1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "crypto.h"
33
34 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
35 /* Compatibility wrappers for older versions. */
36
HMAC_CTX_new(void)37 static HMAC_CTX * HMAC_CTX_new(void)
38 {
39 HMAC_CTX *ctx;
40
41 ctx = os_zalloc(sizeof(*ctx));
42 if (ctx)
43 HMAC_CTX_init(ctx);
44 return ctx;
45 }
46
47
HMAC_CTX_free(HMAC_CTX * ctx)48 static void HMAC_CTX_free(HMAC_CTX *ctx)
49 {
50 HMAC_CTX_cleanup(ctx);
51 bin_clear_free(ctx, sizeof(*ctx));
52 }
53
54
EVP_MD_CTX_new(void)55 static EVP_MD_CTX * EVP_MD_CTX_new(void)
56 {
57 EVP_MD_CTX *ctx;
58
59 ctx = os_zalloc(sizeof(*ctx));
60 if (ctx)
61 EVP_MD_CTX_init(ctx);
62 return ctx;
63 }
64
65
EVP_MD_CTX_free(EVP_MD_CTX * ctx)66 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
67 {
68 bin_clear_free(ctx, sizeof(*ctx));
69 }
70
71 #endif /* OpenSSL version < 1.1.0 */
72
get_group5_prime(void)73 static BIGNUM * get_group5_prime(void)
74 {
75 #ifdef OPENSSL_IS_BORINGSSL
76 static const unsigned char RFC3526_PRIME_1536[] = {
77 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
78 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
79 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
80 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
81 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
82 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
83 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
84 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
85 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
86 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
87 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
88 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
89 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
90 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
91 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
92 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
93 };
94 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
95 #else /* OPENSSL_IS_BORINGSSL */
96 return get_rfc3526_prime_1536(NULL);
97 #endif /* OPENSSL_IS_BORINGSSL */
98 }
99
100 #ifdef OPENSSL_NO_SHA256
101 #define NO_SHA256_WRAPPER
102 #endif
103
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)104 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
105 const u8 *addr[], const size_t *len, u8 *mac)
106 {
107 EVP_MD_CTX *ctx;
108 size_t i;
109 unsigned int mac_len;
110
111 if (TEST_FAIL())
112 return -1;
113
114 ctx = EVP_MD_CTX_new();
115 if (!ctx)
116 return -1;
117 if (!EVP_DigestInit_ex(ctx, type, NULL)) {
118 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
119 ERR_error_string(ERR_get_error(), NULL));
120 EVP_MD_CTX_free(ctx);
121 return -1;
122 }
123 for (i = 0; i < num_elem; i++) {
124 if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
125 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
126 "failed: %s",
127 ERR_error_string(ERR_get_error(), NULL));
128 EVP_MD_CTX_free(ctx);
129 return -1;
130 }
131 }
132 if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
133 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
134 ERR_error_string(ERR_get_error(), NULL));
135 EVP_MD_CTX_free(ctx);
136 return -1;
137 }
138 EVP_MD_CTX_free(ctx);
139
140 return 0;
141 }
142
143
144 #ifndef CONFIG_FIPS
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)145 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
146 {
147 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
148 }
149 #endif /* CONFIG_FIPS */
150
151
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)152 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
153 {
154 u8 pkey[8], next, tmp;
155 int i;
156 DES_key_schedule ks;
157
158 /* Add parity bits to the key */
159 next = 0;
160 for (i = 0; i < 7; i++) {
161 tmp = key[i];
162 pkey[i] = (tmp >> i) | next | 1;
163 next = tmp << (7 - i);
164 }
165 pkey[i] = next | 1;
166
167 DES_set_key((DES_cblock *) &pkey, &ks);
168 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
169 DES_ENCRYPT);
170 }
171
172
173 #ifndef CONFIG_NO_RC4
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)174 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
175 u8 *data, size_t data_len)
176 {
177 #ifdef OPENSSL_NO_RC4
178 return -1;
179 #else /* OPENSSL_NO_RC4 */
180 EVP_CIPHER_CTX *ctx;
181 int outl;
182 int res = -1;
183 unsigned char skip_buf[16];
184
185 ctx = EVP_CIPHER_CTX_new();
186 if (!ctx ||
187 !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
188 !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
189 !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
190 !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
191 goto out;
192
193 while (skip >= sizeof(skip_buf)) {
194 size_t len = skip;
195 if (len > sizeof(skip_buf))
196 len = sizeof(skip_buf);
