1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/epoll.h>
28 #include <sys/limits.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/utsname.h>
32 #include <unistd.h>
33
34 #define LOG_TAG "EventHub"
35
36 // #define LOG_NDEBUG 0
37
38 #include "EventHub.h"
39
40 #include <hardware_legacy/power.h>
41
42 #include <cutils/properties.h>
43 #include <openssl/sha.h>
44 #include <utils/Log.h>
45 #include <utils/Timers.h>
46 #include <utils/threads.h>
47 #include <utils/Errors.h>
48
49 #include <input/KeyLayoutMap.h>
50 #include <input/KeyCharacterMap.h>
51 #include <input/VirtualKeyMap.h>
52
53 /* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58 #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
59
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits) ((bits + 7) / 8)
62
63 #define INDENT " "
64 #define INDENT2 " "
65 #define INDENT3 " "
66
67 namespace android {
68
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71
72 /* return the larger integer */
max(int v1,int v2)73 static inline int max(int v1, int v2)
74 {
75 return (v1 > v2) ? v1 : v2;
76 }
77
toString(bool value)78 static inline const char* toString(bool value) {
79 return value ? "true" : "false";
80 }
81
sha1(const String8 & in)82 static String8 sha1(const String8& in) {
83 SHA_CTX ctx;
84 SHA1_Init(&ctx);
85 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86 u_char digest[SHA_DIGEST_LENGTH];
87 SHA1_Final(digest, &ctx);
88
89 String8 out;
90 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
91 out.appendFormat("%02x", digest[i]);
92 }
93 return out;
94 }
95
getLinuxRelease(int * major,int * minor)96 static void getLinuxRelease(int* major, int* minor) {
97 struct utsname info;
98 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
99 *major = 0, *minor = 0;
100 ALOGE("Could not get linux version: %s", strerror(errno));
101 }
102 }
103
104 // --- Global Functions ---
105
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)106 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
107 // Touch devices get dibs on touch-related axes.
108 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
109 switch (axis) {
110 case ABS_X:
111 case ABS_Y:
112 case ABS_PRESSURE:
113 case ABS_TOOL_WIDTH:
114 case ABS_DISTANCE:
115 case ABS_TILT_X:
116 case ABS_TILT_Y:
117 case ABS_MT_SLOT:
118 case ABS_MT_TOUCH_MAJOR:
119 case ABS_MT_TOUCH_MINOR:
120 case ABS_MT_WIDTH_MAJOR:
121 case ABS_MT_WIDTH_MINOR:
122 case ABS_MT_ORIENTATION:
123 case ABS_MT_POSITION_X:
124 case ABS_MT_POSITION_Y:
125 case ABS_MT_TOOL_TYPE:
126 case ABS_MT_BLOB_ID:
127 case ABS_MT_TRACKING_ID:
128 case ABS_MT_PRESSURE:
129 case ABS_MT_DISTANCE:
130 return INPUT_DEVICE_CLASS_TOUCH;
131 }
132 }
133
134 // External stylus gets the pressure axis
135 if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
136 if (axis == ABS_PRESSURE) {
137 return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
138 }
139 }
140
141 // Joystick devices get the rest.
142 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
143 }
144
145 // --- EventHub::Device ---
146
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)147 EventHub::Device::Device(int fd, int32_t id, const String8& path,
148 const InputDeviceIdentifier& identifier) :
149 next(NULL),
150 fd(fd), id(id), path(path), identifier(identifier),
151 classes(0), configuration(NULL), virtualKeyMap(NULL),
152 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
153 timestampOverrideSec(0), timestampOverrideUsec(0) {
154 memset(keyBitmask, 0, sizeof(keyBitmask));
155 memset(absBitmask, 0, sizeof(absBitmask));
156 memset(relBitmask, 0, sizeof(relBitmask));
157 memset(swBitmask, 0, sizeof(swBitmask));
158 memset(ledBitmask, 0, sizeof(ledBitmask));
159 memset(ffBitmask, 0, sizeof(ffBitmask));
160 memset(propBitmask, 0, sizeof(propBitmask));
161 }
162
~Device()163 EventHub::Device::~Device() {
164 close();
165 delete configuration;
166 delete virtualKeyMap;
167 }
168
close()169 void EventHub::Device::close() {
170 if (fd >= 0) {
171 ::close(fd);
172 fd = -1;
173 }
174 }
175
176
177 // --- EventHub ---
178
179 const uint32_t EventHub::EPOLL_ID_INOTIFY;
180 const uint32_t EventHub::EPOLL_ID_WAKE;
181 const int EventHub::EPOLL_SIZE_HINT;
182 const int EventHub::EPOLL_MAX_EVENTS;
183
EventHub(void)184 EventHub::EventHub(void) :
185 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
186 mOpeningDevices(0), mClosingDevices(0),
187 mNeedToSendFinishedDeviceScan(false),
188 mNeedToReopenDevices(false), mNeedToScanDevices(true),
189 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
190 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
191
192 mEpollFd = epoll_create(EPOLL_SIZE_HINT);
193 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
194
195 mINotifyFd = inotify_init();
196 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
197 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d",
198 DEVICE_PATH, errno);
199
200 struct epoll_event eventItem;
201 memset(&eventItem, 0, sizeof(eventItem));
202 eventItem.events = EPOLLIN;
203 eventItem.data.u32 = EPOLL_ID_INOTIFY;
204 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
205 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
206
207 int wakeFds[2];
208 result = pipe(wakeFds);
209 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
210
211 mWakeReadPipeFd = wakeFds[0];
212 mWakeWritePipeFd = wakeFds[1];
213
214 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
215 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
216 errno);
217
218 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
219 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
220 errno);
221
222 eventItem.data.u32 = EPOLL_ID_WAKE;
223 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
224 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
225 errno);
226
227 int major, minor;
228 getLinuxRelease(&major, &minor);
229 // EPOLLWAKEUP was introduced in kernel 3.5
230 mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
231 }
232
~EventHub(void)233 EventHub::~EventHub(void) {
234 closeAllDevicesLocked();
235
236 while (mClosingDevices) {
237 Device* device = mClosingDevices;
238 mClosingDevices = device->next;
239 delete device;
240 }
241
242 ::close(mEpollFd);
243 ::close(mINotifyFd);
244 ::close(mWakeReadPipeFd);
245 ::close(mWakeWritePipeFd);
246
