1 /*
2  * Wrapper functions for OpenSSL libcrypto
3  * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25 
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "crypto.h"
33 
34 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
35 /* Compatibility wrappers for older versions. */
36 
HMAC_CTX_new(void)37 static HMAC_CTX * HMAC_CTX_new(void)
38 {
39 	HMAC_CTX *ctx;
40 
41 	ctx = os_zalloc(sizeof(*ctx));
42 	if (ctx)
43 		HMAC_CTX_init(ctx);
44 	return ctx;
45 }
46 
47 
HMAC_CTX_free(HMAC_CTX * ctx)48 static void HMAC_CTX_free(HMAC_CTX *ctx)
49 {
50 	HMAC_CTX_cleanup(ctx);
51 	bin_clear_free(ctx, sizeof(*ctx));
52 }
53 
54 
EVP_MD_CTX_new(void)55 static EVP_MD_CTX * EVP_MD_CTX_new(void)
56 {
57 	EVP_MD_CTX *ctx;
58 
59 	ctx = os_zalloc(sizeof(*ctx));
60 	if (ctx)
61 		EVP_MD_CTX_init(ctx);
62 	return ctx;
63 }
64 
65 
EVP_MD_CTX_free(EVP_MD_CTX * ctx)66 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
67 {
68 	bin_clear_free(ctx, sizeof(*ctx));
69 }
70 
71 #endif /* OpenSSL version < 1.1.0 */
72 
get_group5_prime(void)73 static BIGNUM * get_group5_prime(void)
74 {
75 #ifdef OPENSSL_IS_BORINGSSL
76 	static const unsigned char RFC3526_PRIME_1536[] = {
77 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
78 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
79 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
80 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
81 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
82 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
83 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
84 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
85 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
86 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
87 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
88 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
89 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
90 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
91 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
92 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
93 	};
94         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
95 #else /* OPENSSL_IS_BORINGSSL */
96 	return get_rfc3526_prime_1536(NULL);
97 #endif /* OPENSSL_IS_BORINGSSL */
98 }
99 
100 #ifdef OPENSSL_NO_SHA256
101 #define NO_SHA256_WRAPPER
102 #endif
103 
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)104 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
105 				 const u8 *addr[], const size_t *len, u8 *mac)
106 {
107 	EVP_MD_CTX *ctx;
108 	size_t i;
109 	unsigned int mac_len;
110 
111 	if (TEST_FAIL())
112 		return -1;
113 
114 	ctx = EVP_MD_CTX_new();
115 	if (!ctx)
116 		return -1;
117 	if (!EVP_DigestInit_ex(ctx, type, NULL)) {
118 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
119 			   ERR_error_string(ERR_get_error(), NULL));
120 		EVP_MD_CTX_free(ctx);
121 		return -1;
122 	}
123 	for (i = 0; i < num_elem; i++) {
124 		if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
125 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
126 				   "failed: %s",
127 				   ERR_error_string(ERR_get_error(), NULL));
128 			EVP_MD_CTX_free(ctx);
129 			return -1;
130 		}
131 	}
132 	if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
133 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
134 			   ERR_error_string(ERR_get_error(), NULL));
135 		EVP_MD_CTX_free(ctx);
136 		return -1;
137 	}
138 	EVP_MD_CTX_free(ctx);
139 
140 	return 0;
141 }
142 
143 
144 #ifndef CONFIG_FIPS
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)145 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
146 {
147 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
148 }
149 #endif /* CONFIG_FIPS */
150 
151 
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)152 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
153 {
154 	u8 pkey[8], next, tmp;
155 	int i;
156 	DES_key_schedule ks;
157 
158 	/* Add parity bits to the key */
159 	next = 0;
160 	for (i = 0; i < 7; i++) {
161 		tmp = key[i];
162 		pkey[i] = (tmp >> i) | next | 1;
163 		next = tmp << (7 - i);
164 	}
165 	pkey[i] = next | 1;
166 
167 	DES_set_key((DES_cblock *) &pkey, &ks);
168 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
169 			DES_ENCRYPT);
170 }
171 
172 
173 #ifndef CONFIG_NO_RC4
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)174 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
175 	     u8 *data, size_t data_len)
176 {
177 #ifdef OPENSSL_NO_RC4
178 	return -1;
179 #else /* OPENSSL_NO_RC4 */
180 	EVP_CIPHER_CTX *ctx;
181 	int outl;
182 	int res = -1;
183 	unsigned char skip_buf[16];
184 
185 	ctx = EVP_CIPHER_CTX_new();
186 	if (!ctx ||
187 	    !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
188 	    !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
189 	    !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
190 	    !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
191 		goto out;
192 
193 	while (skip >= sizeof(skip_buf)) {
194 		size_t len = skip;
195 		if (len > sizeof(skip_buf))