197 if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
198 goto out;
199 skip -= len;
200 }
201
202 if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
203 res = 0;
204
205 out:
206 if (ctx)
207 EVP_CIPHER_CTX_free(ctx);
208 return res;
209 #endif /* OPENSSL_NO_RC4 */
210 }
211 #endif /* CONFIG_NO_RC4 */
212
213
214 #ifndef CONFIG_FIPS
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)215 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
216 {
217 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
218 }
219 #endif /* CONFIG_FIPS */
220
221
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)222 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
223 {
224 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
225 }
226
227
228 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)229 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
230 u8 *mac)
231 {
232 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
233 }
234 #endif /* NO_SHA256_WRAPPER */
235
236
aes_get_evp_cipher(size_t keylen)237 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
238 {
239 switch (keylen) {
240 case 16:
241 return EVP_aes_128_ecb();
242 #ifndef OPENSSL_IS_BORINGSSL
243 case 24:
244 return EVP_aes_192_ecb();
245 #endif /* OPENSSL_IS_BORINGSSL */
246 case 32:
247 return EVP_aes_256_ecb();
248 }
249
250 return NULL;
251 }
252
253
aes_encrypt_init(const u8 * key,size_t len)254 void * aes_encrypt_init(const u8 *key, size_t len)
255 {
256 EVP_CIPHER_CTX *ctx;
257 const EVP_CIPHER *type;
258
259 if (TEST_FAIL())
260 return NULL;
261
262 type = aes_get_evp_cipher(len);
263 if (type == NULL)
264 return NULL;
265
266 ctx = EVP_CIPHER_CTX_new();
267 if (ctx == NULL)
268 return NULL;
269 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
270 os_free(ctx);
271 return NULL;
272 }
273 EVP_CIPHER_CTX_set_padding(ctx, 0);
274 return ctx;
275 }
276
277
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)278 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
279 {
280 EVP_CIPHER_CTX *c = ctx;
281 int clen = 16;
282 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
283 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
284 ERR_error_string(ERR_get_error(), NULL));
285 }
286 }
287
288
aes_encrypt_deinit(void * ctx)289 void aes_encrypt_deinit(void *ctx)
290 {
291 EVP_CIPHER_CTX *c = ctx;
292 u8 buf[16];
293 int len = sizeof(buf);
294 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
295 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
296 "%s", ERR_error_string(ERR_get_error(), NULL));
297 }
298 if (len != 0) {
299 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
300 "in AES encrypt", len);
301 }
302 EVP_CIPHER_CTX_free(c);
303 }
304
305
aes_decrypt_init(const u8 * key,size_t len)306 void * aes_decrypt_init(const u8 *key, size_t len)
307 {
308 EVP_CIPHER_CTX *ctx;
309 const EVP_CIPHER *type;
310
311 if (TEST_FAIL())
312 return NULL;
313
314 type = aes_get_evp_cipher(len);
315 if (type == NULL)
316 return NULL;
317
318 ctx = EVP_CIPHER_CTX_new();
319 if (ctx == NULL)
320 return NULL;
321 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
322 EVP_CIPHER_CTX_free(ctx);
323 return NULL;
324 }
325 EVP_CIPHER_CTX_set_padding(ctx, 0);
326 return ctx;
327 }
328
329
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)330 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
331 {
332 EVP_CIPHER_CTX *c = ctx;
333 int plen = 16;
334 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
335 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
336 ERR_error_string(ERR_get_error(), NULL));
337 }
338 }
339
340
aes_decrypt_deinit(void * ctx)341 void aes_decrypt_deinit(void *ctx)
342 {
343 EVP_CIPHER_CTX *c = ctx;
344 u8 buf[16];
345 int len = sizeof(buf);
346 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
347 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
348 "%s", ERR_error_string(ERR_get_error(), NULL));
349 }
350 if (len != 0) {
351 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
352 "in AES decrypt", len);
353 }
354 EVP_CIPHER_CTX_free(c);
355 }
356
357
358 #ifndef CONFIG_FIPS
359 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
360
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)361 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
362 {
363 AES_KEY actx;
364 int res;
365
366 if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
367 return -1;
368 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
369 OPENSSL_cleanse(&actx, sizeof(actx));
370 return res <= 0 ? -1 : 0;
371 }
372
373
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)374 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
375 u8 *plain)
376 {
377 AES_KEY actx;
378 int res;
379
380 if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
381 return -1;
382 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