247 release_wake_lock(WAKE_LOCK_ID);
248 }
249
getDeviceIdentifier(int32_t deviceId) const250 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
251 AutoMutex _l(mLock);
252 Device* device = getDeviceLocked(deviceId);
253 if (device == NULL) return InputDeviceIdentifier();
254 return device->identifier;
255 }
256
getDeviceClasses(int32_t deviceId) const257 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
258 AutoMutex _l(mLock);
259 Device* device = getDeviceLocked(deviceId);
260 if (device == NULL) return 0;
261 return device->classes;
262 }
263
getDeviceControllerNumber(int32_t deviceId) const264 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
265 AutoMutex _l(mLock);
266 Device* device = getDeviceLocked(deviceId);
267 if (device == NULL) return 0;
268 return device->controllerNumber;
269 }
270
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272 AutoMutex _l(mLock);
273 Device* device = getDeviceLocked(deviceId);
274 if (device && device->configuration) {
275 *outConfiguration = *device->configuration;
276 } else {
277 outConfiguration->clear();
278 }
279 }
280
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282 RawAbsoluteAxisInfo* outAxisInfo) const {
283 outAxisInfo->clear();
284
285 if (axis >= 0 && axis <= ABS_MAX) {
286 AutoMutex _l(mLock);
287
288 Device* device = getDeviceLocked(deviceId);
289 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290 struct input_absinfo info;
291 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293 axis, device->identifier.name.string(), device->fd, errno);
294 return -errno;
295 }
296
297 if (info.minimum != info.maximum) {
298 outAxisInfo->valid = true;
299 outAxisInfo->minValue = info.minimum;
300 outAxisInfo->maxValue = info.maximum;
301 outAxisInfo->flat = info.flat;
302 outAxisInfo->fuzz = info.fuzz;
303 outAxisInfo->resolution = info.resolution;
304 }
305 return OK;
306 }
307 }
308 return -1;
309 }
310
hasRelativeAxis(int32_t deviceId,int axis) const311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312 if (axis >= 0 && axis <= REL_MAX) {
313 AutoMutex _l(mLock);
314
315 Device* device = getDeviceLocked(deviceId);
316 if (device) {
317 return test_bit(axis, device->relBitmask);
318 }
319 }
320 return false;
321 }
322
hasInputProperty(int32_t deviceId,int property) const323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324 if (property >= 0 && property <= INPUT_PROP_MAX) {
325 AutoMutex _l(mLock);
326
327 Device* device = getDeviceLocked(deviceId);
328 if (device) {
329 return test_bit(property, device->propBitmask);
330 }
331 }
332 return false;
333 }
334
getScanCodeState(int32_t deviceId,int32_t scanCode) const335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336 if (scanCode >= 0 && scanCode <= KEY_MAX) {
337 AutoMutex _l(mLock);
338
339 Device* device = getDeviceLocked(deviceId);
340 if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342 memset(keyState, 0, sizeof(keyState));
343 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345 }
346 }
347 }
348 return AKEY_STATE_UNKNOWN;
349 }
350
getKeyCodeState(int32_t deviceId,int32_t keyCode) const351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352 AutoMutex _l(mLock);
353
354 Device* device = getDeviceLocked(deviceId);
355 if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356 Vector<int32_t> scanCodes;
357 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358 if (scanCodes.size() != 0) {
359 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360 memset(keyState, 0, sizeof(keyState));
361 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362 for (size_t i = 0; i < scanCodes.size(); i++) {
363 int32_t sc = scanCodes.itemAt(i);
364 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365 return AKEY_STATE_DOWN;
366 }
367 }
368 return AKEY_STATE_UP;
369 }
370 }
371 }
372 return AKEY_STATE_UNKNOWN;
373 }
374
getSwitchState(int32_t deviceId,int32_t sw) const375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376 if (sw >= 0 && sw <= SW_MAX) {
377 AutoMutex _l(mLock);
378
379 Device* device = getDeviceLocked(deviceId);
380 if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381 uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382 memset(swState, 0, sizeof(swState));
383 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385 }
386 }
387 }
388 return AKEY_STATE_UNKNOWN;
389 }
390
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392 *outValue = 0;
393
394 if (axis >= 0 && axis <= ABS_MAX) {
395 AutoMutex _l(mLock);
396
397 Device* device = getDeviceLocked(deviceId);
398 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399 struct input_absinfo info;
400 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402 axis, device->identifier.name.string(), device->fd, errno);
403 return -errno;
404 }
405
406 *outValue = info.value;
407 return OK;
408 }
409 }
410 return -1;
411 }
412
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414 const int32_t* keyCodes, uint8_t* outFlags) const {
415 AutoMutex _l(mLock);
416
417 Device* device = getDeviceLocked(deviceId);
418 if (device && device->keyMap.haveKeyLayout()) {
419 Vector<int32_t> scanCodes;
420 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421 scanCodes.clear();
422
423 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424 keyCodes[codeIndex], &scanCodes);
425 if (! err) {
426 // check the possible scan codes identified by the layout map against the
427 // map of codes actually emitted by the driver
428 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429 if (test_bit(scanCodes[sc], device->keyBitmask)) {
430 outFlags[codeIndex] = 1;
431 break;
432 }
433 }
434 }
435 }
436 return true;
437 }
438 return false;
439 }
440
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const441 status_t EventHub::mapKey(int32_t deviceId,
442 int32_t scanCode, int32_t usageCode, int32_t metaState,
443 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
444 AutoMutex _l(mLock);
445 Device* device = getDeviceLocked(deviceId);
446 status_t status = NAME_NOT_FOUND;
447
448 if (device) {
449 // Check the key character map first.
450 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
451 if (kcm != NULL) {
452 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
453 *outFlags = 0;
454 status = NO_ERROR;
455 }
456 }
457
458 // Check the key layout next.