196 			len = sizeof(skip_buf);
197 		if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
198 			goto out;
199 		skip -= len;
200 	}
201 
202 	if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
203 		res = 0;
204 
205 out:
206 	if (ctx)
207 		EVP_CIPHER_CTX_free(ctx);
208 	return res;
209 #endif /* OPENSSL_NO_RC4 */
210 }
211 #endif /* CONFIG_NO_RC4 */
212 
213 
214 #ifndef CONFIG_FIPS
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)215 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
216 {
217 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
218 }
219 #endif /* CONFIG_FIPS */
220 
221 
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)222 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
223 {
224 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
225 }
226 
227 
228 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)229 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
230 		  u8 *mac)
231 {
232 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
233 }
234 #endif /* NO_SHA256_WRAPPER */
235 
236 
aes_get_evp_cipher(size_t keylen)237 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
238 {
239 	switch (keylen) {
240 	case 16:
241 		return EVP_aes_128_ecb();
242 #ifndef OPENSSL_IS_BORINGSSL
243 	case 24:
244 		return EVP_aes_192_ecb();
245 #endif /* OPENSSL_IS_BORINGSSL */
246 	case 32:
247 		return EVP_aes_256_ecb();
248 	}
249 
250 	return NULL;
251 }
252 
253 
aes_encrypt_init(const u8 * key,size_t len)254 void * aes_encrypt_init(const u8 *key, size_t len)
255 {
256 	EVP_CIPHER_CTX *ctx;
257 	const EVP_CIPHER *type;
258 
259 	if (TEST_FAIL())
260 		return NULL;
261 
262 	type = aes_get_evp_cipher(len);
263 	if (type == NULL)
264 		return NULL;
265 
266 	ctx = EVP_CIPHER_CTX_new();
267 	if (ctx == NULL)
268 		return NULL;
269 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
270 		os_free(ctx);
271 		return NULL;
272 	}
273 	EVP_CIPHER_CTX_set_padding(ctx, 0);
274 	return ctx;
275 }
276 
277 
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)278 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
279 {
280 	EVP_CIPHER_CTX *c = ctx;
281 	int clen = 16;
282 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
283 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
284 			   ERR_error_string(ERR_get_error(), NULL));
285 	}
286 }
287 
288 
aes_encrypt_deinit(void * ctx)289 void aes_encrypt_deinit(void *ctx)
290 {
291 	EVP_CIPHER_CTX *c = ctx;
292 	u8 buf[16];
293 	int len = sizeof(buf);
294 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
295 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
296 			   "%s", ERR_error_string(ERR_get_error(), NULL));
297 	}
298 	if (len != 0) {
299 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
300 			   "in AES encrypt", len);
301 	}
302 	EVP_CIPHER_CTX_free(c);
303 }
304 
305 
aes_decrypt_init(const u8 * key,size_t len)306 void * aes_decrypt_init(const u8 *key, size_t len)
307 {
308 	EVP_CIPHER_CTX *ctx;
309 	const EVP_CIPHER *type;
310 
311 	if (TEST_FAIL())
312 		return NULL;
313 
314 	type = aes_get_evp_cipher(len);
315 	if (type == NULL)
316 		return NULL;
317 
318 	ctx = EVP_CIPHER_CTX_new();
319 	if (ctx == NULL)
320 		return NULL;
321 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
322 		EVP_CIPHER_CTX_free(ctx);
323 		return NULL;
324 	}
325 	EVP_CIPHER_CTX_set_padding(ctx, 0);
326 	return ctx;
327 }
328 
329 
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)330 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
331 {
332 	EVP_CIPHER_CTX *c = ctx;
333 	int plen = 16;
334 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
335 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
336 			   ERR_error_string(ERR_get_error(), NULL));
337 	}
338 }
339 
340 
aes_decrypt_deinit(void * ctx)341 void aes_decrypt_deinit(void *ctx)
342 {
343 	EVP_CIPHER_CTX *c = ctx;
344 	u8 buf[16];
345 	int len = sizeof(buf);
346 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
347 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
348 			   "%s", ERR_error_string(ERR_get_error(), NULL));
349 	}
350 	if (len != 0) {
351 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
352 			   "in AES decrypt", len);
353 	}
354 	EVP_CIPHER_CTX_free(c);
355 }
356 
357 
358 #ifndef CONFIG_FIPS
359 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
360 
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)361 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
362 {
363 	AES_KEY actx;
364 	int res;
365 
366 	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
367 		return -1;
368 	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
369 	OPENSSL_cleanse(&actx, sizeof(actx));
370 	return res <= 0 ? -1 : 0;
371 }
372 
373 
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)374 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
375 	       u8 *plain)
376 {
377 	AES_KEY actx;
378 	int res;
379 
380 	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
381 		return -1;
382 	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