383 OPENSSL_cleanse(&actx, sizeof(actx));
384 return res <= 0 ? -1 : 0;
385 }
386
387 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
388 #endif /* CONFIG_FIPS */
389
390
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)391 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
392 {
393 EVP_CIPHER_CTX *ctx;
394 int clen, len;
395 u8 buf[16];
396 int res = -1;
397
398 if (TEST_FAIL())
399 return -1;
400
401 ctx = EVP_CIPHER_CTX_new();
402 if (!ctx)
403 return -1;
404 clen = data_len;
405 len = sizeof(buf);
406 if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
407 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
408 EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
409 clen == (int) data_len &&
410 EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
411 res = 0;
412 EVP_CIPHER_CTX_free(ctx);
413
414 return res;
415 }
416
417
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)418 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
419 {
420 EVP_CIPHER_CTX *ctx;
421 int plen, len;
422 u8 buf[16];
423 int res = -1;
424
425 if (TEST_FAIL())
426 return -1;
427
428 ctx = EVP_CIPHER_CTX_new();
429 if (!ctx)
430 return -1;
431 plen = data_len;
432 len = sizeof(buf);
433 if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
434 EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
435 EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
436 plen == (int) data_len &&
437 EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
438 res = 0;
439 EVP_CIPHER_CTX_free(ctx);
440
441 return res;
442
443 }
444
445
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)446 int crypto_mod_exp(const u8 *base, size_t base_len,
447 const u8 *power, size_t power_len,
448 const u8 *modulus, size_t modulus_len,
449 u8 *result, size_t *result_len)
450 {
451 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
452 int ret = -1;
453 BN_CTX *ctx;
454
455 ctx = BN_CTX_new();
456 if (ctx == NULL)
457 return -1;
458
459 bn_base = BN_bin2bn(base, base_len, NULL);
460 bn_exp = BN_bin2bn(power, power_len, NULL);
461 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
462 bn_result = BN_new();
463
464 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
465 bn_result == NULL)
466 goto error;
467
468 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
469 goto error;
470
471 *result_len = BN_bn2bin(bn_result, result);
472 ret = 0;
473
474 error:
475 BN_clear_free(bn_base);
476 BN_clear_free(bn_exp);
477 BN_clear_free(bn_modulus);
478 BN_clear_free(bn_result);
479 BN_CTX_free(ctx);
480 return ret;
481 }
482
483
484 struct crypto_cipher {
485 EVP_CIPHER_CTX *enc;
486 EVP_CIPHER_CTX *dec;
487 };
488
489
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)490 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
491 const u8 *iv, const u8 *key,
492 size_t key_len)
493 {
494 struct crypto_cipher *ctx;
495 const EVP_CIPHER *cipher;
496
497 ctx = os_zalloc(sizeof(*ctx));
498 if (ctx == NULL)
499 return NULL;
500
501 switch (alg) {
502 #ifndef CONFIG_NO_RC4
503 #ifndef OPENSSL_NO_RC4
504 case CRYPTO_CIPHER_ALG_RC4:
505 cipher = EVP_rc4();
506 break;
507 #endif /* OPENSSL_NO_RC4 */
508 #endif /* CONFIG_NO_RC4 */
509 #ifndef OPENSSL_NO_AES
510 case CRYPTO_CIPHER_ALG_AES:
511 switch (key_len) {
512 case 16:
513 cipher = EVP_aes_128_cbc();
514 break;
515 #ifndef OPENSSL_IS_BORINGSSL
516 case 24:
517 cipher = EVP_aes_192_cbc();
518 break;
519 #endif /* OPENSSL_IS_BORINGSSL */
520 case 32:
521 cipher = EVP_aes_256_cbc();
522 break;
523 default:
524 os_free(ctx);
525 return NULL;
526 }
527 break;
528 #endif /* OPENSSL_NO_AES */
529 #ifndef OPENSSL_NO_DES
530 case CRYPTO_CIPHER_ALG_3DES:
531 cipher = EVP_des_ede3_cbc();
532 break;
533 case CRYPTO_CIPHER_ALG_DES:
534 cipher = EVP_des_cbc();
535 break;
536 #endif /* OPENSSL_NO_DES */
537 #ifndef OPENSSL_NO_RC2
538 case CRYPTO_CIPHER_ALG_RC2:
539 cipher = EVP_rc2_ecb();
540 break;
541 #endif /* OPENSSL_NO_RC2 */
542 default:
543 os_free(ctx);
544 return NULL;
545 }
546
547 if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
548 !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
549 !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
550 !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
551 !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
552 if (ctx->enc)
553 EVP_CIPHER_CTX_free(ctx->enc);
554 os_free(ctx);
555 return NULL;
556 }
557
558 if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
559 !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
560 !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
561 !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
562 !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
563 EVP_CIPHER_CTX_free(ctx->enc);
564 if (ctx->dec)
565 EVP_CIPHER_CTX_free(ctx->dec);
566 os_free(ctx);
567 return NULL;
568 }
