1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ReaderWriter_2_9_func.h"
15 #include "legacy_bitcode.h"
16 #include "ValueEnumerator.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Program.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cctype>
33 #include <map>
34 using namespace llvm;
35 
36 /// These are manifest constants used by the bitcode writer. They do not need to
37 /// be kept in sync with the reader, but need to be consistent within this file.
38 enum {
39   CurVersion = 0,
40 
41   // VALUE_SYMTAB_BLOCK abbrev id's.
42   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
43   VST_ENTRY_7_ABBREV,
44   VST_ENTRY_6_ABBREV,
45   VST_BBENTRY_6_ABBREV,
46 
47   // CONSTANTS_BLOCK abbrev id's.
48   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
49   CONSTANTS_INTEGER_ABBREV,
50   CONSTANTS_CE_CAST_Abbrev,
51   CONSTANTS_NULL_Abbrev,
52 
53   // FUNCTION_BLOCK abbrev id's.
54   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
55   FUNCTION_INST_BINOP_ABBREV,
56   FUNCTION_INST_BINOP_FLAGS_ABBREV,
57   FUNCTION_INST_CAST_ABBREV,
58   FUNCTION_INST_RET_VOID_ABBREV,
59   FUNCTION_INST_RET_VAL_ABBREV,
60   FUNCTION_INST_UNREACHABLE_ABBREV
61 };
62 
GetEncodedCastOpcode(unsigned Opcode)63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64   switch (Opcode) {
65   default: llvm_unreachable("Unknown cast instruction!");
66   case Instruction::Trunc   : return bitc::CAST_TRUNC;
67   case Instruction::ZExt    : return bitc::CAST_ZEXT;
68   case Instruction::SExt    : return bitc::CAST_SEXT;
69   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74   case Instruction::FPExt   : return bitc::CAST_FPEXT;
75   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77   case Instruction::BitCast : return bitc::CAST_BITCAST;
78   }
79 }
80 
GetEncodedBinaryOpcode(unsigned Opcode)81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104 
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121 
GetEncodedOrdering(AtomicOrdering Ordering)122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   default: llvm_unreachable("Unknown atomic ordering");
125   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126   case Unordered: return bitc::ORDERING_UNORDERED;
127   case Monotonic: return bitc::ORDERING_MONOTONIC;
128   case Acquire: return bitc::ORDERING_ACQUIRE;
129   case Release: return bitc::ORDERING_RELEASE;
130   case AcquireRelease: return bitc::ORDERING_ACQREL;
131   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132   }
133 }
134 
GetEncodedSynchScope(SynchronizationScope SynchScope)135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   default: llvm_unreachable("Unknown synchronization scope");
138   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140   }
141 }
142 
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146 
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153 
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157 
158 // Emit information about parameter attributes.
WriteAttributeTable(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)159 static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
160                                 BitstreamWriter &Stream) {
161   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
162   if (Attrs.empty()) return;
163 
164   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
165 
166   SmallVector<uint64_t, 64> Record;
167   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
168     const AttributeSet &A = Attrs[i];
169     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
170       Record.push_back(A.getSlotIndex(i));
171       Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
172     }
173 
174     // This needs to use the 3.2 entry type
175     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
176     Record.clear();
177   }
178 
179   Stream.ExitBlock();
180 }
181 
182 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)183 static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
184                            BitstreamWriter &Stream) {
185   const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
186 
187   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
188   SmallVector<uint64_t, 64> TypeVals;
189 
190   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
191 
192   // Abbrev for TYPE_CODE_POINTER.
193   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
194   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
196   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
197   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
198 
199   // Abbrev for TYPE_CODE_FUNCTION.
200   Abbv = new BitCodeAbbrev();
201   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
202   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
203   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
204   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
205   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
206   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
207 
208   // Abbrev for TYPE_CODE_STRUCT_ANON.
209   Abbv = new BitCodeAbbrev();
210   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
211   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
212   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
214   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
215 
216   // Abbrev for TYPE_CODE_STRUCT_NAME.
217   Abbv = new BitCodeAbbrev();
218   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
219   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
220   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
221   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
222 
223   // Abbrev for TYPE_CODE_STRUCT_NAMED.
224   Abbv = new BitCodeAbbrev();
225   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
226   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
227   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
228   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
229   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
230 
231   // Abbrev for TYPE_CODE_ARRAY.
232   Abbv = new BitCodeAbbrev();
233   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
235   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
236 
237   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
238 
239   // Emit an entry count so the reader can reserve space.
240   TypeVals.push_back(TypeList.size());
241   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
242   TypeVals.clear();
243 
244   // Loop over all of the types, emitting each in turn.
245   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
246     Type *T = TypeList[i];
247     int AbbrevToUse = 0;
248     unsigned Code = 0;
249 
250     switch (T->getTypeID()) {
251     default: llvm_unreachable("Unknown type!");
252     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
253     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
254     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
255     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
256     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
257     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
258     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
259     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
260     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
261     case Type::IntegerTyID:
262       // INTEGER: [width]
263       Code = bitc::TYPE_CODE_INTEGER;
264       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
265       break;
266     case Type::PointerTyID: {
267       PointerType *PTy = cast<PointerType>(T);
268       // POINTER: [pointee type, address space]
269       Code = bitc::TYPE_CODE_POINTER;
270       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
271       unsigned AddressSpace = PTy->getAddressSpace();
272       TypeVals.push_back(AddressSpace);
273       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
274       break;
275     }
276     case Type::FunctionTyID: {
277       FunctionType *FT = cast<FunctionType>(T);
278       // FUNCTION: [isvararg, attrid, retty, paramty x N]
279       Code = bitc::TYPE_CODE_FUNCTION_OLD;
280       TypeVals.push_back(FT->isVarArg());
281       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
282       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
283       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
284         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
285       AbbrevToUse = FunctionAbbrev;
286       break;
287     }
288     case Type::StructTyID: {
289       StructType *ST = cast<StructType>(T);
290       // STRUCT: [ispacked, eltty x N]
291       TypeVals.push_back(ST->isPacked());
292       // Output all of the element types.
293       for (StructType::element_iterator I = ST->element_begin(),
294            E = ST->element_end(); I != E; ++I)
295         TypeVals.push_back(VE.getTypeID(*I));
296 
297       if (ST->isLiteral()) {
298         Code = bitc::TYPE_CODE_STRUCT_ANON;
299         AbbrevToUse = StructAnonAbbrev;
300       } else {
301         if (ST->isOpaque()) {
302           Code = bitc::TYPE_CODE_OPAQUE;
303         } else {
304           Code = bitc::TYPE_CODE_STRUCT_NAMED;
305           AbbrevToUse = StructNamedAbbrev;
306         }
307 
308         // Emit the name if it is present.