459 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
460 if (!device->keyMap.keyLayoutMap->mapKey(
461 scanCode, usageCode, outKeycode, outFlags)) {
462 status = NO_ERROR;
463 }
464 }
465
466 if (status == NO_ERROR) {
467 if (kcm != NULL) {
468 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
469 } else {
470 *outMetaState = metaState;
471 }
472 }
473 }
474
475 if (status != NO_ERROR) {
476 *outKeycode = 0;
477 *outFlags = 0;
478 *outMetaState = metaState;
479 }
480
481 return status;
482 }
483
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const484 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
485 AutoMutex _l(mLock);
486 Device* device = getDeviceLocked(deviceId);
487
488 if (device && device->keyMap.haveKeyLayout()) {
489 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
490 if (err == NO_ERROR) {
491 return NO_ERROR;
492 }
493 }
494
495 return NAME_NOT_FOUND;
496 }
497
setExcludedDevices(const Vector<String8> & devices)498 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
499 AutoMutex _l(mLock);
500
501 mExcludedDevices = devices;
502 }
503
hasScanCode(int32_t deviceId,int32_t scanCode) const504 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
505 AutoMutex _l(mLock);
506 Device* device = getDeviceLocked(deviceId);
507 if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
508 if (test_bit(scanCode, device->keyBitmask)) {
509 return true;
510 }
511 }
512 return false;
513 }
514
hasLed(int32_t deviceId,int32_t led) const515 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
516 AutoMutex _l(mLock);
517 Device* device = getDeviceLocked(deviceId);
518 int32_t sc;
519 if (device && mapLed(device, led, &sc) == NO_ERROR) {
520 if (test_bit(sc, device->ledBitmask)) {
521 return true;
522 }
523 }
524 return false;
525 }
526
setLedState(int32_t deviceId,int32_t led,bool on)527 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
528 AutoMutex _l(mLock);
529 Device* device = getDeviceLocked(deviceId);
530 setLedStateLocked(device, led, on);
531 }
532
setLedStateLocked(Device * device,int32_t led,bool on)533 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
534 int32_t sc;
535 if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
536 struct input_event ev;
537 ev.time.tv_sec = 0;
538 ev.time.tv_usec = 0;
539 ev.type = EV_LED;
540 ev.code = sc;
541 ev.value = on ? 1 : 0;
542
543 ssize_t nWrite;
544 do {
545 nWrite = write(device->fd, &ev, sizeof(struct input_event));
546 } while (nWrite == -1 && errno == EINTR);
547 }
548 }
549
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const550 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
551 Vector<VirtualKeyDefinition>& outVirtualKeys) const {
552 outVirtualKeys.clear();
553
554 AutoMutex _l(mLock);
555 Device* device = getDeviceLocked(deviceId);
556 if (device && device->virtualKeyMap) {
557 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
558 }
559 }
560
getKeyCharacterMap(int32_t deviceId) const561 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
562 AutoMutex _l(mLock);
563 Device* device = getDeviceLocked(deviceId);
564 if (device) {
565 return device->getKeyCharacterMap();
566 }
567 return NULL;
568 }
569
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)570 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
571 const sp<KeyCharacterMap>& map) {
572 AutoMutex _l(mLock);
573 Device* device = getDeviceLocked(deviceId);
574 if (device) {
575 if (map != device->overlayKeyMap) {
576 device->overlayKeyMap = map;
577 device->combinedKeyMap = KeyCharacterMap::combine(
578 device->keyMap.keyCharacterMap, map);
579 return true;
580 }
581 }
582 return false;
583 }
584
generateDescriptor(InputDeviceIdentifier & identifier)585 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
586 String8 rawDescriptor;
587 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
588 identifier.product);
589 // TODO add handling for USB devices to not uniqueify kbs that show up twice
590 if (!identifier.uniqueId.isEmpty()) {
591 rawDescriptor.append("uniqueId:");
592 rawDescriptor.append(identifier.uniqueId);
593 } else if (identifier.nonce != 0) {
594 rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
595 }
596
597 if (identifier.vendor == 0 && identifier.product == 0) {
598 // If we don't know the vendor and product id, then the device is probably
599 // built-in so we need to rely on other information to uniquely identify
600 // the input device. Usually we try to avoid relying on the device name or
601 // location but for built-in input device, they are unlikely to ever change.
602 if (!identifier.name.isEmpty()) {
603 rawDescriptor.append("name:");
604 rawDescriptor.append(identifier.name);
605 } else if (!identifier.location.isEmpty()) {
606 rawDescriptor.append("location:");
607 rawDescriptor.append(identifier.location);
608 }
609 }
610 identifier.descriptor = sha1(rawDescriptor);
611 return rawDescriptor;
612 }
613
assignDescriptorLocked(InputDeviceIdentifier & identifier)614 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
615 // Compute a device descriptor that uniquely identifies the device.
616 // The descriptor is assumed to be a stable identifier. Its value should not
617 // change between reboots, reconnections, firmware updates or new releases
618 // of Android. In practice we sometimes get devices that cannot be uniquely
619 // identified. In this case we enforce uniqueness between connected devices.
620 // Ideally, we also want the descriptor to be short and relatively opaque.
621
622 identifier.nonce = 0;
623 String8 rawDescriptor = generateDescriptor(identifier);
624 if (identifier.uniqueId.isEmpty()) {
625 // If it didn't have a unique id check for conflicts and enforce
626 // uniqueness if necessary.
627 while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
628 identifier.nonce++;
629 rawDescriptor = generateDescriptor(identifier);
630 }
631 }
632 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
633 identifier.descriptor.string());
634 }
635
vibrate(int32_t deviceId,nsecs_t duration)636 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
637 AutoMutex _l(mLock);
638 Device* device = getDeviceLocked(deviceId);
639 if (device && !device->isVirtual()) {
640 ff_effect effect;
641 memset(&effect, 0, sizeof(effect));
642 effect.type = FF_RUMBLE;
643 effect.id = device->ffEffectId;
644 effect.u.rumble.strong_magnitude = 0xc000;
645 effect.u.rumble.weak_magnitude = 0xc000;
646 effect.replay.length = (duration + 999999LL) / 1000000LL;
647 effect.replay.delay = 0;
648 if (ioctl(device->fd, EVIOCSFF, &effect)) {
649 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
650 device->identifier.name.string(), errno);
651 return;
652 }
653 device->ffEffectId = effect.id;
654
655 struct input_event ev;
656 ev.time.tv_sec = 0;
657 ev.time.tv_usec = 0;
658 ev.type = EV_FF;
659 ev.code = device->ffEffectId;
660 ev.value = 1;
661 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
662 ALOGW("Could not start force feedback effect on device %s due to error %d.",
663 device->identifier.name.string(), errno);
664 return;
665 }
666 device->ffEffectPlaying = true;
667 }
668 }
669
cancelVibrate(int32_t deviceId)670 void EventHub::cancelVibrate(int32_t deviceId) {
671 AutoMutex _l(mLock);
672 Device* device = getDeviceLocked(deviceId);
673 if (device && !device->isVirtual()) {
674 if (device->ffEffectPlaying) {
675 device->ffEffectPlaying = false;
676
677 struct input_event ev;
678 ev.time.tv_sec = 0;
679 ev.time.tv_usec = 0;
680 ev.type = EV_FF;
681 ev.code = device->ffEffectId;
682 ev.value = 0;
683 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
684 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
685 device->identifier.name.string(), errno);
686 return;
687 }
688 }
689 }
690 }
691
getDeviceByDescriptorLocked(String8 & descriptor) const692 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
693 size_t size = mDevices.size();
694 for (size_t i = 0; i < size; i++) {
695 Device* device = mDevices.valueAt(i);
696 if (descriptor.compare(device->identifier.descriptor) == 0) {
697 return device;
698 }
699 }
700 return NULL;
701 }
702
getDeviceLocked(int32_t deviceId) const703 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
704 if (deviceId == BUILT_IN_KEYBOARD_ID) {
705 deviceId = mBuiltInKeyboardId;
706 }
707 ssize_t index = mDevices.indexOfKey(deviceId);
708 return index >= 0 ? mDevices.valueAt(index) : NULL;
709 }
710
getDeviceByPathLocked(const char * devicePath) const711 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
712 for (size_t i = 0; i < mDevices.size(); i++) {
713 Device* device = mDevices.valueAt(i);
714 if (device->path == devicePath) {
715 return device;
716 }
717 }
718 return NULL;
719 }
720
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)721 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
722 ALOG_ASSERT(bufferSize >= 1);
723
724 AutoMutex _l(mLock);
725
726 struct input_event readBuffer[bufferSize];
727
728 RawEvent* event = buffer;
729 size_t capacity = bufferSize;
730 bool awoken = false;
731 for (;;) {
732 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
733
734 // Reopen input devices if needed.