569
570 return ctx;
571 }
572
573
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)574 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
575 u8 *crypt, size_t len)
576 {
577 int outl;
578 if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
579 return -1;
580 return 0;
581 }
582
583
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)584 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
585 u8 *plain, size_t len)
586 {
587 int outl;
588 outl = len;
589 if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
590 return -1;
591 return 0;
592 }
593
594
crypto_cipher_deinit(struct crypto_cipher * ctx)595 void crypto_cipher_deinit(struct crypto_cipher *ctx)
596 {
597 EVP_CIPHER_CTX_free(ctx->enc);
598 EVP_CIPHER_CTX_free(ctx->dec);
599 os_free(ctx);
600 }
601
602
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)603 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
604 {
605 DH *dh;
606 struct wpabuf *pubkey = NULL, *privkey = NULL;
607 size_t publen, privlen;
608
609 *priv = NULL;
610 *publ = NULL;
611
612 dh = DH_new();
613 if (dh == NULL)
614 return NULL;
615
616 dh->g = BN_new();
617 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
618 goto err;
619
620 dh->p = get_group5_prime();
621 if (dh->p == NULL)
622 goto err;
623
624 if (DH_generate_key(dh) != 1)
625 goto err;
626
627 publen = BN_num_bytes(dh->pub_key);
628 pubkey = wpabuf_alloc(publen);
629 if (pubkey == NULL)
630 goto err;
631 privlen = BN_num_bytes(dh->priv_key);
632 privkey = wpabuf_alloc(privlen);
633 if (privkey == NULL)
634 goto err;
635
636 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
637 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
638
639 *priv = privkey;
640 *publ = pubkey;
641 return dh;
642
643 err:
644 wpabuf_clear_free(pubkey);
645 wpabuf_clear_free(privkey);
646 DH_free(dh);
647 return NULL;
648 }
649
650
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)651 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
652 {
653 DH *dh;
654
655 dh = DH_new();
656 if (dh == NULL)
657 return NULL;
658
659 dh->g = BN_new();
660 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
661 goto err;
662
663 dh->p = get_group5_prime();
664 if (dh->p == NULL)
665 goto err;
666
667 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
668 if (dh->priv_key == NULL)
669 goto err;
670
671 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
672 if (dh->pub_key == NULL)
673 goto err;
674
675 if (DH_generate_key(dh) != 1)
676 goto err;
677
678 return dh;
679
680 err:
681 DH_free(dh);
682 return NULL;
683 }
684
685
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)686 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
687 const struct wpabuf *own_private)
688 {
689 BIGNUM *pub_key;
690 struct wpabuf *res = NULL;
691 size_t rlen;
692 DH *dh = ctx;
693 int keylen;
694
695 if (ctx == NULL)
696 return NULL;
697
698 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
699 NULL);
700 if (pub_key == NULL)
701 return NULL;
702
703 rlen = DH_size(dh);
704 res = wpabuf_alloc(rlen);
705 if (res == NULL)
706 goto err;
707
708 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
709 if (keylen < 0)
710 goto err;
711 wpabuf_put(res, keylen);
712 BN_clear_free(pub_key);
713
714 return res;
715
716 err:
717 BN_clear_free(pub_key);
718 wpabuf_clear_free(res);
719 return NULL;
720 }
721
722
dh5_free(void * ctx)723 void dh5_free(void *ctx)
724 {
725 DH *dh;
726 if (ctx == NULL)
727 return;
728 dh = ctx;
729 DH_free(dh);
730 }
731
732
733 struct crypto_hash {
734 HMAC_CTX *ctx;
735 };
736
737
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)738 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
739 size_t key_len)
740 {
741 struct crypto_hash *ctx;
742 const EVP_MD *md;
743
744 switch (alg) {
745 #ifndef OPENSSL_NO_MD5
746 case CRYPTO_HASH_ALG_HMAC_MD5:
747 md = EVP_md5();
748 break;
749 #endif /* OPENSSL_NO_MD5 */
750 #ifndef OPENSSL_NO_SHA
751 case CRYPTO_HASH_ALG_HMAC_SHA1:
752 md = EVP_sha1();
753 break;
754 #endif /* OPENSSL_NO_SHA */
755 #ifndef OPENSSL_NO_SHA256
756 #ifdef CONFIG_SHA256
757 case CRYPTO_HASH_ALG_HMAC_SHA256:
758 md = EVP_sha256();
759 break;
760 #endif /* CONFIG_SHA256 */
761 #endif /* OPENSSL_NO_SHA256 */
762 default:
763 return NULL;
764 }
765
766 ctx = os_zalloc(sizeof(*ctx));
767 if (ctx == NULL)
768 return NULL;
769 ctx->ctx = HMAC_CTX_new();
770 if (!ctx->ctx) {
771 os_free(ctx);
772 return NULL;
773 }
774
775 if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
776 HMAC_CTX_free(ctx->ctx);
777 bin_clear_free(ctx, sizeof(*ctx));
778 return NULL;
779 }
780
781 return ctx;
782 }
783
784
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)785 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
786 {
787 if (ctx == NULL)
788 return;
789 HMAC_Update(ctx->ctx, data, len);
790 }
791
792