309         if (!ST->getName().empty())
310           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
311                             StructNameAbbrev, Stream);
312       }
313       break;
314     }
315     case Type::ArrayTyID: {
316       ArrayType *AT = cast<ArrayType>(T);
317       // ARRAY: [numelts, eltty]
318       Code = bitc::TYPE_CODE_ARRAY;
319       TypeVals.push_back(AT->getNumElements());
320       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
321       AbbrevToUse = ArrayAbbrev;
322       break;
323     }
324     case Type::VectorTyID: {
325       VectorType *VT = cast<VectorType>(T);
326       // VECTOR [numelts, eltty]
327       Code = bitc::TYPE_CODE_VECTOR;
328       TypeVals.push_back(VT->getNumElements());
329       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
330       break;
331     }
332     }
333 
334     // Emit the finished record.
335     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
336     TypeVals.clear();
337   }
338 
339   Stream.ExitBlock();
340 }
341 
getEncodedLinkage(const GlobalValue & GV)342 static unsigned getEncodedLinkage(const GlobalValue &GV) {
343   switch (GV.getLinkage()) {
344   case GlobalValue::ExternalLinkage:
345     return 0;
346   case GlobalValue::WeakAnyLinkage:
347     return 1;
348   case GlobalValue::AppendingLinkage:
349     return 2;
350   case GlobalValue::InternalLinkage:
351     return 3;
352   case GlobalValue::LinkOnceAnyLinkage:
353     return 4;
354   case GlobalValue::ExternalWeakLinkage:
355     return 7;
356   case GlobalValue::CommonLinkage:
357     return 8;
358   case GlobalValue::PrivateLinkage:
359     return 9;
360   case GlobalValue::WeakODRLinkage:
361     return 10;
362   case GlobalValue::LinkOnceODRLinkage:
363     return 11;
364   case GlobalValue::AvailableExternallyLinkage:
365     return 12;
366   }
367   llvm_unreachable("Invalid linkage");
368 }
369 
getEncodedVisibility(const GlobalValue & GV)370 static unsigned getEncodedVisibility(const GlobalValue &GV) {
371   switch (GV.getVisibility()) {
372   case GlobalValue::DefaultVisibility:   return 0;
373   case GlobalValue::HiddenVisibility:    return 1;
374   case GlobalValue::ProtectedVisibility: return 2;
375   }
376   llvm_unreachable("Invalid visibility");
377 }
378 
379 // Emit top-level description of module, including target triple, inline asm,
380 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)381 static void WriteModuleInfo(const Module *M,
382                             const llvm_2_9_func::ValueEnumerator &VE,
383                             BitstreamWriter &Stream) {
384   // Emit various pieces of data attached to a module.
385   if (!M->getTargetTriple().empty())
386     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
387                       0/*TODO*/, Stream);
388   const std::string &DL = M->getDataLayoutStr();
389   if (!DL.empty())
390     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
391   if (!M->getModuleInlineAsm().empty())
392     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
393                       0/*TODO*/, Stream);
394 
395   // Emit information about sections and GC, computing how many there are. Also
396   // compute the maximum alignment value.
397   std::map<std::string, unsigned> SectionMap;
398   std::map<std::string, unsigned> GCMap;
399   unsigned MaxAlignment = 0;
400   unsigned MaxGlobalType = 0;
401   for (const GlobalValue &GV : M->globals()) {
402     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
403     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
404     if (GV.hasSection()) {
405       // Give section names unique ID's.
406       unsigned &Entry = SectionMap[GV.getSection()];
407       if (!Entry) {
408         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
409                           0/*TODO*/, Stream);
410         Entry = SectionMap.size();
411       }
412     }
413   }
414   for (const Function &F : *M) {
415     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
416     if (F.hasSection()) {
417       // Give section names unique ID's.
418       unsigned &Entry = SectionMap[F.getSection()];
419       if (!Entry) {
420         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
421                           0/*TODO*/, Stream);
422         Entry = SectionMap.size();
423       }
424     }
425     if (F.hasGC()) {
426       // Same for GC names.
427       unsigned &Entry = GCMap[F.getGC()];
428       if (!Entry) {
429         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
430                           0/*TODO*/, Stream);
431         Entry = GCMap.size();
432       }
433     }
434   }
435 
436   // Emit abbrev for globals, now that we know # sections and max alignment.
437   unsigned SimpleGVarAbbrev = 0;
438   if (!M->global_empty()) {
439     // Add an abbrev for common globals with no visibility or thread localness.
440     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
441     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
443                               Log2_32_Ceil(MaxGlobalType+1)));
444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
445     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
447     if (MaxAlignment == 0)                                      // Alignment.
448       Abbv->Add(BitCodeAbbrevOp(0));
449     else {
450       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
451       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
452                                Log2_32_Ceil(MaxEncAlignment+1)));
453     }
454     if (SectionMap.empty())                                    // Section.
455       Abbv->Add(BitCodeAbbrevOp(0));
456     else
457       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
458                                Log2_32_Ceil(SectionMap.size()+1)));
459     // Don't bother emitting vis + thread local.
460     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
461   }
462 
463   // Emit the global variable information.
464   SmallVector<unsigned, 64> Vals;
465   for (const GlobalVariable &GV : M->globals()) {
466     unsigned AbbrevToUse = 0;
467 
468     // GLOBALVAR: [type, isconst, initid,
469     //             linkage, alignment, section, visibility, threadlocal,
470     //             unnamed_addr]
471     Vals.push_back(VE.getTypeID(GV.getType()));
472     Vals.push_back(GV.isConstant());
473     Vals.push_back(GV.isDeclaration() ? 0 :
474                    (VE.getValueID(GV.getInitializer()) + 1));
475     Vals.push_back(getEncodedLinkage(GV));
476     Vals.push_back(Log2_32(GV.getAlignment())+1);
477     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
478     if (GV.isThreadLocal() ||
479         GV.getVisibility() != GlobalValue::DefaultVisibility ||
480         GV.hasUnnamedAddr()) {
481       Vals.push_back(getEncodedVisibility(GV));
482       Vals.push_back(GV.isThreadLocal());
483       Vals.push_back(GV.hasUnnamedAddr());
484     } else {
485       AbbrevToUse = SimpleGVarAbbrev;
486     }
487 
488     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
489     Vals.clear();
490   }
491 
492   // Emit the function proto information.
493   for (const Function &F : *M) {
494     // FUNCTION:  [type, callingconv, isproto, paramattr,
495     //             linkage, alignment, section, visibility, gc, unnamed_addr]
496     Vals.push_back(VE.getTypeID(F.getType()));
497     Vals.push_back(F.getCallingConv());
498     Vals.push_back(F.isDeclaration());
499     Vals.push_back(getEncodedLinkage(F));
500     Vals.push_back(VE.getAttributeID(F.getAttributes()));
501     Vals.push_back(Log2_32(F.getAlignment())+1);
502     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
503     Vals.push_back(getEncodedVisibility(F));
504     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
505     Vals.push_back(F.hasUnnamedAddr());
506 
507     unsigned AbbrevToUse = 0;
508     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
509     Vals.clear();
510   }
511 
512   // Emit the alias information.