735 if (mNeedToReopenDevices) {
736 mNeedToReopenDevices = false;
737
738 ALOGI("Reopening all input devices due to a configuration change.");
739
740 closeAllDevicesLocked();
741 mNeedToScanDevices = true;
742 break; // return to the caller before we actually rescan
743 }
744
745 // Report any devices that had last been added/removed.
746 while (mClosingDevices) {
747 Device* device = mClosingDevices;
748 ALOGV("Reporting device closed: id=%d, name=%s\n",
749 device->id, device->path.string());
750 mClosingDevices = device->next;
751 event->when = now;
752 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
753 event->type = DEVICE_REMOVED;
754 event += 1;
755 delete device;
756 mNeedToSendFinishedDeviceScan = true;
757 if (--capacity == 0) {
758 break;
759 }
760 }
761
762 if (mNeedToScanDevices) {
763 mNeedToScanDevices = false;
764 scanDevicesLocked();
765 mNeedToSendFinishedDeviceScan = true;
766 }
767
768 while (mOpeningDevices != NULL) {
769 Device* device = mOpeningDevices;
770 ALOGV("Reporting device opened: id=%d, name=%s\n",
771 device->id, device->path.string());
772 mOpeningDevices = device->next;
773 event->when = now;
774 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
775 event->type = DEVICE_ADDED;
776 event += 1;
777 mNeedToSendFinishedDeviceScan = true;
778 if (--capacity == 0) {
779 break;
780 }
781 }
782
783 if (mNeedToSendFinishedDeviceScan) {
784 mNeedToSendFinishedDeviceScan = false;
785 event->when = now;
786 event->type = FINISHED_DEVICE_SCAN;
787 event += 1;
788 if (--capacity == 0) {
789 break;
790 }
791 }
792
793 // Grab the next input event.
794 bool deviceChanged = false;
795 while (mPendingEventIndex < mPendingEventCount) {
796 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
797 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
798 if (eventItem.events & EPOLLIN) {
799 mPendingINotify = true;
800 } else {
801 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
802 }
803 continue;
804 }
805
806 if (eventItem.data.u32 == EPOLL_ID_WAKE) {
807 if (eventItem.events & EPOLLIN) {
808 ALOGV("awoken after wake()");
809 awoken = true;
810 char buffer[16];
811 ssize_t nRead;
812 do {
813 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
814 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
815 } else {
816 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
817 eventItem.events);
818 }
819 continue;
820 }
821
822 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
823 if (deviceIndex < 0) {
824 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
825 eventItem.events, eventItem.data.u32);
826 continue;
827 }
828
829 Device* device = mDevices.valueAt(deviceIndex);
830 if (eventItem.events & EPOLLIN) {
831 int32_t readSize = read(device->fd, readBuffer,
832 sizeof(struct input_event) * capacity);
833 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
834 // Device was removed before INotify noticed.
835 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
836 " bufferSize: %zu capacity: %zu errno: %d)\n",
837 device->fd, readSize, bufferSize, capacity, errno);
838 deviceChanged = true;
839 closeDeviceLocked(device);
840 } else if (readSize < 0) {
841 if (errno != EAGAIN && errno != EINTR) {
842 ALOGW("could not get event (errno=%d)", errno);
843 }
844 } else if ((readSize % sizeof(struct input_event)) != 0) {
845 ALOGE("could not get event (wrong size: %d)", readSize);
846 } else {
847 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
848
849 size_t count = size_t(readSize) / sizeof(struct input_event);
850 for (size_t i = 0; i < count; i++) {
851 struct input_event& iev = readBuffer[i];
852 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
853 device->path.string(),
854 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
855 iev.type, iev.code, iev.value);
856
857 // Some input devices may have a better concept of the time
858 // when an input event was actually generated than the kernel
859 // which simply timestamps all events on entry to evdev.
860 // This is a custom Android extension of the input protocol
861 // mainly intended for use with uinput based device drivers.
862 if (iev.type == EV_MSC) {
863 if (iev.code == MSC_ANDROID_TIME_SEC) {
864 device->timestampOverrideSec = iev.value;
865 continue;
866 } else if (iev.code == MSC_ANDROID_TIME_USEC) {
867 device->timestampOverrideUsec = iev.value;
868 continue;
869 }
870 }
871 if (device->timestampOverrideSec || device->timestampOverrideUsec) {
872 iev.time.tv_sec = device->timestampOverrideSec;
873 iev.time.tv_usec = device->timestampOverrideUsec;
874 if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
875 device->timestampOverrideSec = 0;
876 device->timestampOverrideUsec = 0;
877 }
878 ALOGV("applied override time %d.%06d",
879 int(iev.time.tv_sec), int(iev.time.tv_usec));
880 }
881
882 // Use the time specified in the event instead of the current time
883 // so that downstream code can get more accurate estimates of
884 // event dispatch latency from the time the event is enqueued onto
885 // the evdev client buffer.
