373 	static int optchr = 1;
374 	char *cp;
375 
376 	if (optchr == 1) {
377 		if (optind >= argc) {
378 			/* all arguments processed */
379 			return EOF;
380 		}
381 
382 		if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
383 			/* no option characters */
384 			return EOF;
385 		}
386 	}
387 
388 	if (os_strcmp(argv[optind], "--") == 0) {
389 		/* no more options */
390 		optind++;
391 		return EOF;
392 	}
393 
394 	optopt = argv[optind][optchr];
395 	cp = os_strchr(optstring, optopt);
396 	if (cp == NULL || optopt == ':') {
397 		if (argv[optind][++optchr] == '\0') {
398 			optchr = 1;
399 			optind++;
400 		}
401 		return '?';
402 	}
403 
404 	if (cp[1] == ':') {
405 		/* Argument required */
406 		optchr = 1;
407 		if (argv[optind][optchr + 1]) {
408 			/* No space between option and argument */
409 			optarg = &argv[optind++][optchr + 1];
410 		} else if (++optind >= argc) {
411 			/* option requires an argument */
412 			return '?';
413 		} else {
414 			/* Argument in the next argv */
415 			optarg = argv[optind++];
416 		}
417 	} else {
418 		/* No argument */
419 		if (argv[optind][++optchr] == '\0') {
420 			optchr = 1;
421 			optind++;
422 		}
423 		optarg = NULL;
424 	}
425 	return *cp;
426 }
427 #endif /* CONFIG_ANSI_C_EXTRA */
428 
429 
430 #ifdef CONFIG_NATIVE_WINDOWS
431 /**
432  * wpa_unicode2ascii_inplace - Convert unicode string into ASCII
433  * @str: Pointer to string to convert
434  *
435  * This function converts a unicode string to ASCII using the same
436  * buffer for output. If UNICODE is not set, the buffer is not
437  * modified.
438  */
wpa_unicode2ascii_inplace(TCHAR * str)439 void wpa_unicode2ascii_inplace(TCHAR *str)
440 {
441 #ifdef UNICODE
442 	char *dst = (char *) str;
443 	while (*str)
444 		*dst++ = (char) *str++;
445 	*dst = '\0';
446 #endif /* UNICODE */
447 }
448 
449 
wpa_strdup_tchar(const char * str)450 TCHAR * wpa_strdup_tchar(const char *str)
451 {
452 #ifdef UNICODE
453 	TCHAR *buf;
454 	buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
455 	if (buf == NULL)
456 		return NULL;
457 	wsprintf(buf, L"%S", str);
458 	return buf;
459 #else /* UNICODE */
460 	return os_strdup(str);
461 #endif /* UNICODE */
462 }
463 #endif /* CONFIG_NATIVE_WINDOWS */
464 
465 
printf_encode(char * txt,size_t maxlen,const u8 * data,size_t len)466 void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
467 {
468 	char *end = txt + maxlen;
469 	size_t i;
470 
471 	for (i = 0; i < len; i++) {
472 		if (txt + 4 >= end)
473 			break;
474 
475 		switch (data[i]) {
476 		case '\"':
477 			*txt++ = '\\';
478 			*txt++ = '\"';
479 			break;
480 		case '\\':
481 			*txt++ = '\\';
482 			*txt++ = '\\';
483 			break;
484 		case '\033':
485 			*txt++ = '\\';
486 			*txt++ = 'e';
487 			break;
488 		case '\n':
489 			*txt++ = '\\';
490 			*txt++ = 'n';
491 			break;
492 		case '\r':
493 			*txt++ = '\\';
494 			*txt++ = 'r';
495 			break;
496 		case '\t':
497 			*txt++ = '\\';
498 			*txt++ = 't';
499 			break;
500 		default:
501 			if (data[i] >= 32 && data[i] <= 126) {
502 				*txt++ = data[i];
503 			} else {
504 				txt += os_snprintf(txt, end - txt, "\\x%02x",
505 						   data[i]);
506 			}
507 			break;
508 		}
509 	}
510 
511 	*txt = '\0';
512 }
513 
514 
printf_decode(u8 * buf,size_t maxlen,const char * str)515 size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
516 {
517 	const char *pos = str;
518 	size_t len = 0;
519 	int val;
520 
521 	while (*pos) {
522 		if (len + 1 >= maxlen)
523 			break;
524 		switch (*pos) {