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)793 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
794 {
795 unsigned int mdlen;
796 int res;
797
798 if (ctx == NULL)
799 return -2;
800
801 if (mac == NULL || len == NULL) {
802 HMAC_CTX_free(ctx->ctx);
803 bin_clear_free(ctx, sizeof(*ctx));
804 return 0;
805 }
806
807 mdlen = *len;
808 res = HMAC_Final(ctx->ctx, mac, &mdlen);
809 HMAC_CTX_free(ctx->ctx);
810 bin_clear_free(ctx, sizeof(*ctx));
811
812 if (res == 1) {
813 *len = mdlen;
814 return 0;
815 }
816
817 return -1;
818 }
819
820
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)821 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
822 size_t key_len, size_t num_elem,
823 const u8 *addr[], const size_t *len, u8 *mac,
824 unsigned int mdlen)
825 {
826 HMAC_CTX *ctx;
827 size_t i;
828 int res;
829
830 if (TEST_FAIL())
831 return -1;
832
833 ctx = HMAC_CTX_new();
834 if (!ctx)
835 return -1;
836 res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
837 if (res != 1)
838 goto done;
839
840 for (i = 0; i < num_elem; i++)
841 HMAC_Update(ctx, addr[i], len[i]);
842
843 res = HMAC_Final(ctx, mac, &mdlen);
844 done:
845 HMAC_CTX_free(ctx);
846
847 return res == 1 ? 0 : -1;
848 }
849
850
851 #ifndef CONFIG_FIPS
852
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)853 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
854 const u8 *addr[], const size_t *len, u8 *mac)
855 {
856 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
857 mac, 16);
858 }
859
860
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)861 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
862 u8 *mac)
863 {
864 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
865 }
866
867 #endif /* CONFIG_FIPS */
868
869
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)870 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
871 int iterations, u8 *buf, size_t buflen)
872 {
873 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
874 ssid_len, iterations, buflen, buf) != 1)
875 return -1;
876 return 0;
877 }
878
879
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)880 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
881 const u8 *addr[], const size_t *len, u8 *mac)
882 {
883 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
884 len, mac, 20);
885 }
886
887
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)888 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
889 u8 *mac)
890 {
891 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
892 }
893
894
895 #ifdef CONFIG_SHA256
896
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)897 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
898 const u8 *addr[], const size_t *len, u8 *mac)
899 {
900 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
901 len, mac, 32);
902 }
903
904
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)905 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
906 size_t data_len, u8 *mac)
907 {
908 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
909 }
910
911 #endif /* CONFIG_SHA256 */
912
913
914 #ifdef CONFIG_SHA384
915
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)916 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
917 const u8 *addr[], const size_t *len, u8 *mac)
918 {
919 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
920 len, mac, 32);
921 }
922
923
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)924 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
925 size_t data_len, u8 *mac)
926 {
927 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
928 }
929
930 #endif /* CONFIG_SHA384 */
931
932
crypto_get_random(void * buf,size_t len)933 int crypto_get_random(void *buf, size_t len)
934 {
935 if (RAND_bytes(buf, len) != 1)
936 return -1;
937 return 0;
938 }
939
940
941 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)942 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
943 const u8 *addr[], const size_t *len, u8 *mac)
944 {
945 CMAC_CTX *ctx;
946 int ret = -1;
947 size_t outlen, i;
948
949 if (TEST_FAIL())
950 return -1;
951
952 ctx = CMAC_CTX_new();
953 if (ctx == NULL)
954 return -1;
955
956 if (key_len == 32) {
957 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
958 goto fail;
959 } else if (key_len == 16) {
960 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
961 goto fail;
962 } else {
963 goto fail;
964 }
965 for (i = 0; i < num_elem; i++) {
966 if (!CMAC_Update(ctx, addr[i], len[i]))
967 goto fail;
968 }
969 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
970 goto fail;
971
972 ret = 0;
973 fail:
974 CMAC_CTX_free(ctx);
975 return ret;
976 }
977
978
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)979 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
980 const u8 *addr[], const size_t *len, u8 *mac)
981 {