383 	OPENSSL_cleanse(&actx, sizeof(actx));
384 	return res <= 0 ? -1 : 0;
385 }
386 
387 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
388 #endif /* CONFIG_FIPS */
389 
390 
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)391 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
392 {
393 	EVP_CIPHER_CTX *ctx;
394 	int clen, len;
395 	u8 buf[16];
396 	int res = -1;
397 
398 	if (TEST_FAIL())
399 		return -1;
400 
401 	ctx = EVP_CIPHER_CTX_new();
402 	if (!ctx)
403 		return -1;
404 	clen = data_len;
405 	len = sizeof(buf);
406 	if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
407 	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
408 	    EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
409 	    clen == (int) data_len &&
410 	    EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
411 		res = 0;
412 	EVP_CIPHER_CTX_free(ctx);
413 
414 	return res;
415 }
416 
417 
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)418 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
419 {
420 	EVP_CIPHER_CTX *ctx;
421 	int plen, len;
422 	u8 buf[16];
423 	int res = -1;
424 
425 	if (TEST_FAIL())
426 		return -1;
427 
428 	ctx = EVP_CIPHER_CTX_new();
429 	if (!ctx)
430 		return -1;
431 	plen = data_len;
432 	len = sizeof(buf);
433 	if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
434 	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
435 	    EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
436 	    plen == (int) data_len &&
437 	    EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
438 		res = 0;
439 	EVP_CIPHER_CTX_free(ctx);
440 
441 	return res;
442 
443 }
444 
445 
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)446 int crypto_mod_exp(const u8 *base, size_t base_len,
447 		   const u8 *power, size_t power_len,
448 		   const u8 *modulus, size_t modulus_len,
449 		   u8 *result, size_t *result_len)
450 {
451 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
452 	int ret = -1;
453 	BN_CTX *ctx;
454 
455 	ctx = BN_CTX_new();
456 	if (ctx == NULL)
457 		return -1;
458 
459 	bn_base = BN_bin2bn(base, base_len, NULL);
460 	bn_exp = BN_bin2bn(power, power_len, NULL);
461 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
462 	bn_result = BN_new();
463 
464 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
465 	    bn_result == NULL)
466 		goto error;
467 
468 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
469 		goto error;
470 
471 	*result_len = BN_bn2bin(bn_result, result);
472 	ret = 0;
473 
474 error:
475 	BN_clear_free(bn_base);
476 	BN_clear_free(bn_exp);
477 	BN_clear_free(bn_modulus);
478 	BN_clear_free(bn_result);
479 	BN_CTX_free(ctx);
480 	return ret;
481 }
482 
483 
484 struct crypto_cipher {
485 	EVP_CIPHER_CTX *enc;
486 	EVP_CIPHER_CTX *dec;
487 };
488 
489 
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)490 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
491 					  const u8 *iv, const u8 *key,
492 					  size_t key_len)
493 {
494 	struct crypto_cipher *ctx;
495 	const EVP_CIPHER *cipher;
496 
497 	ctx = os_zalloc(sizeof(*ctx));
498 	if (ctx == NULL)
499 		return NULL;
500 
501 	switch (alg) {
502 #ifndef CONFIG_NO_RC4
503 #ifndef OPENSSL_NO_RC4
504 	case CRYPTO_CIPHER_ALG_RC4:
505 		cipher = EVP_rc4();
506 		break;
507 #endif /* OPENSSL_NO_RC4 */
508 #endif /* CONFIG_NO_RC4 */
509 #ifndef OPENSSL_NO_AES
510 	case CRYPTO_CIPHER_ALG_AES:
511 		switch (key_len) {
512 		case 16:
513 			cipher = EVP_aes_128_cbc();
514 			break;
515 #ifndef OPENSSL_IS_BORINGSSL
516 		case 24:
517 			cipher = EVP_aes_192_cbc();
518 			break;
519 #endif /* OPENSSL_IS_BORINGSSL */
520 		case 32:
521 			cipher = EVP_aes_256_cbc();
522 			break;
523 		default:
524 			os_free(ctx);
525 			return NULL;
526 		}
527 		break;
528 #endif /* OPENSSL_NO_AES */
529 #ifndef OPENSSL_NO_DES
530 	case CRYPTO_CIPHER_ALG_3DES:
531 		cipher = EVP_des_ede3_cbc();
532 		break;
533 	case CRYPTO_CIPHER_ALG_DES:
534 		cipher = EVP_des_cbc();
535 		break;
536 #endif /* OPENSSL_NO_DES */
537 #ifndef OPENSSL_NO_RC2
538 	case CRYPTO_CIPHER_ALG_RC2:
539 		cipher = EVP_rc2_ecb();
540 		break;
541 #endif /* OPENSSL_NO_RC2 */
542 	default:
543 		os_free(ctx);
544 		return NULL;
545 	}
546 
547 	if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
548 	    !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
549 	    !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
550 	    !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
551 	    !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
552 		if (ctx->enc)
553 			EVP_CIPHER_CTX_free(ctx->enc);
554 		os_free(ctx);
555 		return NULL;
556 	}
557 
558 	if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
559 	    !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
560 	    !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
561 	    !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
562 	    !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
563 		EVP_CIPHER_CTX_free(ctx->enc);
564 		if (ctx->dec)
565 			EVP_CIPHER_CTX_free(ctx->dec);
566 		os_free(ctx);