525 		case '\\':
526 			pos++;
527 			switch (*pos) {
528 			case '\\':
529 				buf[len++] = '\\';
530 				pos++;
531 				break;
532 			case '"':
533 				buf[len++] = '"';
534 				pos++;
535 				break;
536 			case 'n':
537 				buf[len++] = '\n';
538 				pos++;
539 				break;
540 			case 'r':
541 				buf[len++] = '\r';
542 				pos++;
543 				break;
544 			case 't':
545 				buf[len++] = '\t';
546 				pos++;
547 				break;
548 			case 'e':
549 				buf[len++] = '\033';
550 				pos++;
551 				break;
552 			case 'x':
553 				pos++;
554 				val = hex2byte(pos);
555 				if (val < 0) {
556 					val = hex2num(*pos);
557 					if (val < 0)
558 						break;
559 					buf[len++] = val;
560 					pos++;
561 				} else {
562 					buf[len++] = val;
563 					pos += 2;
564 				}
565 				break;
566 			case '0':
567 			case '1':
568 			case '2':
569 			case '3':
570 			case '4':
571 			case '5':
572 			case '6':
573 			case '7':
574 				val = *pos++ - '0';
575 				if (*pos >= '0' && *pos <= '7')
576 					val = val * 8 + (*pos++ - '0');
577 				if (*pos >= '0' && *pos <= '7')
578 					val = val * 8 + (*pos++ - '0');
579 				buf[len++] = val;
580 				break;
581 			default:
582 				break;
583 			}
584 			break;
585 		default:
586 			buf[len++] = *pos++;
587 			break;
588 		}
589 	}
590 	if (maxlen > len)
591 		buf[len] = '\0';
592 
593 	return len;
594 }
595 
596 
597 /**
598  * wpa_ssid_txt - Convert SSID to a printable string
599  * @ssid: SSID (32-octet string)
600  * @ssid_len: Length of ssid in octets
601  * Returns: Pointer to a printable string
602  *
603  * This function can be used to convert SSIDs into printable form. In most
604  * cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
605  * does not limit the used character set, so anything could be used in an SSID.
606  *
607  * This function uses a static buffer, so only one call can be used at the
608  * time, i.e., this is not re-entrant and the returned buffer must be used
609  * before calling this again.
610  */
wpa_ssid_txt(const u8 * ssid,size_t ssid_len)611 const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
612 {
613 	static char ssid_txt[SSID_MAX_LEN * 4 + 1];
614 
615 	if (ssid == NULL) {
616 		ssid_txt[0] = '\0';
617 		return ssid_txt;
618 	}
619 
620 	printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
621 	return ssid_txt;
622 }
623 
624 
__hide_aliasing_typecast(void * foo)625 void * __hide_aliasing_typecast(void *foo)
626 {
627 	return foo;
628 }
629 
630 
wpa_config_parse_string(const char * value,size_t * len)631 char * wpa_config_parse_string(const char *value, size_t *len)
632 {
633 	if (*value == '"') {
634 		const char *pos;
635 		char *str;
636 		value++;
637 		pos = os_strrchr(value, '"');
638 		if (pos == NULL || pos[1] != '\0')
639 			return NULL;
640 		*len = pos - value;
641 		str = dup_binstr(value, *len);
642 		if (str == NULL)
643 			return NULL;
644 		return str;
645 	} else if (*value == 'P' && value[1] == '"') {
646 		const char *pos;
647 		char *tstr, *str;
648 		size_t tlen;
649 		value += 2;
650 		pos = os_strrchr(value, '"');
651 		if (pos == NULL || pos[1] != '\0')
652 			return NULL;
653 		tlen = pos - value;
654 		tstr = dup_binstr(value, tlen);
655 		if (tstr == NULL)
656 			return NULL;
657 
658 		str = os_malloc(tlen + 1);
659 		if (str == NULL) {
660 			os_free(tstr);
661 			return NULL;
662 		}
663 
664 		*len = printf_decode((u8 *) str, tlen + 1, tstr);
665 		os_free(tstr);
666 
667 		return str;
668 	} else {
669 		u8 *str;