886 //
887 // The event's timestamp fortuitously uses the same monotonic clock
888 // time base as the rest of Android. The kernel event device driver
889 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
890 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
891 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
892 // system call that also queries ktime_get_ts().
893 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
894 + nsecs_t(iev.time.tv_usec) * 1000LL;
895 ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
896
897 // Bug 7291243: Add a guard in case the kernel generates timestamps
898 // that appear to be far into the future because they were generated
899 // using the wrong clock source.
900 //
901 // This can happen because when the input device is initially opened
902 // it has a default clock source of CLOCK_REALTIME. Any input events
903 // enqueued right after the device is opened will have timestamps
904 // generated using CLOCK_REALTIME. We later set the clock source
905 // to CLOCK_MONOTONIC but it is already too late.
906 //
907 // Invalid input event timestamps can result in ANRs, crashes and
908 // and other issues that are hard to track down. We must not let them
909 // propagate through the system.
910 //
911 // Log a warning so that we notice the problem and recover gracefully.
912 if (event->when >= now + 10 * 1000000000LL) {
913 // Double-check. Time may have moved on.
914 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
915 if (event->when > time) {
916 ALOGW("An input event from %s has a timestamp that appears to "
917 "have been generated using the wrong clock source "
918 "(expected CLOCK_MONOTONIC): "
919 "event time %" PRId64 ", current time %" PRId64
920 ", call time %" PRId64 ". "
921 "Using current time instead.",
922 device->path.string(), event->when, time, now);
923 event->when = time;
924 } else {
925 ALOGV("Event time is ok but failed the fast path and required "
926 "an extra call to systemTime: "
927 "event time %" PRId64 ", current time %" PRId64
928 ", call time %" PRId64 ".",
929 event->when, time, now);
930 }
931 }
932 event->deviceId = deviceId;
933 event->type = iev.type;
934 event->code = iev.code;
935 event->value = iev.value;
936 event += 1;
937 capacity -= 1;
938 }
939 if (capacity == 0) {
940 // The result buffer is full. Reset the pending event index
941 // so we will try to read the device again on the next iteration.
942 mPendingEventIndex -= 1;
943 break;
944 }
945 }
946 } else if (eventItem.events & EPOLLHUP) {
947 ALOGI("Removing device %s due to epoll hang-up event.",
948 device->identifier.name.string());
949 deviceChanged = true;
950 closeDeviceLocked(device);
951 } else {
952 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
953 eventItem.events, device->identifier.name.string());
954 }
955 }
956
957 // readNotify() will modify the list of devices so this must be done after
958 // processing all other events to ensure that we read all remaining events
959 // before closing the devices.
960 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
961 mPendingINotify = false;
962 readNotifyLocked();
963 deviceChanged = true;
964 }
965
966 // Report added or removed devices immediately.
967 if (deviceChanged) {
968 continue;
969 }
970
971 // Return now if we have collected any events or if we were explicitly awoken.
972 if (event != buffer || awoken) {
973 break;
974 }
975
976 // Poll for events. Mind the wake lock dance!
977 // We hold a wake lock at all times except during epoll_wait(). This works due to some
978 // subtle choreography. When a device driver has pending (unread) events, it acquires
979 // a kernel wake lock. However, once the last pending event has been read, the device
980 // driver will release the kernel wake lock. To prevent the system from going to sleep
981 // when this happens, the EventHub holds onto its own user wake lock while the client
982 // is processing events. Thus the system can only sleep if there are no events
983 // pending or currently being processed.
984 //
985 // The timeout is advisory only. If the device is asleep, it will not wake just to
986 // service the timeout.
987 mPendingEventIndex = 0;
988
989 mLock.unlock(); // release lock before poll, must be before release_wake_lock
990 release_wake_lock(WAKE_LOCK_ID);
991
992 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
993
994 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
995 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
996
997 if (pollResult == 0) {
998 // Timed out.
999 mPendingEventCount = 0;
1000 break;
1001 }
1002
1003 if (pollResult < 0) {
1004 // An error occurred.
1005 mPendingEventCount = 0;
1006
1007 // Sleep after errors to avoid locking up the system.
1008 // Hopefully the error is transient.
1009 if (errno != EINTR) {
1010 ALOGW("poll failed (errno=%d)\n", errno);
1011 usleep(100000);
1012 }
1013 } else {
1014 // Some events occurred.
1015 mPendingEventCount = size_t(pollResult);
1016 }
1017 }
1018
1019 // All done, return the number of events we read.
1020 return event - buffer;
1021 }
1022
wake()1023 void EventHub::wake() {
1024 ALOGV("wake() called");
1025
1026 ssize_t nWrite;
1027 do {
1028 nWrite = write(mWakeWritePipeFd, "W", 1);
1029 } while (nWrite == -1 && errno == EINTR);
1030
1031 if (nWrite != 1 && errno != EAGAIN) {
1032 ALOGW("Could not write wake signal, errno=%d", errno);
1033 }
1034 }
1035
scanDevicesLocked()1036 void EventHub::scanDevicesLocked() {
1037 status_t res = scanDirLocked(DEVICE_PATH);
1038 if(res < 0) {
1039 ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1040 }
1041 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1042 createVirtualKeyboardLocked();
1043 }
1044 }
1045
1046 // ----------------------------------------------------------------------------
1047
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)1048 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1049 const uint8_t* end = array + endIndex;
1050 array += startIndex;
1051 while (array != end) {
1052 if (*(array++) != 0) {
1053 return true;
1054 }
1055 }
1056 return false;
1057 }
1058
1059 static const int32_t GAMEPAD_KEYCODES[] = {
1060 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1061 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1062 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1063 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1064 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1065 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1066 };
1067
openDeviceLocked(const char * devicePath)1068 status_t EventHub::openDeviceLocked(const char *devicePath) {
1069 char buffer[80];
1070
1071 ALOGV("Opening device: %s", devicePath);
1072
1073 int fd = open(devicePath, O_RDWR | O_CLOEXEC);
1074 if(fd < 0) {
1075 ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1076 return -1;
1077 }
1078
1079 InputDeviceIdentifier identifier;
1080
1081 // Get device name.
1082 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1083 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1084 } else {
1085 buffer[sizeof(buffer) - 1] = '\0';
1086 identifier.name.setTo(buffer);
1087 }
1088
1089 // Check to see if the device is on our excluded list
1090 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1091 const String8& item = mExcludedDevices.itemAt(i);
1092 if (identifier.name == item) {
1093 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1094 close(fd);
1095 return -1;
1096 }
1097 }
1098
1099 // Get device driver version.