982 return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
983 }
984
985
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)986 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
987 {
988 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
989 }
990
991
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)992 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
993 {
994 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
995 }
996 #endif /* CONFIG_OPENSSL_CMAC */
997
998
crypto_bignum_init(void)999 struct crypto_bignum * crypto_bignum_init(void)
1000 {
1001 if (TEST_FAIL())
1002 return NULL;
1003 return (struct crypto_bignum *) BN_new();
1004 }
1005
1006
crypto_bignum_init_set(const u8 * buf,size_t len)1007 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1008 {
1009 BIGNUM *bn;
1010
1011 if (TEST_FAIL())
1012 return NULL;
1013
1014 bn = BN_bin2bn(buf, len, NULL);
1015 return (struct crypto_bignum *) bn;
1016 }
1017
1018
crypto_bignum_deinit(struct crypto_bignum * n,int clear)1019 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1020 {
1021 if (clear)
1022 BN_clear_free((BIGNUM *) n);
1023 else
1024 BN_free((BIGNUM *) n);
1025 }
1026
1027
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)1028 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1029 u8 *buf, size_t buflen, size_t padlen)
1030 {
1031 int num_bytes, offset;
1032
1033 if (TEST_FAIL())
1034 return -1;
1035
1036 if (padlen > buflen)
1037 return -1;
1038
1039 num_bytes = BN_num_bytes((const BIGNUM *) a);
1040 if ((size_t) num_bytes > buflen)
1041 return -1;
1042 if (padlen > (size_t) num_bytes)
1043 offset = padlen - num_bytes;
1044 else
1045 offset = 0;
1046
1047 os_memset(buf, 0, offset);
1048 BN_bn2bin((const BIGNUM *) a, buf + offset);
1049
1050 return num_bytes + offset;
1051 }
1052
1053
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1054 int crypto_bignum_add(const struct crypto_bignum *a,
1055 const struct crypto_bignum *b,
1056 struct crypto_bignum *c)
1057 {
1058 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1059 0 : -1;
1060 }
1061
1062
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1063 int crypto_bignum_mod(const struct crypto_bignum *a,
1064 const struct crypto_bignum *b,
1065 struct crypto_bignum *c)
1066 {
1067 int res;
1068 BN_CTX *bnctx;
1069
1070 bnctx = BN_CTX_new();
1071 if (bnctx == NULL)
1072 return -1;
1073 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1074 bnctx);
1075 BN_CTX_free(bnctx);
1076
1077 return res ? 0 : -1;
1078 }
1079
1080
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1081 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1082 const struct crypto_bignum *b,
1083 const struct crypto_bignum *c,
1084 struct crypto_bignum *d)
1085 {
1086 int res;
1087 BN_CTX *bnctx;
1088
1089 if (TEST_FAIL())
1090 return -1;
1091
1092 bnctx = BN_CTX_new();
1093 if (bnctx == NULL)
1094 return -1;
1095 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1096 (const BIGNUM *) c, bnctx);
1097 BN_CTX_free(bnctx);
1098
1099 return res ? 0 : -1;
1100 }
1101
1102
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1103 int crypto_bignum_inverse(const struct crypto_bignum *a,
1104 const struct crypto_bignum *b,
1105 struct crypto_bignum *c)
1106 {
1107 BIGNUM *res;
1108 BN_CTX *bnctx;
1109
1110 if (TEST_FAIL())
1111 return -1;
1112 bnctx = BN_CTX_new();
1113 if (bnctx == NULL)
1114 return -1;
1115 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1116 (const BIGNUM *) b, bnctx);
1117 BN_CTX_free(bnctx);
1118
1119 return res ? 0 : -1;
1120 }
1121
1122
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1123 int crypto_bignum_sub(const struct crypto_bignum *a,
1124 const struct crypto_bignum *b,
1125 struct crypto_bignum *c)
1126 {
1127 if (TEST_FAIL())
1128 return -1;
1129 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1130 0 : -1;
1131 }
1132
1133
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1134 int crypto_bignum_div(const struct crypto_bignum *a,
1135 const struct crypto_bignum *b,
1136 struct crypto_bignum *c)
1137 {
1138 int res;
1139
1140 BN_CTX *bnctx;
1141
1142 if (TEST_FAIL())
1143 return -1;
1144
1145 bnctx = BN_CTX_new();
1146 if (bnctx == NULL)
1147 return -1;
1148 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1149 (const BIGNUM *) b, bnctx);
1150 BN_CTX_free(bnctx);
1151
1152 return res ? 0 : -1;
1153 }
1154
1155
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1156 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1157 const struct crypto_bignum *b,
1158 const struct crypto_bignum *c,
1159 struct crypto_bignum *d)
1160 {
1161 int res;
1162
1163 BN_CTX *bnctx;
1164
1165 if (TEST_FAIL())
1166 return -1;
1167
1168 bnctx = BN_CTX_new();
1169 if (bnctx == NULL)
1170 return -1;
1171 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1172 (const BIGNUM *) c, bnctx);