567 		return NULL;
568 	}
569 
570 	return ctx;
571 }
572 
573 
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)574 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
575 			  u8 *crypt, size_t len)
576 {
577 	int outl;
578 	if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
579 		return -1;
580 	return 0;
581 }
582 
583 
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)584 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
585 			  u8 *plain, size_t len)
586 {
587 	int outl;
588 	outl = len;
589 	if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
590 		return -1;
591 	return 0;
592 }
593 
594 
crypto_cipher_deinit(struct crypto_cipher * ctx)595 void crypto_cipher_deinit(struct crypto_cipher *ctx)
596 {
597 	EVP_CIPHER_CTX_free(ctx->enc);
598 	EVP_CIPHER_CTX_free(ctx->dec);
599 	os_free(ctx);
600 }
601 
602 
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)603 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
604 {
605 	DH *dh;
606 	struct wpabuf *pubkey = NULL, *privkey = NULL;
607 	size_t publen, privlen;
608 
609 	*priv = NULL;
610 	*publ = NULL;
611 
612 	dh = DH_new();
613 	if (dh == NULL)
614 		return NULL;
615 
616 	dh->g = BN_new();
617 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
618 		goto err;
619 
620 	dh->p = get_group5_prime();
621 	if (dh->p == NULL)
622 		goto err;
623 
624 	if (DH_generate_key(dh) != 1)
625 		goto err;
626 
627 	publen = BN_num_bytes(dh->pub_key);
628 	pubkey = wpabuf_alloc(publen);
629 	if (pubkey == NULL)
630 		goto err;
631 	privlen = BN_num_bytes(dh->priv_key);
632 	privkey = wpabuf_alloc(privlen);
633 	if (privkey == NULL)
634 		goto err;
635 
636 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
637 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
638 
639 	*priv = privkey;
640 	*publ = pubkey;
641 	return dh;
642 
643 err:
644 	wpabuf_clear_free(pubkey);
645 	wpabuf_clear_free(privkey);
646 	DH_free(dh);
647 	return NULL;
648 }
649 
650 
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)651 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
652 {
653 	DH *dh;
654 
655 	dh = DH_new();
656 	if (dh == NULL)
657 		return NULL;
658 
659 	dh->g = BN_new();
660 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
661 		goto err;
662 
663 	dh->p = get_group5_prime();
664 	if (dh->p == NULL)
665 		goto err;
666 
667 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
668 	if (dh->priv_key == NULL)
669 		goto err;
670 
671 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
672 	if (dh->pub_key == NULL)
673 		goto err;
674 
675 	if (DH_generate_key(dh) != 1)
676 		goto err;
677 
678 	return dh;
679 
680 err:
681 	DH_free(dh);
682 	return NULL;
683 }
684 
685 
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)686 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
687 				  const struct wpabuf *own_private)
688 {
689 	BIGNUM *pub_key;
690 	struct wpabuf *res = NULL;
691 	size_t rlen;
692 	DH *dh = ctx;
693 	int keylen;
694 
695 	if (ctx == NULL)
696 		return NULL;
697 
698 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
699 			    NULL);
700 	if (pub_key == NULL)
701 		return NULL;
702 
703 	rlen = DH_size(dh);
704 	res = wpabuf_alloc(rlen);
705 	if (res == NULL)
706 		goto err;
707 
708 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
709 	if (keylen < 0)
710 		goto err;
711 	wpabuf_put(res, keylen);
712 	BN_clear_free(pub_key);
713 
714 	return res;
715 
716 err:
717 	BN_clear_free(pub_key);
718 	wpabuf_clear_free(res);
719 	return NULL;
720 }
721 
722 
dh5_free(void * ctx)723 void dh5_free(void *ctx)
724 {
725 	DH *dh;
726 	if (ctx == NULL)
727 		return;
728 	dh = ctx;
729 	DH_free(dh);
730 }
731 
732 
733 struct crypto_hash {
734 	HMAC_CTX *ctx;
735 };
736 
737 
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)738 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
739 				      size_t key_len)
740 {
741 	struct crypto_hash *ctx;
742 	const EVP_MD *md;
743 
744 	switch (alg) {
745 #ifndef OPENSSL_NO_MD5
746 	case CRYPTO_HASH_ALG_HMAC_MD5:
747 		md = EVP_md5();
748 		break;
749 #endif /* OPENSSL_NO_MD5 */
750 #ifndef OPENSSL_NO_SHA
751 	case CRYPTO_HASH_ALG_HMAC_SHA1:
752 		md = EVP_sha1();
753 		break;
754 #endif /* OPENSSL_NO_SHA */
755 #ifndef OPENSSL_NO_SHA256
756 #ifdef CONFIG_SHA256
757 	case CRYPTO_HASH_ALG_HMAC_SHA256:
758 		md = EVP_sha256();
759 		break;
760 #endif /* CONFIG_SHA256 */
761 #endif /* OPENSSL_NO_SHA256 */
762 	default:
763 		return NULL;
764 	}
765 
766 	ctx = os_zalloc(sizeof(*ctx));
767 	if (ctx == NULL)
768 		return NULL;
769 	ctx->ctx = HMAC_CTX_new();
770 	if (!ctx->ctx) {
771 		os_free(ctx);
772 		return NULL;
773 	}
774 
775 	if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
776 		HMAC_CTX_free(ctx->ctx);
777 		bin_clear_free(ctx, sizeof(*ctx));
778 		return NULL;
779 	}
780 
781 	return ctx;
782 }
783 
784 
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)785 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
786 {
787 	if (ctx == NULL)
788 		return;
789 	HMAC_Update(ctx->ctx, data, len);
790 }
791 