513   for (const GlobalAlias &A : M->aliases()) {
514     Vals.push_back(VE.getTypeID(A.getType()));
515     Vals.push_back(VE.getValueID(A.getAliasee()));
516     Vals.push_back(getEncodedLinkage(A));
517     Vals.push_back(getEncodedVisibility(A));
518     unsigned AbbrevToUse = 0;
519     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
520     Vals.clear();
521   }
522 }
523 
GetOptimizationFlags(const Value * V)524 static uint64_t GetOptimizationFlags(const Value *V) {
525   uint64_t Flags = 0;
526 
527   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
528     if (OBO->hasNoSignedWrap())
529       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
530     if (OBO->hasNoUnsignedWrap())
531       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
532   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
533     if (PEO->isExact())
534       Flags |= 1 << bitc::PEO_EXACT;
535   }
536 
537   return Flags;
538 }
539 
WriteValueAsMetadata(const ValueAsMetadata * MD,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record)540 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
541                                  const llvm_2_9_func::ValueEnumerator &VE,
542                                  BitstreamWriter &Stream,
543                                  SmallVectorImpl<uint64_t> &Record) {
544   // Mimic an MDNode with a value as one operand.
545   Value *V = MD->getValue();
546   Record.push_back(VE.getTypeID(V->getType()));
547   Record.push_back(VE.getValueID(V));
548   Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0);
549   Record.clear();
550 }
551 
WriteMDTuple(const MDTuple * N,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)552 static void WriteMDTuple(const MDTuple *N, const llvm_2_9_func::ValueEnumerator &VE,
553                          BitstreamWriter &Stream,
554                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
555   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
556     Metadata *MD = N->getOperand(i);
557     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
558            "Unexpected function-local metadata");
559     if (!MD) {
560       // TODO(srhines): I don't believe this case can exist for RS.
561       Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext())));
562       Record.push_back(0);
563     } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
564       Record.push_back(VE.getTypeID(MDC->getType()));
565       Record.push_back(VE.getValueID(MDC->getValue()));
566     } else {
567       Record.push_back(VE.getTypeID(
568           llvm::Type::getMetadataTy(N->getContext())));
569       Record.push_back(VE.getMetadataID(MD));
570     }
571   }
572   Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, Abbrev);
573   Record.clear();
574 }
575 
576 /*static void WriteMDLocation(const MDLocation *N, const llvm_2_9_func::ValueEnumerator &VE,
577                             BitstreamWriter &Stream,
578                             SmallVectorImpl<uint64_t> &Record,
579                             unsigned Abbrev) {
580   Record.push_back(N->isDistinct());
581   Record.push_back(N->getLine());
582   Record.push_back(N->getColumn());
583   Record.push_back(VE.getMetadataID(N->getScope()));
584   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
585 
586   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
587   Record.clear();
588 }
589 
590 static void WriteGenericDebugNode(const GenericDebugNode *,
591                                   const llvm_2_9_func::ValueEnumerator &, BitstreamWriter &,
592                                   SmallVectorImpl<uint64_t> &, unsigned) {
593   llvm_unreachable("unimplemented");
594 }*/
595 
WriteModuleMetadata(const Module * M,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)596 static void WriteModuleMetadata(const Module *M,
597                                 const llvm_2_9_func::ValueEnumerator &VE,
598                                 BitstreamWriter &Stream) {
599   const auto &MDs = VE.getMDs();
600   if (MDs.empty() && M->named_metadata_empty())
601     return;
602 
603   // RenderScript files *ALWAYS* have metadata!
604   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
605 
606   unsigned MDSAbbrev = 0;
607   if (VE.hasMDString()) {
608     // Abbrev for METADATA_STRING.
609     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
610     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
611     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
612     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
613     MDSAbbrev = Stream.EmitAbbrev(Abbv);
614   }
615 
616   unsigned MDLocationAbbrev = 0;
617   if (VE.hasDILocation()) {
618     // TODO(srhines): Should be unreachable for RenderScript.
619     // Abbrev for METADATA_LOCATION.
620     //
621     // Assume the column is usually under 128, and always output the inlined-at
622     // location (it's never more expensive than building an array size 1).
623     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
624     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
625     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
626     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
627     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
628     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
630     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
631   }
632 
633   unsigned NameAbbrev = 0;
634   if (!M->named_metadata_empty()) {
635     // Abbrev for METADATA_NAME.
636     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
637     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
638     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
639     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
640     NameAbbrev = Stream.EmitAbbrev(Abbv);
641   }
642 
643   unsigned MDTupleAbbrev = 0;
644   //unsigned GenericDebugNodeAbbrev = 0;
645   SmallVector<uint64_t, 64> Record;
646   for (const Metadata *MD : MDs) {
647     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
648       switch (N->getMetadataID()) {
649       default:
650         llvm_unreachable("Invalid MDNode subclass");
651 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)
652 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
653   case Metadata::CLASS##Kind:                                                  \
654     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
655     continue;
656 #include "llvm/IR/Metadata.def"
657       }
658     }
659     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
660       WriteValueAsMetadata(MDC, VE, Stream, Record);
661       continue;
662     }
663     const MDString *MDS = cast<MDString>(MD);
664     // Code: [strchar x N]
665     Record.append(MDS->bytes_begin(), MDS->bytes_end());
666 
667     // Emit the finished record.
668     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
669     Record.clear();
670   }
671 
672   // Write named metadata.
673   for (const NamedMDNode &NMD : M->named_metadata()) {
674     // Write name.
675     StringRef Str = NMD.getName();
676     Record.append(Str.bytes_begin(), Str.bytes_end());
677     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
678     Record.clear();
679 
680     // Write named metadata operands.
681     for (const MDNode *N : NMD.operands())
682       Record.push_back(VE.getMetadataID(N));
683     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
684     Record.clear();
685   }
686 
687   Stream.ExitBlock();
688 }
689 
WriteFunctionLocalMetadata(const Function & F,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)690 static void WriteFunctionLocalMetadata(const Function &F,
691                                        const llvm_2_9_func::ValueEnumerator &VE,
692                                        BitstreamWriter &Stream) {
693   bool StartedMetadataBlock = false;
694   SmallVector<uint64_t, 64> Record;
695   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
696       VE.getFunctionLocalMDs();
697   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
698     assert(MDs[i] && "Expected valid function-local metadata");
699     if (!StartedMetadataBlock) {
700       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
701       StartedMetadataBlock = true;
702     }
703     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
704   }
705 
706   if (StartedMetadataBlock)
707     Stream.ExitBlock();
708 }
709 
WriteMetadataAttachment(const Function & F,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)710 static void WriteMetadataAttachment(const Function &F,
711                                     const llvm_2_9_func::ValueEnumerator &VE,
712                                     BitstreamWriter &Stream) {
713   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
714 
715   SmallVector<uint64_t, 64> Record;
716 
717   // Write metadata attachments
718   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
719   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
720 
721   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
722     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
723          I != E; ++I) {
724       MDs.clear();
725       I->getAllMetadataOtherThanDebugLoc(MDs);
726 
727       // If no metadata, ignore instruction.