1100 int driverVersion;
1101 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1102 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1103 close(fd);
1104 return -1;
1105 }
1106
1107 // Get device identifier.
1108 struct input_id inputId;
1109 if(ioctl(fd, EVIOCGID, &inputId)) {
1110 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1111 close(fd);
1112 return -1;
1113 }
1114 identifier.bus = inputId.bustype;
1115 identifier.product = inputId.product;
1116 identifier.vendor = inputId.vendor;
1117 identifier.version = inputId.version;
1118
1119 // Get device physical location.
1120 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1121 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1122 } else {
1123 buffer[sizeof(buffer) - 1] = '\0';
1124 identifier.location.setTo(buffer);
1125 }
1126
1127 // Get device unique id.
1128 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1129 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1130 } else {
1131 buffer[sizeof(buffer) - 1] = '\0';
1132 identifier.uniqueId.setTo(buffer);
1133 }
1134
1135 // Fill in the descriptor.
1136 assignDescriptorLocked(identifier);
1137
1138 // Make file descriptor non-blocking for use with poll().
1139 if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1140 ALOGE("Error %d making device file descriptor non-blocking.", errno);
1141 close(fd);
1142 return -1;
1143 }
1144
1145 // Allocate device. (The device object takes ownership of the fd at this point.)
1146 int32_t deviceId = mNextDeviceId++;
1147 Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1148
1149 ALOGV("add device %d: %s\n", deviceId, devicePath);
1150 ALOGV(" bus: %04x\n"
1151 " vendor %04x\n"
1152 " product %04x\n"
1153 " version %04x\n",
1154 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1155 ALOGV(" name: \"%s\"\n", identifier.name.string());
1156 ALOGV(" location: \"%s\"\n", identifier.location.string());
1157 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string());
1158 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string());
1159 ALOGV(" driver: v%d.%d.%d\n",
1160 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1161
1162 // Load the configuration file for the device.
1163 loadConfigurationLocked(device);
1164
1165 // Figure out the kinds of events the device reports.
1166 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1167 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1168 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1169 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1170 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1171 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1172 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1173
1174 // See if this is a keyboard. Ignore everything in the button range except for
1175 // joystick and gamepad buttons which are handled like keyboards for the most part.
1176 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1177 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1178 sizeof_bit_array(KEY_MAX + 1));
1179 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1180 sizeof_bit_array(BTN_MOUSE))
1181 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1182 sizeof_bit_array(BTN_DIGI));
1183 if (haveKeyboardKeys || haveGamepadButtons) {
1184 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1185 }
1186
1187 // See if this is a cursor device such as a trackball or mouse.
1188 if (test_bit(BTN_MOUSE, device->keyBitmask)
1189 && test_bit(REL_X, device->relBitmask)
1190 && test_bit(REL_Y, device->relBitmask)) {
1191 device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1192 }
1193
1194 // See if this is a rotary encoder type device.
1195 String8 deviceType = String8();
1196 if (device->configuration &&
1197 device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
1198 if (!deviceType.compare(String8("rotaryEncoder"))) {
1199 device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER;
1200 }
1201 }
1202
1203 // See if this is a touch pad.
1204 // Is this a new modern multi-touch driver?
1205 if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1206 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1207 // Some joysticks such as the PS3 controller report axes that conflict
1208 // with the ABS_MT range. Try to confirm that the device really is
1209 // a touch screen.
1210 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1211 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1212 }
1213 // Is this an old style single-touch driver?
1214 } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1215 && test_bit(ABS_X, device->absBitmask)
1216 && test_bit(ABS_Y, device->absBitmask)) {
1217 device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1218 // Is this a BT stylus?
1219 } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1220 test_bit(BTN_TOUCH, device->keyBitmask))
1221 && !test_bit(ABS_X, device->absBitmask)
1222 && !test_bit(ABS_Y, device->absBitmask)) {
1223 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1224 // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1225 // can fuse it with the touch screen data, so just take them back. Note this means an
1226 // external stylus cannot also be a keyboard device.
1227 device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1228 }
1229
1230 // See if this device is a joystick.
1231 // Assumes that joysticks always have gamepad buttons in order to distinguish them
1232 // from other devices such as accelerometers that also have absolute axes.
1233 if (haveGamepadButtons) {
1234 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1235 for (int i = 0; i <= ABS_MAX; i++) {
1236 if (test_bit(i, device->absBitmask)
1237 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1238 device->classes = assumedClasses;
1239 break;
1240 }
1241 }
1242 }
1243
1244 // Check whether this device has switches.
1245 for (int i = 0; i <= SW_MAX; i++) {
1246 if (test_bit(i, device->swBitmask)) {
1247 device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1248 break;
1249 }
1250 }
1251
1252 // Check whether this device supports the vibrator.
1253 if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1254 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1255 }
1256
1257 // Configure virtual keys.
1258 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1259 // Load the virtual keys for the touch screen, if any.
1260 // We do this now so that we can make sure to load the keymap if necessary.
1261 status_t status = loadVirtualKeyMapLocked(device);
1262 if (!status) {
1263 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1264 }
1265 }
1266
1267 // Load the key map.
1268 // We need to do this for joysticks too because the key layout may specify axes.
1269 status_t keyMapStatus = NAME_NOT_FOUND;
1270 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1271 // Load the keymap for the device.
1272 keyMapStatus = loadKeyMapLocked(device);
1273 }
1274
1275 // Configure the keyboard, gamepad or virtual keyboard.
1276 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1277 // Register the keyboard as a built-in keyboard if it is eligible.
1278 if (!keyMapStatus
1279 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1280 && isEligibleBuiltInKeyboard(device->identifier,
1281 device->configuration, &device->keyMap)) {
1282 mBuiltInKeyboardId = device->id;
1283 }
1284
1285 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1286 if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1287 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1288 }
1289
1290 // See if this device has a DPAD.
1291 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1292 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1293 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1294 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1295 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1296 device->classes |= INPUT_DEVICE_CLASS_DPAD;
1297 }
1298
1299 // See if this device has a gamepad.
1300 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1301 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1302 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1303 break;
1304 }
1305 }
1306
1307 // Disable kernel key repeat since we handle it ourselves
1308 unsigned int repeatRate[] = {0,0};
1309 if (ioctl(fd, EVIOCSREP, repeatRate)) {
1310 ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
1311 }
1312 }
1313
1314 // If the device isn't recognized as something we handle, don't monitor it.