670 		size_t tlen, hlen = os_strlen(value);
671 		if (hlen & 1)
672 			return NULL;
673 		tlen = hlen / 2;
674 		str = os_malloc(tlen + 1);
675 		if (str == NULL)
676 			return NULL;
677 		if (hexstr2bin(value, str, tlen)) {
678 			os_free(str);
679 			return NULL;
680 		}
681 		str[tlen] = '\0';
682 		*len = tlen;
683 		return (char *) str;
684 	}
685 }
686 
687 
is_hex(const u8 * data,size_t len)688 int is_hex(const u8 *data, size_t len)
689 {
690 	size_t i;
691 
692 	for (i = 0; i < len; i++) {
693 		if (data[i] < 32 || data[i] >= 127)
694 			return 1;
695 	}
696 	return 0;
697 }
698 
699 
merge_byte_arrays(u8 * res,size_t res_len,const u8 * src1,size_t src1_len,const u8 * src2,size_t src2_len)700 size_t merge_byte_arrays(u8 *res, size_t res_len,
701 			 const u8 *src1, size_t src1_len,
702 			 const u8 *src2, size_t src2_len)
703 {
704 	size_t len = 0;
705 
706 	os_memset(res, 0, res_len);
707 
708 	if (src1) {
709 		if (src1_len >= res_len) {
710 			os_memcpy(res, src1, res_len);
711 			return res_len;
712 		}
713 
714 		os_memcpy(res, src1, src1_len);
715 		len += src1_len;
716 	}
717 
718 	if (src2) {
719 		if (len + src2_len >= res_len) {
720 			os_memcpy(res + len, src2, res_len - len);
721 			return res_len;
722 		}
723 
724 		os_memcpy(res + len, src2, src2_len);
725 		len += src2_len;
726 	}
727 
728 	return len;
729 }
730 
731 
dup_binstr(const void * src,size_t len)732 char * dup_binstr(const void *src, size_t len)
733 {
734 	char *res;
735 
736 	if (src == NULL)
737 		return NULL;
738 	res = os_malloc(len + 1);
739 	if (res == NULL)
740 		return NULL;
741 	os_memcpy(res, src, len);
742 	res[len] = '\0';
743 
744 	return res;
745 }
746 
747 
freq_range_list_parse(struct wpa_freq_range_list * res,const char * value)748 int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
749 {
750 	struct wpa_freq_range *freq = NULL, *n;
751 	unsigned int count = 0;
752 	const char *pos, *pos2, *pos3;
753 
754 	/*
755 	 * Comma separated list of frequency ranges.
756 	 * For example: 2412-2432,2462,5000-6000
757 	 */
758 	pos = value;
759 	while (pos && pos[0]) {
760 		n = os_realloc_array(freq, count + 1,
761 				     sizeof(struct wpa_freq_range));
762 		if (n == NULL) {
763 			os_free(freq);
764 			return -1;
765 		}
766 		freq = n;
767 		freq[count].min = atoi(pos);
768 		pos2 = os_strchr(pos, '-');
769 		pos3 = os_strchr(pos, ',');
770 		if (pos2 && (!pos3 || pos2 < pos3)) {
771 			pos2++;
772 			freq[count].max = atoi(pos2);
773 		} else
774 			freq[count].max = freq[count].min;
775 		pos = pos3;
776 		if (pos)
777 			pos++;
778 		count++;
779 	}
780 
781 	os_free(res->range);
782 	res->range = freq;
783 	res->num = count;
784 
785 	return 0;
786 }
787 
788 
freq_range_list_includes(const struct wpa_freq_range_list * list,unsigned int freq)789 int freq_range_list_includes(const struct wpa_freq_range_list *list,
790 			     unsigned int freq)
791 {
792 	unsigned int i;
793 
794 	if (list == NULL)
795 		return 0;
796 
797 	for (i = 0; i < list->num; i++) {
798 		if (freq >= list->range[i].min && freq <= list->range[i].max)
799 			return 1;
800 	}
801 
802 	return 0;
803 }
804 
805 
freq_range_list_str(const struct wpa_freq_range_list * list)806 char * freq_range_list_str(const struct wpa_freq_range_list *list)
807 {
808 	char *buf, *pos, *end;
809 	size_t maxlen;
810 	unsigned int i;
811 	int res;
812 
813 	if (list->num == 0)
814 		return NULL;
815 
816 	maxlen = list->num * 30;
817 	buf = os_malloc(maxlen);
818 	if (buf == NULL)
819 		return NULL;
820 	pos = buf;