728       if (MDs.empty()) continue;
729 
730       Record.push_back(VE.getInstructionID(&*I));
731 
732       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
733         Record.push_back(MDs[i].first);
734         Record.push_back(VE.getMetadataID(MDs[i].second));
735       }
736       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
737       Record.clear();
738     }
739 
740   Stream.ExitBlock();
741 }
742 
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)743 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
744   SmallVector<uint64_t, 64> Record;
745 
746   // Write metadata kinds
747   // METADATA_KIND - [n x [id, name]]
748   SmallVector<StringRef, 4> Names;
749   M->getMDKindNames(Names);
750 
751   if (Names.empty()) return;
752 
753   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
754 
755   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
756     Record.push_back(MDKindID);
757     StringRef KName = Names[MDKindID];
758     Record.append(KName.begin(), KName.end());
759 
760     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
761     Record.clear();
762   }
763 
764   Stream.ExitBlock();
765 }
766 
WriteConstants(unsigned FirstVal,unsigned LastVal,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)767 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
768                            const llvm_2_9_func::ValueEnumerator &VE,
769                            BitstreamWriter &Stream, bool isGlobal) {
770   if (FirstVal == LastVal) return;
771 
772   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
773 
774   unsigned AggregateAbbrev = 0;
775   unsigned String8Abbrev = 0;
776   unsigned CString7Abbrev = 0;
777   unsigned CString6Abbrev = 0;
778   // If this is a constant pool for the module, emit module-specific abbrevs.
779   if (isGlobal) {
780     // Abbrev for CST_CODE_AGGREGATE.
781     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
782     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
785     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
786 
787     // Abbrev for CST_CODE_STRING.
788     Abbv = new BitCodeAbbrev();
789     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
790     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
792     String8Abbrev = Stream.EmitAbbrev(Abbv);
793     // Abbrev for CST_CODE_CSTRING.
794     Abbv = new BitCodeAbbrev();
795     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
796     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
797     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
798     CString7Abbrev = Stream.EmitAbbrev(Abbv);
799     // Abbrev for CST_CODE_CSTRING.
800     Abbv = new BitCodeAbbrev();
801     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
804     CString6Abbrev = Stream.EmitAbbrev(Abbv);
805   }
806 
807   SmallVector<uint64_t, 64> Record;
808 
809   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
810   Type *LastTy = nullptr;
811   for (unsigned i = FirstVal; i != LastVal; ++i) {
812     const Value *V = Vals[i].first;
813     // If we need to switch types, do so now.
814     if (V->getType() != LastTy) {
815       LastTy = V->getType();
816       Record.push_back(VE.getTypeID(LastTy));
817       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
818                         CONSTANTS_SETTYPE_ABBREV);
819       Record.clear();
820     }
821 
822     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
823       Record.push_back(unsigned(IA->hasSideEffects()) |
824                        unsigned(IA->isAlignStack()) << 1);
825 
826       // Add the asm string.
827       const std::string &AsmStr = IA->getAsmString();
828       Record.push_back(AsmStr.size());
829       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
830         Record.push_back(AsmStr[i]);
831 
832       // Add the constraint string.
833       const std::string &ConstraintStr = IA->getConstraintString();
834       Record.push_back(ConstraintStr.size());
835       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
836         Record.push_back(ConstraintStr[i]);
837       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
838       Record.clear();
839       continue;
840     }
841     const Constant *C = cast<Constant>(V);
842     unsigned Code = -1U;
843     unsigned AbbrevToUse = 0;
844     if (C->isNullValue()) {
845       Code = bitc::CST_CODE_NULL;
846     } else if (isa<UndefValue>(C)) {
847       Code = bitc::CST_CODE_UNDEF;
848     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
849       if (IV->getBitWidth() <= 64) {
850         uint64_t V = IV->getSExtValue();
851         if ((int64_t)V >= 0)
852           Record.push_back(V << 1);
853         else
854           Record.push_back((-V << 1) | 1);
855         Code = bitc::CST_CODE_INTEGER;
856         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
857       } else {                             // Wide integers, > 64 bits in size.
858         // We have an arbitrary precision integer value to write whose
859         // bit width is > 64. However, in canonical unsigned integer
860         // format it is likely that the high bits are going to be zero.
861         // So, we only write the number of active words.
862         unsigned NWords = IV->getValue().getActiveWords();
863         const uint64_t *RawWords = IV->getValue().getRawData();
864         for (unsigned i = 0; i != NWords; ++i) {
865           int64_t V = RawWords[i];
866           if (V >= 0)
867             Record.push_back(V << 1);
868           else
869             Record.push_back((-V << 1) | 1);
870         }
871         Code = bitc::CST_CODE_WIDE_INTEGER;
872       }
873     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
874       Code = bitc::CST_CODE_FLOAT;
875       Type *Ty = CFP->getType();
876       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
877         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
878       } else if (Ty->isX86_FP80Ty()) {
879         // api needed to prevent premature destruction
880         // bits are not in the same order as a normal i80 APInt, compensate.
881         APInt api = CFP->getValueAPF().bitcastToAPInt();
882         const uint64_t *p = api.getRawData();
883         Record.push_back((p[1] << 48) | (p[0] >> 16));
884         Record.push_back(p[0] & 0xffffLL);
885       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
886         APInt api = CFP->getValueAPF().bitcastToAPInt();
887         const uint64_t *p = api.getRawData();
888         Record.push_back(p[0]);
889         Record.push_back(p[1]);
890       } else {
891         assert (0 && "Unknown FP type!");
892       }
893     } else if (isa<ConstantDataSequential>(C) &&
894                cast<ConstantDataSequential>(C)->isString()) {
895       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
896       // Emit constant strings specially.
897       unsigned NumElts = Str->getNumElements();
898       // If this is a null-terminated string, use the denser CSTRING encoding.
899       if (Str->isCString()) {
900         Code = bitc::CST_CODE_CSTRING;
901         --NumElts;  // Don't encode the null, which isn't allowed by char6.
902       } else {
903         Code = bitc::CST_CODE_STRING;
904         AbbrevToUse = String8Abbrev;
905       }
906       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
907       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
908       for (unsigned i = 0; i != NumElts; ++i) {
909         unsigned char V = Str->getElementAsInteger(i);
910         Record.push_back(V);
911         isCStr7 &= (V & 128) == 0;
912         if (isCStrChar6)
913           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
914       }
915 
916       if (isCStrChar6)
917         AbbrevToUse = CString6Abbrev;
918       else if (isCStr7)
919         AbbrevToUse = CString7Abbrev;
920     } else if (const ConstantDataSequential *CDS =
921                   dyn_cast<ConstantDataSequential>(C)) {
922       // We must replace ConstantDataSequential's representation with the
923       // legacy ConstantArray/ConstantVector/ConstantStruct version.