1173 BN_CTX_free(bnctx);
1174
1175 return res ? 0 : -1;
1176 }
1177
1178
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1179 int crypto_bignum_cmp(const struct crypto_bignum *a,
1180 const struct crypto_bignum *b)
1181 {
1182 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1183 }
1184
1185
crypto_bignum_bits(const struct crypto_bignum * a)1186 int crypto_bignum_bits(const struct crypto_bignum *a)
1187 {
1188 return BN_num_bits((const BIGNUM *) a);
1189 }
1190
1191
crypto_bignum_is_zero(const struct crypto_bignum * a)1192 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1193 {
1194 return BN_is_zero((const BIGNUM *) a);
1195 }
1196
1197
crypto_bignum_is_one(const struct crypto_bignum * a)1198 int crypto_bignum_is_one(const struct crypto_bignum *a)
1199 {
1200 return BN_is_one((const BIGNUM *) a);
1201 }
1202
1203
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1204 int crypto_bignum_legendre(const struct crypto_bignum *a,
1205 const struct crypto_bignum *p)
1206 {
1207 BN_CTX *bnctx;
1208 BIGNUM *exp = NULL, *tmp = NULL;
1209 int res = -2;
1210
1211 if (TEST_FAIL())
1212 return -2;
1213
1214 bnctx = BN_CTX_new();
1215 if (bnctx == NULL)
1216 return -2;
1217
1218 exp = BN_new();
1219 tmp = BN_new();
1220 if (!exp || !tmp ||
1221 /* exp = (p-1) / 2 */
1222 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1223 !BN_rshift1(exp, exp) ||
1224 !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1225 bnctx))
1226 goto fail;
1227
1228 if (BN_is_word(tmp, 1))
1229 res = 1;
1230 else if (BN_is_zero(tmp))
1231 res = 0;
1232 else
1233 res = -1;
1234
1235 fail:
1236 BN_clear_free(tmp);
1237 BN_clear_free(exp);
1238 BN_CTX_free(bnctx);
1239 return res;
1240 }
1241
1242
1243 #ifdef CONFIG_ECC
1244
1245 struct crypto_ec {
1246 EC_GROUP *group;
1247 BN_CTX *bnctx;
1248 BIGNUM *prime;
1249 BIGNUM *order;
1250 BIGNUM *a;
1251 BIGNUM *b;
1252 };
1253
crypto_ec_init(int group)1254 struct crypto_ec * crypto_ec_init(int group)
1255 {
1256 struct crypto_ec *e;
1257 int nid;
1258
1259 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1260 switch (group) {
1261 case 19:
1262 nid = NID_X9_62_prime256v1;
1263 break;
1264 case 20:
1265 nid = NID_secp384r1;
1266 break;
1267 case 21:
1268 nid = NID_secp521r1;
1269 break;
1270 case 25:
1271 nid = NID_X9_62_prime192v1;
1272 break;
1273 case 26:
1274 nid = NID_secp224r1;
1275 break;
1276 #ifdef NID_brainpoolP224r1
1277 case 27:
1278 nid = NID_brainpoolP224r1;
1279 break;
1280 #endif /* NID_brainpoolP224r1 */
1281 #ifdef NID_brainpoolP256r1
1282 case 28:
1283 nid = NID_brainpoolP256r1;
1284 break;
1285 #endif /* NID_brainpoolP256r1 */
1286 #ifdef NID_brainpoolP384r1
1287 case 29:
1288 nid = NID_brainpoolP384r1;
1289 break;
1290 #endif /* NID_brainpoolP384r1 */
1291 #ifdef NID_brainpoolP512r1
1292 case 30:
1293 nid = NID_brainpoolP512r1;
1294 break;
1295 #endif /* NID_brainpoolP512r1 */
1296 default:
1297 return NULL;
1298 }
1299
1300 e = os_zalloc(sizeof(*e));
1301 if (e == NULL)
1302 return NULL;
1303
1304 e->bnctx = BN_CTX_new();
1305 e->group = EC_GROUP_new_by_curve_name(nid);
1306 e->prime = BN_new();
1307 e->order = BN_new();
1308 e->a = BN_new();
1309 e->b = BN_new();
1310 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1311 e->order == NULL || e->a == NULL || e->b == NULL ||
1312 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1313 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1314 crypto_ec_deinit(e);
1315 e = NULL;
1316 }
1317
1318 return e;
1319 }
1320
1321
crypto_ec_deinit(struct crypto_ec * e)1322 void crypto_ec_deinit(struct crypto_ec *e)
1323 {
1324 if (e == NULL)
1325 return;
1326 BN_clear_free(e->b);
1327 BN_clear_free(e->a);
1328 BN_clear_free(e->order);
1329 BN_clear_free(e->prime);
1330 EC_GROUP_free(e->group);
1331 BN_CTX_free(e->bnctx);
1332 os_free(e);
1333 }
1334
1335
crypto_ec_point_init(struct crypto_ec * e)1336 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1337 {
1338 if (TEST_FAIL())
1339 return NULL;
1340 if (e == NULL)
1341 return NULL;
1342 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1343 }
1344
1345
crypto_ec_prime_len(struct crypto_ec * e)1346 size_t crypto_ec_prime_len(struct crypto_ec *e)
1347 {
1348 return BN_num_bytes(e->prime);
1349 }
1350
1351
crypto_ec_prime_len_bits(struct crypto_ec * e)1352 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1353 {
1354 return BN_num_bits(e->prime);
1355 }
1356
1357
crypto_ec_get_prime(struct crypto_ec * e)1358 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1359 {
1360 return (const struct crypto_bignum *) e->prime;
1361 }
1362
1363
crypto_ec_get_order(struct crypto_ec * e)1364 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1365 {
1366 return (const struct crypto_bignum *) e->order;
1367 }
1368
1369