821 	end = buf + maxlen;
822 
823 	for (i = 0; i < list->num; i++) {
824 		struct wpa_freq_range *range = &list->range[i];
825 
826 		if (range->min == range->max)
827 			res = os_snprintf(pos, end - pos, "%s%u",
828 					  i == 0 ? "" : ",", range->min);
829 		else
830 			res = os_snprintf(pos, end - pos, "%s%u-%u",
831 					  i == 0 ? "" : ",",
832 					  range->min, range->max);
833 		if (os_snprintf_error(end - pos, res)) {
834 			os_free(buf);
835 			return NULL;
836 		}
837 		pos += res;
838 	}
839 
840 	return buf;
841 }
842 
843 
int_array_len(const int * a)844 int int_array_len(const int *a)
845 {
846 	int i;
847 	for (i = 0; a && a[i]; i++)
848 		;
849 	return i;
850 }
851 
852 
int_array_concat(int ** res,const int * a)853 void int_array_concat(int **res, const int *a)
854 {
855 	int reslen, alen, i;
856 	int *n;
857 
858 	reslen = int_array_len(*res);
859 	alen = int_array_len(a);
860 
861 	n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
862 	if (n == NULL) {
863 		os_free(*res);
864 		*res = NULL;
865 		return;
866 	}
867 	for (i = 0; i <= alen; i++)
868 		n[reslen + i] = a[i];
869 	*res = n;
870 }
871 
872 
freq_cmp(const void * a,const void * b)873 static int freq_cmp(const void *a, const void *b)
874 {
875 	int _a = *(int *) a;
876 	int _b = *(int *) b;
877 
878 	if (_a == 0)
879 		return 1;
880 	if (_b == 0)
881 		return -1;
882 	return _a - _b;
883 }
884 
885 
int_array_sort_unique(int * a)886 void int_array_sort_unique(int *a)
887 {
888 	int alen;
889 	int i, j;
890 
891 	if (a == NULL)
892 		return;
893 
894 	alen = int_array_len(a);
895 	qsort(a, alen, sizeof(int), freq_cmp);
896 
897 	i = 0;
898 	j = 1;
899 	while (a[i] && a[j]) {
900 		if (a[i] == a[j]) {
901 			j++;
902 			continue;
903 		}
904 		a[++i] = a[j++];
905 	}
906 	if (a[i])
907 		i++;
908 	a[i] = 0;
909 }
910 
911 
int_array_add_unique(int ** res,int a)912 void int_array_add_unique(int **res, int a)
913 {
914 	int reslen;
915 	int *n;
916 
917 	for (reslen = 0; *res && (*res)[reslen]; reslen++) {
918 		if ((*res)[reslen] == a)
919 			return; /* already in the list */
920 	}
921 
922 	n = os_realloc_array(*res, reslen + 2, sizeof(int));
923 	if (n == NULL) {
924 		os_free(*res);
925 		*res = NULL;
926 		return;
927 	}
928 
929 	n[reslen] = a;
930 	n[reslen + 1] = 0;
931 
932 	*res = n;
933 }
934 
935 
str_clear_free(char * str)936 void str_clear_free(char *str)
937 {
938 	if (str) {
939 		size_t len = os_strlen(str);
940 		os_memset(str, 0, len);
941 		os_free(str);
942 	}
943 }
944 
945 
bin_clear_free(void * bin,size_t len)946 void bin_clear_free(void *bin, size_t len)
947 {
948 	if (bin) {
949 		os_memset(bin, 0, len);
950 		os_free(bin);
951 	}
952 }
953 
954 
random_mac_addr(u8 * addr)955 int random_mac_addr(u8 *addr)
956 {
957 	if (os_get_random(addr, ETH_ALEN) < 0)
958 		return -1;
959 	addr[0] &= 0xfe; /* unicast */
960 	addr[0] |= 0x02; /* locally administered */
961 	return 0;
962 }
963 
964 
random_mac_addr_keep_oui(u8 * addr)965 int random_mac_addr_keep_oui(u8 *addr)
966 {
967 	if (os_get_random(addr + 3, 3) < 0)
968 		return -1;
969 	addr[0] &= 0xfe; /* unicast */
970 	addr[0] |= 0x02; /* locally administered */
971 	return 0;
972 }
973 
974 
975 /**
976  * cstr_token - Get next token from const char string
977  * @str: a constant string to tokenize
978  * @delim: a string of delimiters
979  * @last: a pointer to a character following the returned token
980  *      It has to be set to NULL for the first call and passed for any
981  *      futher call.