924       // ValueEnumerator is similarly modified to mark the appropriate
925       // Constants as used (so they are emitted).
926       Code = bitc::CST_CODE_AGGREGATE;
927       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
928         Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
929       AbbrevToUse = AggregateAbbrev;
930     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
931                isa<ConstantVector>(C)) {
932       Code = bitc::CST_CODE_AGGREGATE;
933       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
934         Record.push_back(VE.getValueID(C->getOperand(i)));
935       AbbrevToUse = AggregateAbbrev;
936     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
937       switch (CE->getOpcode()) {
938       default:
939         if (Instruction::isCast(CE->getOpcode())) {
940           Code = bitc::CST_CODE_CE_CAST;
941           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
942           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
943           Record.push_back(VE.getValueID(C->getOperand(0)));
944           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
945         } else {
946           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
947           Code = bitc::CST_CODE_CE_BINOP;
948           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
949           Record.push_back(VE.getValueID(C->getOperand(0)));
950           Record.push_back(VE.getValueID(C->getOperand(1)));
951           uint64_t Flags = GetOptimizationFlags(CE);
952           if (Flags != 0)
953             Record.push_back(Flags);
954         }
955         break;
956       case Instruction::GetElementPtr:
957         Code = bitc::CST_CODE_CE_GEP;
958         if (cast<GEPOperator>(C)->isInBounds())
959           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
960         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
961           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
962           Record.push_back(VE.getValueID(C->getOperand(i)));
963         }
964         break;
965       case Instruction::Select:
966         Code = bitc::CST_CODE_CE_SELECT;
967         Record.push_back(VE.getValueID(C->getOperand(0)));
968         Record.push_back(VE.getValueID(C->getOperand(1)));
969         Record.push_back(VE.getValueID(C->getOperand(2)));
970         break;
971       case Instruction::ExtractElement:
972         Code = bitc::CST_CODE_CE_EXTRACTELT;
973         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
974         Record.push_back(VE.getValueID(C->getOperand(0)));
975         Record.push_back(VE.getValueID(C->getOperand(1)));
976         break;
977       case Instruction::InsertElement:
978         Code = bitc::CST_CODE_CE_INSERTELT;
979         Record.push_back(VE.getValueID(C->getOperand(0)));
980         Record.push_back(VE.getValueID(C->getOperand(1)));
981         Record.push_back(VE.getValueID(C->getOperand(2)));
982         break;
983       case Instruction::ShuffleVector:
984         // If the return type and argument types are the same, this is a
985         // standard shufflevector instruction.  If the types are different,
986         // then the shuffle is widening or truncating the input vectors, and
987         // the argument type must also be encoded.
988         if (C->getType() == C->getOperand(0)->getType()) {
989           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
990         } else {
991           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
992           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
993         }
994         Record.push_back(VE.getValueID(C->getOperand(0)));
995         Record.push_back(VE.getValueID(C->getOperand(1)));
996         Record.push_back(VE.getValueID(C->getOperand(2)));
997         break;
998       case Instruction::ICmp:
999       case Instruction::FCmp:
1000         Code = bitc::CST_CODE_CE_CMP;
1001         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1002         Record.push_back(VE.getValueID(C->getOperand(0)));
1003         Record.push_back(VE.getValueID(C->getOperand(1)));
1004         Record.push_back(CE->getPredicate());
1005         break;
1006       }
1007     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1008       Code = bitc::CST_CODE_BLOCKADDRESS;
1009       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1010       Record.push_back(VE.getValueID(BA->getFunction()));
1011       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1012     } else {
1013 #ifndef NDEBUG
1014       C->dump();
1015 #endif
1016       llvm_unreachable("Unknown constant!");
1017     }
1018     Stream.EmitRecord(Code, Record, AbbrevToUse);
1019     Record.clear();
1020   }
1021 
1022   Stream.ExitBlock();
1023 }
1024 
WriteModuleConstants(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1025 static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
1026                                  BitstreamWriter &Stream) {
1027   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
1028 
1029   // Find the first constant to emit, which is the first non-globalvalue value.
1030   // We know globalvalues have been emitted by WriteModuleInfo.
1031   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1032     if (!isa<GlobalValue>(Vals[i].first)) {
1033       WriteConstants(i, Vals.size(), VE, Stream, true);
1034       return;
1035     }
1036   }
1037 }
1038 
1039 /// PushValueAndType - The file has to encode both the value and type id for
1040 /// many values, because we need to know what type to create for forward
1041 /// references.  However, most operands are not forward references, so this type
1042 /// field is not needed.