1315 if (device->classes == 0) {
1316 ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1317 deviceId, devicePath, device->identifier.name.string());
1318 delete device;
1319 return -1;
1320 }
1321
1322 // Determine whether the device has a mic.
1323 if (deviceHasMicLocked(device)) {
1324 device->classes |= INPUT_DEVICE_CLASS_MIC;
1325 }
1326
1327 // Determine whether the device is external or internal.
1328 if (isExternalDeviceLocked(device)) {
1329 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1330 }
1331
1332 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1333 && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1334 device->controllerNumber = getNextControllerNumberLocked(device);
1335 setLedForController(device);
1336 }
1337
1338 // Register with epoll.
1339 struct epoll_event eventItem;
1340 memset(&eventItem, 0, sizeof(eventItem));
1341 eventItem.events = EPOLLIN;
1342 if (mUsingEpollWakeup) {
1343 eventItem.events |= EPOLLWAKEUP;
1344 }
1345 eventItem.data.u32 = deviceId;
1346 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1347 ALOGE("Could not add device fd to epoll instance. errno=%d", errno);
1348 delete device;
1349 return -1;
1350 }
1351
1352 String8 wakeMechanism("EPOLLWAKEUP");
1353 if (!mUsingEpollWakeup) {
1354 #ifndef EVIOCSSUSPENDBLOCK
1355 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1356 // will use an epoll flag instead, so as long as we want to support
1357 // this feature, we need to be prepared to define the ioctl ourselves.
1358 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1359 #endif
1360 if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) {
1361 wakeMechanism = "<none>";
1362 } else {
1363 wakeMechanism = "EVIOCSSUSPENDBLOCK";
1364 }
1365 }
1366
1367 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1368 // associated with input events. This is important because the input system
1369 // uses the timestamps extensively and assumes they were recorded using the monotonic
1370 // clock.
1371 //
1372 // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1373 // clock to use to input event timestamps. The standard kernel behavior was to
1374 // record a real time timestamp, which isn't what we want. Android kernels therefore
1375 // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1376 // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1377 // clock to be used instead of the real time clock.
1378 //
1379 // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1380 // Therefore, we no longer require the Android-specific kernel patch described above
1381 // as long as we make sure to set select the monotonic clock. We do that here.
1382 int clockId = CLOCK_MONOTONIC;
1383 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1384
1385 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1386 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1387 "wakeMechanism=%s, usingClockIoctl=%s",
1388 deviceId, fd, devicePath, device->identifier.name.string(),
1389 device->classes,
1390 device->configurationFile.string(),
1391 device->keyMap.keyLayoutFile.string(),
1392 device->keyMap.keyCharacterMapFile.string(),
1393 toString(mBuiltInKeyboardId == deviceId),
1394 wakeMechanism.string(), toString(usingClockIoctl));
1395
1396 addDeviceLocked(device);
1397 return 0;
1398 }
1399
createVirtualKeyboardLocked()1400 void EventHub::createVirtualKeyboardLocked() {
1401 InputDeviceIdentifier identifier;
1402 identifier.name = "Virtual";
1403 identifier.uniqueId = "<virtual>";
1404 assignDescriptorLocked(identifier);
1405
1406 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1407 device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1408 | INPUT_DEVICE_CLASS_ALPHAKEY
1409 | INPUT_DEVICE_CLASS_DPAD
1410 | INPUT_DEVICE_CLASS_VIRTUAL;
1411 loadKeyMapLocked(device);
1412 addDeviceLocked(device);
1413 }
1414
addDeviceLocked(Device * device)1415 void EventHub::addDeviceLocked(Device* device) {
1416 mDevices.add(device->id, device);
1417 device->next = mOpeningDevices;
1418 mOpeningDevices = device;
1419 }
1420
loadConfigurationLocked(Device * device)1421 void EventHub::loadConfigurationLocked(Device* device) {
1422 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1423 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1424 if (device->configurationFile.isEmpty()) {
1425 ALOGD("No input device configuration file found for device '%s'.",
1426 device->identifier.name.string());
1427 } else {
1428 status_t status = PropertyMap::load(device->configurationFile,
1429 &device->configuration);
1430 if (status) {
1431 ALOGE("Error loading input device configuration file for device '%s'. "
1432 "Using default configuration.",
1433 device->identifier.name.string());
1434 }
1435 }
1436 }
1437
loadVirtualKeyMapLocked(Device * device)1438 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1439 // The virtual key map is supplied by the kernel as a system board property file.
1440 String8 path;
1441 path.append("/sys/board_properties/virtualkeys.");
1442 path.append(device->identifier.name);
1443 if (access(path.string(), R_OK)) {
1444 return NAME_NOT_FOUND;
1445 }
1446 return VirtualKeyMap::load(path, &device->virtualKeyMap);
1447 }
1448
loadKeyMapLocked(Device * device)1449 status_t EventHub::loadKeyMapLocked(Device* device) {
1450 return device->keyMap.load(device->identifier, device->configuration);
1451 }
1452
isExternalDeviceLocked(Device * device)1453 bool EventHub::isExternalDeviceLocked(Device* device) {
1454 if (device->configuration) {
1455 bool value;
1456 if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1457 return !value;
1458 }
1459 }
1460 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1461 }
1462
deviceHasMicLocked(Device * device)1463 bool EventHub::deviceHasMicLocked(Device* device) {
1464 if (device->configuration) {
1465 bool value;
1466 if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1467 return value;
1468 }
1469 }
1470 return false;
1471 }
1472
getNextControllerNumberLocked(Device * device)1473 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1474 if (mControllerNumbers.isFull()) {
1475 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1476 device->identifier.name.string());
1477 return 0;
1478 }
1479 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1480 // one
1481 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1482 }
1483
releaseControllerNumberLocked(Device * device)1484 void EventHub::releaseControllerNumberLocked(Device* device) {
1485 int32_t num = device->controllerNumber;
1486 device->controllerNumber= 0;
1487 if (num == 0) {
1488 return;
1489 }
1490 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1491 }
1492
setLedForController(Device * device)1493 void EventHub::setLedForController(Device* device) {
1494 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1495 setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1496 }
1497 }
1498
hasKeycodeLocked(Device * device,int keycode) const1499 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1500 if (!device->keyMap.haveKeyLayout()) {
1501 return false;
1502 }
1503
1504 Vector<int32_t> scanCodes;
1505 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1506 const size_t N = scanCodes.size();
1507 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1508 int32_t sc = scanCodes.itemAt(i);
1509 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1510 return true;
1511 }
1512 }
1513
1514 return false;
1515 }
1516
mapLed(Device * device,int32_t led,int32_t * outScanCode) const1517 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1518 if (!device->keyMap.haveKeyLayout()) {
1519 return NAME_NOT_FOUND;
1520 }
1521
1522 int32_t scanCode;
1523 if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1524 if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1525 *outScanCode = scanCode;
1526 return NO_ERROR;
1527 }
1528 }
1529 return NAME_NOT_FOUND;
1530 }
1531
closeDeviceByPathLocked(const char * devicePath)1532 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1533 Device* device = getDeviceByPathLocked(devicePath);
1534 if (device) {
1535 closeDeviceLocked(device);
1536 return 0;
1537 }
1538 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1539 return -1;
1540 }
1541
closeAllDevicesLocked()1542 void EventHub::closeAllDevicesLocked() {
1543 while (mDevices.size() > 0) {
1544 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1545 }
1546 }
1547
closeDeviceLocked(Device * device)1548 void EventHub::closeDeviceLocked(Device* device) {
1549 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1550 device->path.string(), device->identifier.name.string(), device->id,
1551 device->fd, device->classes);
1552
1553 if (device->id == mBuiltInKeyboardId) {
1554 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1555 device->path.string(), mBuiltInKeyboardId);
1556 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1557 }
1558
1559 if (!device->isVirtual()) {
1560 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1561 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno);
1562 }
1563 }
1564
1565 releaseControllerNumberLocked(device);
1566
1567 mDevices.removeItem(device->id);
1568 device->close();
1569
1570 // Unlink for opening devices list if it is present.