982  * Returns: a pointer to token position in str or NULL
983  *
984  * This function is similar to str_token, but it can be used with both
985  * char and const char strings. Differences:
986  * - The str buffer remains unmodified
987  * - The returned token is not a NULL terminated string, but a token
988  *   position in str buffer. If a return value is not NULL a size
989  *   of the returned token could be calculated as (last - token).
990  */
cstr_token(const char * str,const char * delim,const char ** last)991 const char * cstr_token(const char *str, const char *delim, const char **last)
992 {
993 	const char *end, *token = str;
994 
995 	if (!str || !delim || !last)
996 		return NULL;
997 
998 	if (*last)
999 		token = *last;
1000 
1001 	while (*token && os_strchr(delim, *token))
1002 		token++;
1003 
1004 	if (!*token)
1005 		return NULL;
1006 
1007 	end = token + 1;
1008 
1009 	while (*end && !os_strchr(delim, *end))
1010 		end++;
1011 
1012 	*last = end;
1013 	return token;
1014 }
1015 
1016 
1017 /**
1018  * str_token - Get next token from a string
1019  * @buf: String to tokenize. Note that the string might be modified.
1020  * @delim: String of delimiters
1021  * @context: Pointer to save our context. Should be initialized with
1022  *	NULL on the first call, and passed for any further call.
1023  * Returns: The next token, NULL if there are no more valid tokens.
1024  */
str_token(char * str,const char * delim,char ** context)1025 char * str_token(char *str, const char *delim, char **context)
1026 {
1027 	char *token = (char *) cstr_token(str, delim, (const char **) context);
1028 
1029 	if (token && **context)
1030 		*(*context)++ = '\0';
1031 
1032 	return token;
1033 }
1034 
1035 
utf8_unescape(const char * inp,size_t in_size,char * outp,size_t out_size)1036 size_t utf8_unescape(const char *inp, size_t in_size,
1037 		     char *outp, size_t out_size)
1038 {
1039 	size_t res_size = 0;
1040 
1041 	if (!inp || !outp)
1042 		return 0;
1043 
1044 	if (!in_size)
1045 		in_size = os_strlen(inp);
1046 
1047 	/* Advance past leading single quote */
1048 	if (*inp == '\'' && in_size) {
1049 		inp++;
1050 		in_size--;
1051 	}
1052 
1053 	while (in_size--) {
1054 		if (res_size >= out_size)
1055 			return 0;
1056 
1057 		switch (*inp) {
1058 		case '\'':
1059 			/* Terminate on bare single quote */
1060 			*outp = '\0';
1061 			return res_size;
1062 
1063 		case '\\':
1064 			if (!in_size--)
1065 				return 0;
1066 			inp++;
1067 			/* fall through */
1068 
1069 		default:
1070 			*outp++ = *inp++;
1071 			res_size++;
1072 		}
1073 	}
1074 
1075 	/* NUL terminate if space allows */
1076 	if (res_size < out_size)
1077 		*outp = '\0';
1078 
1079 	return res_size;
1080 }
1081 
1082 
utf8_escape(const char * inp,size_t in_size,char * outp,size_t out_size)1083 size_t utf8_escape(const char *inp, size_t in_size,
1084 		   char *outp, size_t out_size)
1085 {
1086 	size_t res_size = 0;
1087 
1088 	if (!inp || !outp)
1089 		return 0;
1090 
1091 	/* inp may or may not be NUL terminated, but must be if 0 size
1092 	 * is specified */
1093 	if (!in_size)
1094 		in_size = os_strlen(inp);
1095 
1096 	while (in_size--) {
1097 		if (res_size++ >= out_size)
1098 			return 0;
1099 
1100 		switch (*inp) {
1101 		case '\\':
1102 		case '\'':
1103 			if (res_size++ >= out_size)
1104 				return 0;
1105 			*outp++ = '\\';
1106 			/* fall through */
1107 
1108 		default:
1109 			*outp++ = *inp++;
1110 			break;
1111 		}
1112 	}
1113 
1114 	/* NUL terminate if space allows */
1115 	if (res_size < out_size)
1116 		*outp = '\0';
1117 
1118 	return res_size;
1119 }
1120 
1121 
is_ctrl_char(char c)1122 int is_ctrl_char(char c)
1123 {
1124 	return c > 0 && c < 32;
1125 }
1126