1043 ///
1044 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1045 /// instruction ID, then it is a forward reference, and it also includes the
1046 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,llvm_2_9_func::ValueEnumerator & VE)1047 static bool PushValueAndType(const Value *V, unsigned InstID,
1048                              SmallVector<unsigned, 64> &Vals,
1049                              llvm_2_9_func::ValueEnumerator &VE) {
1050   unsigned ValID = VE.getValueID(V);
1051   Vals.push_back(ValID);
1052   if (ValID >= InstID) {
1053     Vals.push_back(VE.getTypeID(V->getType()));
1054     return true;
1055   }
1056   return false;
1057 }
1058 
1059 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1060 static void WriteInstruction(const Instruction &I, unsigned InstID,
1061                              llvm_2_9_func::ValueEnumerator &VE,
1062                              BitstreamWriter &Stream,
1063                              SmallVector<unsigned, 64> &Vals) {
1064   unsigned Code = 0;
1065   unsigned AbbrevToUse = 0;
1066   VE.setInstructionID(&I);
1067   switch (I.getOpcode()) {
1068   default:
1069     if (Instruction::isCast(I.getOpcode())) {
1070       Code = bitc::FUNC_CODE_INST_CAST;
1071       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1072         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1073       Vals.push_back(VE.getTypeID(I.getType()));
1074       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1075     } else {
1076       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1077       Code = bitc::FUNC_CODE_INST_BINOP;
1078       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1079         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1080       Vals.push_back(VE.getValueID(I.getOperand(1)));
1081       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1082       uint64_t Flags = GetOptimizationFlags(&I);
1083       if (Flags != 0) {
1084         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1085           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1086         Vals.push_back(Flags);
1087       }
1088     }
1089     break;
1090 
1091   case Instruction::GetElementPtr:
1092     Code = bitc::FUNC_CODE_INST_GEP_OLD;
1093     if (cast<GEPOperator>(&I)->isInBounds())
1094       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
1095     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1096       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1097     break;
1098   case Instruction::ExtractValue: {
1099     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1100     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1101     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1102     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1103       Vals.push_back(*i);
1104     break;
1105   }
1106   case Instruction::InsertValue: {
1107     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1108     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1109     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1110     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1111     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1112       Vals.push_back(*i);
1113     break;
1114   }
1115   case Instruction::Select:
1116     Code = bitc::FUNC_CODE_INST_VSELECT;
1117     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1118     Vals.push_back(VE.getValueID(I.getOperand(2)));
1119     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1120     break;
1121   case Instruction::ExtractElement:
1122     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1123     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1124     Vals.push_back(VE.getValueID(I.getOperand(1)));
1125     break;
1126   case Instruction::InsertElement:
1127     Code = bitc::FUNC_CODE_INST_INSERTELT;
1128     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1129     Vals.push_back(VE.getValueID(I.getOperand(1)));
1130     Vals.push_back(VE.getValueID(I.getOperand(2)));
1131     break;
1132   case Instruction::ShuffleVector:
1133     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1134     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1135     Vals.push_back(VE.getValueID(I.getOperand(1)));
1136     Vals.push_back(VE.getValueID(I.getOperand(2)));
1137     break;
1138   case Instruction::ICmp:
1139   case Instruction::FCmp:
1140     // compare returning Int1Ty or vector of Int1Ty
1141     Code = bitc::FUNC_CODE_INST_CMP2;
1142     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1143     Vals.push_back(VE.getValueID(I.getOperand(1)));
1144     Vals.push_back(cast<CmpInst>(I).getPredicate());
1145     break;
1146 
1147   case Instruction::Ret:
1148     {
1149       Code = bitc::FUNC_CODE_INST_RET;
1150       unsigned NumOperands = I.getNumOperands();
1151       if (NumOperands == 0)
1152         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1153       else if (NumOperands == 1) {
1154         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1155           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1156       } else {
1157         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1158           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1159       }
1160     }
1161     break;
1162   case Instruction::Br:
1163     {
1164       Code = bitc::FUNC_CODE_INST_BR;
1165       const BranchInst &II = cast<BranchInst>(I);
1166       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1167       if (II.isConditional()) {
1168         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1169         Vals.push_back(VE.getValueID(II.getCondition()));
1170       }
1171     }
1172     break;
1173   case Instruction::Switch:
1174     {
1175       Code = bitc::FUNC_CODE_INST_SWITCH;
1176       const SwitchInst &SI = cast<SwitchInst>(I);
1177       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1178       Vals.push_back(VE.getValueID(SI.getCondition()));
1179       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1180       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1181            i != e; ++i) {
1182         Vals.push_back(VE.getValueID(i.getCaseValue()));
1183         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1184       }
1185     }
1186     break;
1187   case Instruction::IndirectBr:
1188     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1189     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1190     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1191       Vals.push_back(VE.getValueID(I.getOperand(i)));
1192     break;
1193 
1194   case Instruction::Invoke: {
1195     const InvokeInst *II = cast<InvokeInst>(&I);
1196     const Value *Callee(II->getCalledValue());
1197     PointerType *PTy = cast<PointerType>(Callee->getType());
1198     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1199     Code = bitc::FUNC_CODE_INST_INVOKE;
1200 
1201     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1202     Vals.push_back(II->getCallingConv());
1203     Vals.push_back(VE.getValueID(II->getNormalDest()));
1204     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1205     PushValueAndType(Callee, InstID, Vals, VE);
1206 
1207     // Emit value #'s for the fixed parameters.
1208     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1209       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1210 
1211     // Emit type/value pairs for varargs params.
1212     if (FTy->isVarArg()) {
1213       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1214            i != e; ++i)
1215         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1216     }
1217     break;
1218   }
1219   case Instruction::Resume:
1220     Code = bitc::FUNC_CODE_INST_RESUME;
1221     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1222     break;
1223   case Instruction::Unreachable:
1224     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1225     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1226     break;
1227 
1228   case Instruction::PHI: {
1229     const PHINode &PN = cast<PHINode>(I);
1230     Code = bitc::FUNC_CODE_INST_PHI;
1231     Vals.push_back(VE.getTypeID(PN.getType()));
1232     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1233       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1234       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1235     }
1236     break;
1237   }
1238 
1239   case Instruction::LandingPad: {
1240     const LandingPadInst &LP = cast<LandingPadInst>(I);
1241     Code = bitc::FUNC_CODE_INST_LANDINGPAD_OLD;
1242     Vals.push_back(VE.getTypeID(LP.getType()));
1243     // TODO (rebase): is this fix enough?
1244     // PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1245     Vals.push_back(LP.isCleanup());
1246     Vals.push_back(LP.getNumClauses());
1247     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1248       if (LP.isCatch(I))
1249         Vals.push_back(LandingPadInst::Catch);
1250       else
1251         Vals.push_back(LandingPadInst::Filter);
1252       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1253     }
1254     break;
1255   }
1256 
1257   case Instruction::Alloca:
1258     Code = bitc::FUNC_CODE_INST_ALLOCA;
1259     Vals.push_back(VE.getTypeID(I.getType()));
1260     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1261     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1262     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1263     break;
1264 
1265   case Instruction::Load:
1266     if (cast<LoadInst>(I).isAtomic()) {
1267       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1268       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1269     } else {
1270       Code = bitc::FUNC_CODE_INST_LOAD;
1271       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1272         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1273     }
1274     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1275     Vals.push_back(cast<LoadInst>(I).isVolatile());
1276     if (cast<LoadInst>(I).isAtomic()) {
1277       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1278       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1279     }
1280     break;
1281   case Instruction::Store:
1282     if (cast<StoreInst>(I).isAtomic())
1283       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1284     else
1285       Code = bitc::FUNC_CODE_INST_STORE_OLD;
1286     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1287     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1288     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1289     Vals.push_back(cast<StoreInst>(I).isVolatile());
1290     if (cast<StoreInst>(I).isAtomic()) {
1291       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1292       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1293     }
1294     break;
1295   case Instruction::AtomicCmpXchg:
1296     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1297     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1298     Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1299     Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1300     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1301     Vals.push_back(GetEncodedOrdering(
1302                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1303     Vals.push_back(GetEncodedSynchScope(
1304                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1305     break;
1306   case Instruction::AtomicRMW:
1307     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1308     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1309     Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1310     Vals.push_back(GetEncodedRMWOperation(
1311                      cast<AtomicRMWInst>(I).getOperation()));
1312     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1313     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1314     Vals.push_back(GetEncodedSynchScope(
1315                      cast<AtomicRMWInst>(I).getSynchScope()));
1316     break;
1317   case Instruction::Fence:
1318     Code = bitc::FUNC_CODE_INST_FENCE;
1319     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1320     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1321     break;
1322   case Instruction::Call: {
1323     const CallInst &CI = cast<CallInst>(I);
1324     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1325     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1326 
1327     Code = bitc::FUNC_CODE_INST_CALL;
1328 
1329     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1330     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1331     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1332 
1333     // Emit value #'s for the fixed parameters.