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1370 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1371 {
1372 if (clear)
1373 EC_POINT_clear_free((EC_POINT *) p);
1374 else
1375 EC_POINT_free((EC_POINT *) p);
1376 }
1377
1378
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1379 int crypto_ec_point_to_bin(struct crypto_ec *e,
1380 const struct crypto_ec_point *point, u8 *x, u8 *y)
1381 {
1382 BIGNUM *x_bn, *y_bn;
1383 int ret = -1;
1384 int len = BN_num_bytes(e->prime);
1385
1386 if (TEST_FAIL())
1387 return -1;
1388
1389 x_bn = BN_new();
1390 y_bn = BN_new();
1391
1392 if (x_bn && y_bn &&
1393 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1394 x_bn, y_bn, e->bnctx)) {
1395 if (x) {
1396 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1397 x, len, len);
1398 }
1399 if (y) {
1400 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1401 y, len, len);
1402 }
1403 ret = 0;
1404 }
1405
1406 BN_clear_free(x_bn);
1407 BN_clear_free(y_bn);
1408 return ret;
1409 }
1410
1411
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1412 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1413 const u8 *val)
1414 {
1415 BIGNUM *x, *y;
1416 EC_POINT *elem;
1417 int len = BN_num_bytes(e->prime);
1418
1419 if (TEST_FAIL())
1420 return NULL;
1421
1422 x = BN_bin2bn(val, len, NULL);
1423 y = BN_bin2bn(val + len, len, NULL);
1424 elem = EC_POINT_new(e->group);
1425 if (x == NULL || y == NULL || elem == NULL) {
1426 BN_clear_free(x);
1427 BN_clear_free(y);
1428 EC_POINT_clear_free(elem);
1429 return NULL;
1430 }
1431
1432 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1433 e->bnctx)) {
1434 EC_POINT_clear_free(elem);
1435 elem = NULL;
1436 }
1437
1438 BN_clear_free(x);
1439 BN_clear_free(y);
1440
1441 return (struct crypto_ec_point *) elem;
1442 }
1443
1444
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1445 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1446 const struct crypto_ec_point *b,
1447 struct crypto_ec_point *c)
1448 {
1449 if (TEST_FAIL())
1450 return -1;
1451 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1452 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1453 }
1454
1455
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1456 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1457 const struct crypto_bignum *b,
1458 struct crypto_ec_point *res)
1459 {
1460 if (TEST_FAIL())
1461 return -1;
1462 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1463 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1464 ? 0 : -1;
1465 }
1466
1467
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1468 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1469 {
1470 if (TEST_FAIL())
1471 return -1;
1472 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1473 }
1474
1475
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1476 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1477 struct crypto_ec_point *p,
1478 const struct crypto_bignum *x, int y_bit)
1479 {
1480 if (TEST_FAIL())
1481 return -1;
1482 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1483 (const BIGNUM *) x, y_bit,
1484 e->bnctx) ||
1485 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1486 return -1;
1487 return 0;
1488 }
1489
1490
1491 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1492 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1493 const struct crypto_bignum *x)
1494 {
1495 BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1496
1497 if (TEST_FAIL())
1498 return NULL;
1499
1500 tmp = BN_new();
1501 tmp2 = BN_new();
1502
1503 /* y^2 = x^3 + ax + b */
1504 if (tmp && tmp2 &&
1505 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1506 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1507 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1508 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1509 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1510 y_sqr = tmp2;
1511 tmp2 = NULL;
1512 }
1513
1514 BN_clear_free(tmp);
1515 BN_clear_free(tmp2);
1516
1517 return (struct crypto_bignum *) y_sqr;
1518 }
1519
1520
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1521 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1522 const struct crypto_ec_point *p)
1523 {
1524 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1525 }
1526
1527
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1528 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1529 const struct crypto_ec_point *p)
1530 {
1531 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1532 e->bnctx) == 1;
1533 }
1534
1535
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1536 int crypto_ec_point_cmp(const struct crypto_ec *e,
1537 const struct crypto_ec_point *a,
1538 const struct crypto_ec_point *b)
1539 {
1540 return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1541 (const EC_POINT *) b, e->bnctx);
1542 }
1543
1544 #endif /* CONFIG_ECC */
1545