792 
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)793 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
794 {
795 	unsigned int mdlen;
796 	int res;
797 
798 	if (ctx == NULL)
799 		return -2;
800 
801 	if (mac == NULL || len == NULL) {
802 		HMAC_CTX_free(ctx->ctx);
803 		bin_clear_free(ctx, sizeof(*ctx));
804 		return 0;
805 	}
806 
807 	mdlen = *len;
808 	res = HMAC_Final(ctx->ctx, mac, &mdlen);
809 	HMAC_CTX_free(ctx->ctx);
810 	bin_clear_free(ctx, sizeof(*ctx));
811 
812 	if (res == 1) {
813 		*len = mdlen;
814 		return 0;
815 	}
816 
817 	return -1;
818 }
819 
820 
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)821 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
822 			       size_t key_len, size_t num_elem,
823 			       const u8 *addr[], const size_t *len, u8 *mac,
824 			       unsigned int mdlen)
825 {
826 	HMAC_CTX *ctx;
827 	size_t i;
828 	int res;
829 
830 	if (TEST_FAIL())
831 		return -1;
832 
833 	ctx = HMAC_CTX_new();
834 	if (!ctx)
835 		return -1;
836 	res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
837 	if (res != 1)
838 		goto done;
839 
840 	for (i = 0; i < num_elem; i++)
841 		HMAC_Update(ctx, addr[i], len[i]);
842 
843 	res = HMAC_Final(ctx, mac, &mdlen);
844 done:
845 	HMAC_CTX_free(ctx);
846 
847 	return res == 1 ? 0 : -1;
848 }
849 
850 
851 #ifndef CONFIG_FIPS
852 
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)853 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
854 		    const u8 *addr[], const size_t *len, u8 *mac)
855 {
856 	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
857 				   mac, 16);
858 }
859 
860 
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)861 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
862 	     u8 *mac)
863 {
864 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
865 }
866 
867 #endif /* CONFIG_FIPS */
868 
869 
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)870 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
871 		int iterations, u8 *buf, size_t buflen)
872 {
873 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
874 				   ssid_len, iterations, buflen, buf) != 1)
875 		return -1;
876 	return 0;
877 }
878 
879 
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)880 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
881 		     const u8 *addr[], const size_t *len, u8 *mac)
882 {
883 	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
884 				   len, mac, 20);
885 }
886 
887 
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)888 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
889 	       u8 *mac)
890 {
891 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
892 }
893 
894 
895 #ifdef CONFIG_SHA256
896 
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)897 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
898 		       const u8 *addr[], const size_t *len, u8 *mac)
899 {
900 	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
901 				   len, mac, 32);
902 }
903 
904 
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)905 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
906 		size_t data_len, u8 *mac)
907 {
908 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
909 }
910 
911 #endif /* CONFIG_SHA256 */
912 
913 
914 #ifdef CONFIG_SHA384
915 
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)916 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
917 		       const u8 *addr[], const size_t *len, u8 *mac)
918 {
919 	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
920 				   len, mac, 32);
921 }
922 
923 
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)924 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
925 		size_t data_len, u8 *mac)
926 {
927 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
928 }
929 
930 #endif /* CONFIG_SHA384 */
931 
932 
crypto_get_random(void * buf,size_t len)933 int crypto_get_random(void *buf, size_t len)
934 {
935 	if (RAND_bytes(buf, len) != 1)
936 		return -1;
937 	return 0;
938 }
939 
940 
941 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)942 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
943 		     const u8 *addr[], const size_t *len, u8 *mac)
944 {
945 	CMAC_CTX *ctx;
946 	int ret = -1;
947 	size_t outlen, i;
948 
949 	if (TEST_FAIL())
950 		return -1;
951 
952 	ctx = CMAC_CTX_new();
953 	if (ctx == NULL)
954 		return -1;
955 
956 	if (key_len == 32) {
957 		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
958 			goto fail;
959 	} else if (key_len == 16) {
960 		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
961 			goto fail;
962 	} else {
963 		goto fail;
964 	}
965 	for (i = 0; i < num_elem; i++) {
966 		if (!CMAC_Update(ctx, addr[i], len[i]))
967 			goto fail;
968 	}
969 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
970 		goto fail;
971 
972 	ret = 0;
973 fail:
974 	CMAC_CTX_free(ctx);
975 	return ret;
976 }
977 
978 
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)979 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
980 			 const u8 *addr[], const size_t *len, u8 *mac)
981 {