1334     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1335       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1336 
1337     // Emit type/value pairs for varargs params.
1338     if (FTy->isVarArg()) {
1339       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1340            i != e; ++i)
1341         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1342     }
1343     break;
1344   }
1345   case Instruction::VAArg:
1346     Code = bitc::FUNC_CODE_INST_VAARG;
1347     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1348     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1349     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1350     break;
1351   }
1352 
1353   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1354   Vals.clear();
1355 }
1356 
1357 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1358 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1359                                   const llvm_2_9_func::ValueEnumerator &VE,
1360                                   BitstreamWriter &Stream) {
1361   if (VST.empty()) return;
1362   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1363 
1364   // FIXME: Set up the abbrev, we know how many values there are!
1365   // FIXME: We know if the type names can use 7-bit ascii.
1366   SmallVector<unsigned, 64> NameVals;
1367 
1368   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1369        SI != SE; ++SI) {
1370 
1371     const ValueName &Name = *SI;
1372 
1373     // Figure out the encoding to use for the name.
1374     bool is7Bit = true;
1375     bool isChar6 = true;
1376     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1377          C != E; ++C) {
1378       if (isChar6)
1379         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1380       if ((unsigned char)*C & 128) {
1381         is7Bit = false;
1382         break;  // don't bother scanning the rest.
1383       }
1384     }
1385 
1386     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1387 
1388     // VST_ENTRY:   [valueid, namechar x N]
1389     // VST_BBENTRY: [bbid, namechar x N]
1390     unsigned Code;
1391     if (isa<BasicBlock>(SI->getValue())) {
1392       Code = bitc::VST_CODE_BBENTRY;
1393       if (isChar6)
1394         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1395     } else {
1396       Code = bitc::VST_CODE_ENTRY;
1397       if (isChar6)
1398         AbbrevToUse = VST_ENTRY_6_ABBREV;
1399       else if (is7Bit)
1400         AbbrevToUse = VST_ENTRY_7_ABBREV;
1401     }
1402 
1403     NameVals.push_back(VE.getValueID(SI->getValue()));
1404     for (const char *P = Name.getKeyData(),
1405          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1406       NameVals.push_back((unsigned char)*P);
1407 
1408     // Emit the finished record.
1409     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1410     NameVals.clear();
1411   }
1412   Stream.ExitBlock();
1413 }
1414 
1415 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1416 static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1417                           BitstreamWriter &Stream) {
1418   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1419   VE.incorporateFunction(F);
1420 
1421   SmallVector<unsigned, 64> Vals;
1422 
1423   // Emit the number of basic blocks, so the reader can create them ahead of
1424   // time.
1425   Vals.push_back(VE.getBasicBlocks().size());
1426   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1427   Vals.clear();
1428 
1429   // If there are function-local constants, emit them now.
1430   unsigned CstStart, CstEnd;
1431   VE.getFunctionConstantRange(CstStart, CstEnd);
1432   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1433 
1434   // If there is function-local metadata, emit it now.
1435   WriteFunctionLocalMetadata(F, VE, Stream);
1436 
1437   // Keep a running idea of what the instruction ID is.
1438   unsigned InstID = CstEnd;
1439 
1440   bool NeedsMetadataAttachment = false;
1441 
1442   DILocation *LastDL = nullptr;
1443 
1444   // Finally, emit all the instructions, in order.
1445   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1446     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1447          I != E; ++I) {
1448       WriteInstruction(*I, InstID, VE, Stream, Vals);
1449 
1450       if (!I->getType()->isVoidTy())
1451         ++InstID;
1452 
1453       // If the instruction has metadata, write a metadata attachment later.
1454       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1455 
1456       // If the instruction has a debug location, emit it.
1457       DILocation *DL = I->getDebugLoc();
1458       if (!DL)
1459         continue;
1460 
1461       if (DL == LastDL) {
1462         // Just repeat the same debug loc as last time.
1463         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1464         continue;
1465       }
1466 
1467       Vals.push_back(DL->getLine());
1468       Vals.push_back(DL->getColumn());
1469       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
1470       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
1471       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1472       Vals.clear();
1473 
1474       // Fixme(pirama): The following line is missing from upstream
1475       // https://llvm.org/bugs/show_bug.cgi?id=23436
1476       LastDL = DL;
1477     }
1478 
1479   // Emit names for all the instructions etc.
1480   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1481 
1482   if (NeedsMetadataAttachment)
1483     WriteMetadataAttachment(F, VE, Stream);
1484   VE.purgeFunction();
1485   Stream.ExitBlock();
1486 }
1487 
1488 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1489 static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1490                            BitstreamWriter &Stream) {
1491   // We only want to emit block info records for blocks that have multiple
1492   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1493   // blocks can defined their abbrevs inline.
1494   Stream.EnterBlockInfoBlock(2);
1495 
1496   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1497     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1499     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1500     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1502     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1503                                    Abbv) != VST_ENTRY_8_ABBREV)
1504       llvm_unreachable("Unexpected abbrev ordering!");
1505   }
1506 
1507   { // 7-bit fixed width VST_ENTRY strings.
1508     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1509     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1511     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1512     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1513     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1514                                    Abbv) != VST_ENTRY_7_ABBREV)
1515       llvm_unreachable("Unexpected abbrev ordering!");
1516   }
1517   { // 6-bit char6 VST_ENTRY strings.
1518     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1519     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1522     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1523     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1524                                    Abbv) != VST_ENTRY_6_ABBREV)
1525       llvm_unreachable("Unexpected abbrev ordering!");
1526   }
1527   { // 6-bit char6 VST_BBENTRY strings.
1528     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1529     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1532     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1533     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1534                                    Abbv) != VST_BBENTRY_6_ABBREV)
1535       llvm_unreachable("Unexpected abbrev ordering!");
1536   }
1537 
1538 
1539 
1540   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1541     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1542     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1543     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1544                               Log2_32_Ceil(VE.getTypes().size()+1)));
1545     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1546                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1547       llvm_unreachable("Unexpected abbrev ordering!");
1548   }
1549 
1550   { // INTEGER abbrev for CONSTANTS_BLOCK.
1551     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1552     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1553     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1554     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1555                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1556       llvm_unreachable("Unexpected abbrev ordering!");
1557   }
1558 
1559   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1560     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1561     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1564                               Log2_32_Ceil(VE.getTypes().size()+1)));
1565     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1566 
1567     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1568                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1569       llvm_unreachable("Unexpected abbrev ordering!");
1570   }
1571   { // NULL abbrev for CONSTANTS_BLOCK.