1571 Device* pred = NULL;
1572 bool found = false;
1573 for (Device* entry = mOpeningDevices; entry != NULL; ) {
1574 if (entry == device) {
1575 found = true;
1576 break;
1577 }
1578 pred = entry;
1579 entry = entry->next;
1580 }
1581 if (found) {
1582 // Unlink the device from the opening devices list then delete it.
1583 // We don't need to tell the client that the device was closed because
1584 // it does not even know it was opened in the first place.
1585 ALOGI("Device %s was immediately closed after opening.", device->path.string());
1586 if (pred) {
1587 pred->next = device->next;
1588 } else {
1589 mOpeningDevices = device->next;
1590 }
1591 delete device;
1592 } else {
1593 // Link into closing devices list.
1594 // The device will be deleted later after we have informed the client.
1595 device->next = mClosingDevices;
1596 mClosingDevices = device;
1597 }
1598 }
1599
readNotifyLocked()1600 status_t EventHub::readNotifyLocked() {
1601 int res;
1602 char devname[PATH_MAX];
1603 char *filename;
1604 char event_buf[512];
1605 int event_size;
1606 int event_pos = 0;
1607 struct inotify_event *event;
1608
1609 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1610 res = read(mINotifyFd, event_buf, sizeof(event_buf));
1611 if(res < (int)sizeof(*event)) {
1612 if(errno == EINTR)
1613 return 0;
1614 ALOGW("could not get event, %s\n", strerror(errno));
1615 return -1;
1616 }
1617 //printf("got %d bytes of event information\n", res);
1618
1619 strcpy(devname, DEVICE_PATH);
1620 filename = devname + strlen(devname);
1621 *filename++ = '/';
1622
1623 while(res >= (int)sizeof(*event)) {
1624 event = (struct inotify_event *)(event_buf + event_pos);
1625 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1626 if(event->len) {
1627 strcpy(filename, event->name);
1628 if(event->mask & IN_CREATE) {
1629 openDeviceLocked(devname);
1630 } else {
1631 ALOGI("Removing device '%s' due to inotify event\n", devname);
1632 closeDeviceByPathLocked(devname);
1633 }
1634 }
1635 event_size = sizeof(*event) + event->len;
1636 res -= event_size;
1637 event_pos += event_size;
1638 }
1639 return 0;
1640 }
1641
scanDirLocked(const char * dirname)1642 status_t EventHub::scanDirLocked(const char *dirname)
1643 {
1644 char devname[PATH_MAX];
1645 char *filename;
1646 DIR *dir;
1647 struct dirent *de;
1648 dir = opendir(dirname);
1649 if(dir == NULL)
1650 return -1;
1651 strcpy(devname, dirname);
1652 filename = devname + strlen(devname);
1653 *filename++ = '/';
1654 while((de = readdir(dir))) {
1655 if(de->d_name[0] == '.' &&
1656 (de->d_name[1] == '\0' ||
1657 (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1658 continue;
1659 strcpy(filename, de->d_name);
1660 openDeviceLocked(devname);
1661 }
1662 closedir(dir);
1663 return 0;
1664 }
1665
requestReopenDevices()1666 void EventHub::requestReopenDevices() {
1667 ALOGV("requestReopenDevices() called");
1668
1669 AutoMutex _l(mLock);
1670 mNeedToReopenDevices = true;
1671 }
1672
dump(String8 & dump)1673 void EventHub::dump(String8& dump) {
1674 dump.append("Event Hub State:\n");
1675
1676 { // acquire lock
1677 AutoMutex _l(mLock);
1678
1679 dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1680
1681 dump.append(INDENT "Devices:\n");
1682
1683 for (size_t i = 0; i < mDevices.size(); i++) {
1684 const Device* device = mDevices.valueAt(i);
1685 if (mBuiltInKeyboardId == device->id) {
1686 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1687 device->id, device->identifier.name.string());
1688 } else {
1689 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1690 device->identifier.name.string());
1691 }
1692 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1693 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1694 dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1695 dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1696 dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1697 dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1698 dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1699 "product=0x%04x, version=0x%04x\n",
1700 device->identifier.bus, device->identifier.vendor,
1701 device->identifier.product, device->identifier.version);
1702 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1703 device->keyMap.keyLayoutFile.string());
1704 dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1705 device->keyMap.keyCharacterMapFile.string());
1706 dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1707 device->configurationFile.string());
1708 dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1709 toString(device->overlayKeyMap != NULL));
1710 }
1711 } // release lock
1712 }
1713
monitor()1714 void EventHub::monitor() {
1715 // Acquire and release the lock to ensure that the event hub has not deadlocked.
1716 mLock.lock();
1717 mLock.unlock();
1718 }
1719
1720
1721 }; // namespace android
1722