982 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
983 }
984 
985 
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)986 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
987 {
988 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
989 }
990 
991 
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)992 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
993 {
994 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
995 }
996 #endif /* CONFIG_OPENSSL_CMAC */
997 
998 
crypto_bignum_init(void)999 struct crypto_bignum * crypto_bignum_init(void)
1000 {
1001 	if (TEST_FAIL())
1002 		return NULL;
1003 	return (struct crypto_bignum *) BN_new();
1004 }
1005 
1006 
crypto_bignum_init_set(const u8 * buf,size_t len)1007 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1008 {
1009 	BIGNUM *bn;
1010 
1011 	if (TEST_FAIL())
1012 		return NULL;
1013 
1014 	bn = BN_bin2bn(buf, len, NULL);
1015 	return (struct crypto_bignum *) bn;
1016 }
1017 
1018 
crypto_bignum_deinit(struct crypto_bignum * n,int clear)1019 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1020 {
1021 	if (clear)
1022 		BN_clear_free((BIGNUM *) n);
1023 	else
1024 		BN_free((BIGNUM *) n);
1025 }
1026 
1027 
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)1028 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1029 			 u8 *buf, size_t buflen, size_t padlen)
1030 {
1031 	int num_bytes, offset;
1032 
1033 	if (TEST_FAIL())
1034 		return -1;
1035 
1036 	if (padlen > buflen)
1037 		return -1;
1038 
1039 	num_bytes = BN_num_bytes((const BIGNUM *) a);
1040 	if ((size_t) num_bytes > buflen)
1041 		return -1;
1042 	if (padlen > (size_t) num_bytes)
1043 		offset = padlen - num_bytes;
1044 	else
1045 		offset = 0;
1046 
1047 	os_memset(buf, 0, offset);
1048 	BN_bn2bin((const BIGNUM *) a, buf + offset);
1049 
1050 	return num_bytes + offset;
1051 }
1052 
1053 
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1054 int crypto_bignum_add(const struct crypto_bignum *a,
1055 		      const struct crypto_bignum *b,
1056 		      struct crypto_bignum *c)
1057 {
1058 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1059 		0 : -1;
1060 }
1061 
1062 
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1063 int crypto_bignum_mod(const struct crypto_bignum *a,
1064 		      const struct crypto_bignum *b,
1065 		      struct crypto_bignum *c)
1066 {
1067 	int res;
1068 	BN_CTX *bnctx;
1069 
1070 	bnctx = BN_CTX_new();
1071 	if (bnctx == NULL)
1072 		return -1;
1073 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1074 		     bnctx);
1075 	BN_CTX_free(bnctx);
1076 
1077 	return res ? 0 : -1;
1078 }
1079 
1080 
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1081 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1082 			  const struct crypto_bignum *b,
1083 			  const struct crypto_bignum *c,
1084 			  struct crypto_bignum *d)
1085 {
1086 	int res;
1087 	BN_CTX *bnctx;
1088 
1089 	if (TEST_FAIL())
1090 		return -1;
1091 
1092 	bnctx = BN_CTX_new();
1093 	if (bnctx == NULL)
1094 		return -1;
1095 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1096 			 (const BIGNUM *) c, bnctx);
1097 	BN_CTX_free(bnctx);
1098 
1099 	return res ? 0 : -1;
1100 }
1101 
1102 
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1103 int crypto_bignum_inverse(const struct crypto_bignum *a,
1104 			  const struct crypto_bignum *b,
1105 			  struct crypto_bignum *c)
1106 {
1107 	BIGNUM *res;
1108 	BN_CTX *bnctx;
1109 
1110 	if (TEST_FAIL())
1111 		return -1;
1112 	bnctx = BN_CTX_new();
1113 	if (bnctx == NULL)
1114 		return -1;
1115 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1116 			     (const BIGNUM *) b, bnctx);
1117 	BN_CTX_free(bnctx);
1118 
1119 	return res ? 0 : -1;
1120 }
1121 
1122 
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1123 int crypto_bignum_sub(const struct crypto_bignum *a,
1124 		      const struct crypto_bignum *b,
1125 		      struct crypto_bignum *c)
1126 {
1127 	if (TEST_FAIL())
1128 		return -1;
1129 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1130 		0 : -1;
1131 }
1132 
1133 
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1134 int crypto_bignum_div(const struct crypto_bignum *a,
1135 		      const struct crypto_bignum *b,
1136 		      struct crypto_bignum *c)
1137 {
1138 	int res;
1139 
1140 	BN_CTX *bnctx;
1141 
1142 	if (TEST_FAIL())
1143 		return -1;
1144 
1145 	bnctx = BN_CTX_new();
1146 	if (bnctx == NULL)
1147 		return -1;
1148 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1149 		     (const BIGNUM *) b, bnctx);
1150 	BN_CTX_free(bnctx);
1151 
1152 	return res ? 0 : -1;
1153 }
1154 
1155 
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1156 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1157 			 const struct crypto_bignum *b,
1158 			 const struct crypto_bignum *c,
1159 			 struct crypto_bignum *d)
1160 {
1161 	int res;
1162 
1163 	BN_CTX *bnctx;
1164 
1165 	if (TEST_FAIL())
1166 		return -1;
1167 
1168 	bnctx = BN_CTX_new();
1169 	if (bnctx == NULL)
1170 		return -1;
1171 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1172 			 (const BIGNUM *) c, bnctx);