1572     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1573     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1574     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1575                                    Abbv) != CONSTANTS_NULL_Abbrev)
1576       llvm_unreachable("Unexpected abbrev ordering!");
1577   }
1578 
1579   // FIXME: This should only use space for first class types!
1580 
1581   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1582     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1583     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1584     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1585     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1587     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1588                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1589       llvm_unreachable("Unexpected abbrev ordering!");
1590   }
1591   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1592     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1593     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1594     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1595     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1596     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1597     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1598                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1599       llvm_unreachable("Unexpected abbrev ordering!");
1600   }
1601   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1602     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1603     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1604     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1605     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1606     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1607     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1608     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1609                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1610       llvm_unreachable("Unexpected abbrev ordering!");
1611   }
1612   { // INST_CAST abbrev for FUNCTION_BLOCK.
1613     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1614     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1616     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1617                               Log2_32_Ceil(VE.getTypes().size()+1)));
1618     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1619     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1620                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1621       llvm_unreachable("Unexpected abbrev ordering!");
1622   }
1623 
1624   { // INST_RET abbrev for FUNCTION_BLOCK.
1625     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1626     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1627     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1628                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1629       llvm_unreachable("Unexpected abbrev ordering!");
1630   }
1631   { // INST_RET abbrev for FUNCTION_BLOCK.
1632     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1633     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1635     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1636                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1637       llvm_unreachable("Unexpected abbrev ordering!");
1638   }
1639   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1640     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1641     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1642     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1643                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1644       llvm_unreachable("Unexpected abbrev ordering!");
1645   }
1646 
1647   Stream.ExitBlock();
1648 }
1649 
1650 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1651 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1652   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1653 
1654   // Emit the version number if it is non-zero.
1655   if (CurVersion) {
1656     SmallVector<unsigned, 1> Vals;
1657     Vals.push_back(CurVersion);
1658     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1659   }
1660 
1661   // Analyze the module, enumerating globals, functions, etc.
1662   llvm_2_9_func::ValueEnumerator VE(*M);
1663 
1664   // Emit blockinfo, which defines the standard abbreviations etc.
1665   WriteBlockInfo(VE, Stream);
1666 
1667   // Emit information about parameter attributes.
1668   WriteAttributeTable(VE, Stream);
1669 
1670   // Emit information describing all of the types in the module.
1671   WriteTypeTable(VE, Stream);
1672 
1673   // Emit top-level description of module, including target triple, inline asm,
1674   // descriptors for global variables, and function prototype info.
1675   WriteModuleInfo(M, VE, Stream);
1676 
1677   // Emit constants.
1678   WriteModuleConstants(VE, Stream);
1679 
1680   // Emit metadata.
1681   WriteModuleMetadata(M, VE, Stream);
1682 
1683   // Emit function bodies.
1684   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1685     if (!F->isDeclaration())
1686       WriteFunction(*F, VE, Stream);
1687 
1688   // Emit metadata.
1689   WriteModuleMetadataStore(M, Stream);
1690 
1691   // Emit names for globals/functions etc.
1692   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1693 
1694   Stream.ExitBlock();
1695 }
1696 
1697 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1698 /// header and trailer to make it compatible with the system archiver.  To do
1699 /// this we emit the following header, and then emit a trailer that pads the
1700 /// file out to be a multiple of 16 bytes.
1701 ///
1702 /// struct bc_header {
1703 ///   uint32_t Magic;         // 0x0B17C0DE
1704 ///   uint32_t Version;       // Version, currently always 0.
1705 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1706 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1707 ///   uint32_t CPUType;       // CPU specifier.
1708 ///   ... potentially more later ...
1709 /// };
1710 enum {
1711   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1712   DarwinBCHeaderSize = 5*4
1713 };
1714 
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1715 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1716                                uint32_t &Position) {
1717   Buffer[Position + 0] = (unsigned char) (Value >>  0);
1718   Buffer[Position + 1] = (unsigned char) (Value >>  8);
1719   Buffer[Position + 2] = (unsigned char) (Value >> 16);
1720   Buffer[Position + 3] = (unsigned char) (Value >> 24);
1721   Position += 4;
1722 }
1723 
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1724 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1725                                          const Triple &TT) {
1726   unsigned CPUType = ~0U;
1727 
1728   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1729   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1730   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1731   // specific constants here because they are implicitly part of the Darwin ABI.
1732   enum {
1733     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1734     DARWIN_CPU_TYPE_X86        = 7,
1735     DARWIN_CPU_TYPE_ARM        = 12,
1736     DARWIN_CPU_TYPE_POWERPC    = 18
1737   };
1738 
1739   Triple::ArchType Arch = TT.getArch();
1740   if (Arch == Triple::x86_64)
1741     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1742   else if (Arch == Triple::x86)
1743     CPUType = DARWIN_CPU_TYPE_X86;
1744   else if (Arch == Triple::ppc)
1745     CPUType = DARWIN_CPU_TYPE_POWERPC;
1746   else if (Arch == Triple::ppc64)
1747     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1748   else if (Arch == Triple::arm || Arch == Triple::thumb)
1749     CPUType = DARWIN_CPU_TYPE_ARM;
1750 
1751   // Traditional Bitcode starts after header.
1752   assert(Buffer.size() >= DarwinBCHeaderSize &&
1753          "Expected header size to be reserved");
1754   unsigned BCOffset = DarwinBCHeaderSize;
1755   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1756 
1757   // Write the magic and version.
1758   unsigned Position = 0;
1759   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1760   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1761   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1762   WriteInt32ToBuffer(BCSize     , Buffer, Position);
1763   WriteInt32ToBuffer(CPUType    , Buffer, Position);
1764 
1765   // If the file is not a multiple of 16 bytes, insert dummy padding.
1766   while (Buffer.size() & 15)
1767     Buffer.push_back(0);
1768 }
1769 
1770 /// WriteBitcodeToFile - Write the specified module to the specified output
1771 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1772 void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1773   SmallVector<char, 1024> Buffer;
1774   Buffer.reserve(256*1024);
1775 
1776   // If this is darwin or another generic macho target, reserve space for the
1777   // header.
1778   Triple TT(M->getTargetTriple());
1779   if (TT.isOSDarwin())
1780     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1781 
1782   // Emit the module into the buffer.
1783   {
1784     BitstreamWriter Stream(Buffer);
1785 
1786     // Emit the file header.
1787     Stream.Emit((unsigned)'B', 8);
1788     Stream.Emit((unsigned)'C', 8);
1789     Stream.Emit(0x0, 4);
1790     Stream.Emit(0xC, 4);
1791     Stream.Emit(0xE, 4);
1792     Stream.Emit(0xD, 4);
1793 
1794     // Emit the module.
1795     WriteModule(M, Stream);
1796   }
1797 
1798   if (TT.isOSDarwin())
1799     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1800 
1801   // Write the generated bitstream to "Out".
1802   Out.write((char*)&Buffer.front(), Buffer.size());
1803 }
1804