1173 	BN_CTX_free(bnctx);
1174 
1175 	return res ? 0 : -1;
1176 }
1177 
1178 
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1179 int crypto_bignum_cmp(const struct crypto_bignum *a,
1180 		      const struct crypto_bignum *b)
1181 {
1182 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1183 }
1184 
1185 
crypto_bignum_bits(const struct crypto_bignum * a)1186 int crypto_bignum_bits(const struct crypto_bignum *a)
1187 {
1188 	return BN_num_bits((const BIGNUM *) a);
1189 }
1190 
1191 
crypto_bignum_is_zero(const struct crypto_bignum * a)1192 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1193 {
1194 	return BN_is_zero((const BIGNUM *) a);
1195 }
1196 
1197 
crypto_bignum_is_one(const struct crypto_bignum * a)1198 int crypto_bignum_is_one(const struct crypto_bignum *a)
1199 {
1200 	return BN_is_one((const BIGNUM *) a);
1201 }
1202 
1203 
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1204 int crypto_bignum_legendre(const struct crypto_bignum *a,
1205 			   const struct crypto_bignum *p)
1206 {
1207 	BN_CTX *bnctx;
1208 	BIGNUM *exp = NULL, *tmp = NULL;
1209 	int res = -2;
1210 
1211 	if (TEST_FAIL())
1212 		return -2;
1213 
1214 	bnctx = BN_CTX_new();
1215 	if (bnctx == NULL)
1216 		return -2;
1217 
1218 	exp = BN_new();
1219 	tmp = BN_new();
1220 	if (!exp || !tmp ||
1221 	    /* exp = (p-1) / 2 */
1222 	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1223 	    !BN_rshift1(exp, exp) ||
1224 	    !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1225 			bnctx))
1226 		goto fail;
1227 
1228 	if (BN_is_word(tmp, 1))
1229 		res = 1;
1230 	else if (BN_is_zero(tmp))
1231 		res = 0;
1232 	else
1233 		res = -1;
1234 
1235 fail:
1236 	BN_clear_free(tmp);
1237 	BN_clear_free(exp);
1238 	BN_CTX_free(bnctx);
1239 	return res;
1240 }
1241 
1242 
1243 #ifdef CONFIG_ECC
1244 
1245 struct crypto_ec {
1246 	EC_GROUP *group;
1247 	BN_CTX *bnctx;
1248 	BIGNUM *prime;
1249 	BIGNUM *order;
1250 	BIGNUM *a;
1251 	BIGNUM *b;
1252 };
1253 
crypto_ec_init(int group)1254 struct crypto_ec * crypto_ec_init(int group)
1255 {
1256 	struct crypto_ec *e;
1257 	int nid;
1258 
1259 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1260 	switch (group) {
1261 	case 19:
1262 		nid = NID_X9_62_prime256v1;
1263 		break;
1264 	case 20:
1265 		nid = NID_secp384r1;
1266 		break;
1267 	case 21:
1268 		nid = NID_secp521r1;
1269 		break;
1270 	case 25:
1271 		nid = NID_X9_62_prime192v1;
1272 		break;
1273 	case 26:
1274 		nid = NID_secp224r1;
1275 		break;
1276 #ifdef NID_brainpoolP224r1
1277 	case 27:
1278 		nid = NID_brainpoolP224r1;
1279 		break;
1280 #endif /* NID_brainpoolP224r1 */
1281 #ifdef NID_brainpoolP256r1
1282 	case 28:
1283 		nid = NID_brainpoolP256r1;
1284 		break;
1285 #endif /* NID_brainpoolP256r1 */
1286 #ifdef NID_brainpoolP384r1
1287 	case 29:
1288 		nid = NID_brainpoolP384r1;
1289 		break;
1290 #endif /* NID_brainpoolP384r1 */
1291 #ifdef NID_brainpoolP512r1
1292 	case 30:
1293 		nid = NID_brainpoolP512r1;
1294 		break;
1295 #endif /* NID_brainpoolP512r1 */
1296 	default:
1297 		return NULL;
1298 	}
1299 
1300 	e = os_zalloc(sizeof(*e));
1301 	if (e == NULL)
1302 		return NULL;
1303 
1304 	e->bnctx = BN_CTX_new();
1305 	e->group = EC_GROUP_new_by_curve_name(nid);
1306 	e->prime = BN_new();
1307 	e->order = BN_new();
1308 	e->a = BN_new();
1309 	e->b = BN_new();
1310 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1311 	    e->order == NULL || e->a == NULL || e->b == NULL ||
1312 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1313 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1314 		crypto_ec_deinit(e);
1315 		e = NULL;
1316 	}
1317 
1318 	return e;
1319 }
1320 
1321 
crypto_ec_deinit(struct crypto_ec * e)1322 void crypto_ec_deinit(struct crypto_ec *e)
1323 {
1324 	if (e == NULL)
1325 		return;
1326 	BN_clear_free(e->b);
1327 	BN_clear_free(e->a);
1328 	BN_clear_free(e->order);
1329 	BN_clear_free(e->prime);
1330 	EC_GROUP_free(e->group);
1331 	BN_CTX_free(e->bnctx);
1332 	os_free(e);
1333 }
1334 
1335 
crypto_ec_point_init(struct crypto_ec * e)1336 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1337 {
1338 	if (TEST_FAIL())
1339 		return NULL;
1340 	if (e == NULL)
1341 		return NULL;
1342 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1343 }
1344 
1345 
crypto_ec_prime_len(struct crypto_ec * e)1346 size_t crypto_ec_prime_len(struct crypto_ec *e)
1347 {
1348 	return BN_num_bytes(e->prime);
1349 }
1350 
1351 
crypto_ec_prime_len_bits(struct crypto_ec * e)1352 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1353 {
1354 	return BN_num_bits(e->prime);
1355 }
1356 
1357 
crypto_ec_get_prime(struct crypto_ec * e)1358 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1359 {
1360 	return (const struct crypto_bignum *) e->prime;
1361 }
1362 
1363 
crypto_ec_get_order(struct crypto_ec * e)1364 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1365 {
1366 	return (const struct crypto_bignum *) e->order;
1367 }
1368 
1369 
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1370 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1371 {
1372 	if (clear)
1373 		EC_POINT_clear_free((EC_POINT *) p);
1374 	else
1375 		EC_POINT_free((EC_POINT *) p);
1376 }
1377 
1378 
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1379 int crypto_ec_point_to_bin(struct crypto_ec *e,
1380 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1381 {
1382 	BIGNUM *x_bn, *y_bn;
1383 	int ret = -1;
1384 	int len = BN_num_bytes(e->prime);
1385 
1386 	if (TEST_FAIL())
1387 		return -1;
1388 
1389 	x_bn = BN_new();
1390 	y_bn = BN_new();
1391 
1392 	if (x_bn && y_bn &&
1393 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1394 						x_bn, y_bn, e->bnctx)) {
1395 		if (x) {
1396 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1397 					     x, len, len);
1398 		}
1399 		if (y) {
1400 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1401 					     y, len, len);
1402 		}
1403 		ret = 0;
1404 	}
1405 
1406 	BN_clear_free(x_bn);
1407 	BN_clear_free(y_bn);
1408 	return ret;
1409 }
1410 
1411 
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1412 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1413 						  const u8 *val)
1414 {
1415 	BIGNUM *x, *y;
1416 	EC_POINT *elem;
1417 	int len = BN_num_bytes(e->prime);
1418 
1419 	if (TEST_FAIL())
1420 		return NULL;
1421 
1422 	x = BN_bin2bn(val, len, NULL);
1423 	y = BN_bin2bn(val + len, len, NULL);
1424 	elem = EC_POINT_new(e->group);
1425 	if (x == NULL || y == NULL || elem == NULL) {
1426 		BN_clear_free(x);
1427 		BN_clear_free(y);
1428 		EC_POINT_clear_free(elem);
1429 		return NULL;
1430 	}
1431 
1432 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1433 						 e->bnctx)) {
1434 		EC_POINT_clear_free(elem);
1435 		elem = NULL;
1436 	}
1437 
1438 	BN_clear_free(x);
1439 	BN_clear_free(y);
1440 
1441 	return (struct crypto_ec_point *) elem;
1442 }
1443 
1444 
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1445 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1446 			const struct crypto_ec_point *b,
1447 			struct crypto_ec_point *c)
1448 {
1449 	if (TEST_FAIL())
1450 		return -1;
1451 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1452 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1453 }
1454 
1455 
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1456 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1457 			const struct crypto_bignum *b,
1458 			struct crypto_ec_point *res)
1459 {
1460 	if (TEST_FAIL())
1461 		return -1;
1462 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1463 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1464 		? 0 : -1;
1465 }
1466 
1467 
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1468 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1469 {
1470 	if (TEST_FAIL())
1471 		return -1;
1472 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1473 }
1474 
1475 
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1476 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1477 				  struct crypto_ec_point *p,
1478 				  const struct crypto_bignum *x, int y_bit)
1479 {
1480 	if (TEST_FAIL())
1481 		return -1;
1482 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1483 						     (const BIGNUM *) x, y_bit,
1484 						     e->bnctx) ||
1485 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1486 		return -1;
1487 	return 0;
1488 }
1489 
1490 
1491 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1492 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1493 			      const struct crypto_bignum *x)
1494 {
1495 	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1496 
1497 	if (TEST_FAIL())
1498 		return NULL;
1499 
1500 	tmp = BN_new();
1501 	tmp2 = BN_new();
1502 
1503 	/* y^2 = x^3 + ax + b */
1504 	if (tmp && tmp2 &&
1505 	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1506 	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1507 	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1508 	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1509 	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1510 		y_sqr = tmp2;
1511 		tmp2 = NULL;
1512 	}
1513 
1514 	BN_clear_free(tmp);
1515 	BN_clear_free(tmp2);
1516 
1517 	return (struct crypto_bignum *) y_sqr;
1518 }
1519 
1520 
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1521 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1522 				   const struct crypto_ec_point *p)
1523 {
1524 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1525 }
1526 
1527 
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1528 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1529 				const struct crypto_ec_point *p)
1530 {
1531 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1532 				    e->bnctx) == 1;
1533 }
1534 
1535 
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1536 int crypto_ec_point_cmp(const struct crypto_ec *e,
1537 			const struct crypto_ec_point *a,
1538 			const struct crypto_ec_point *b)
1539 {
1540 	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1541 			    (const EC_POINT *) b, e->bnctx);
1542 }
1543 
1544 #endif /* CONFIG_ECC */
1545