1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 
19 #include <cutils/compiler.h>
20 #include <utils/String8.h>
21 #include <ui/Region.h>
22 
23 #include "clz.h"
24 #include "Transform.h"
25 
26 // ---------------------------------------------------------------------------
27 
28 namespace android {
29 
30 // ---------------------------------------------------------------------------
31 
Transform()32 Transform::Transform() {
33     reset();
34 }
35 
Transform(const Transform & other)36 Transform::Transform(const Transform&  other)
37     : mMatrix(other.mMatrix), mType(other.mType) {
38 }
39 
Transform(uint32_t orientation)40 Transform::Transform(uint32_t orientation) {
41     set(orientation, 0, 0);
42 }
43 
~Transform()44 Transform::~Transform() {
45 }
46 
47 static const float EPSILON = 0.0f;
48 
isZero(float f)49 bool Transform::isZero(float f) {
50     return fabs(f) <= EPSILON;
51 }
52 
absIsOne(float f)53 bool Transform::absIsOne(float f) {
54     return isZero(fabs(f) - 1.0f);
55 }
56 
operator *(const Transform & rhs) const57 Transform Transform::operator * (const Transform& rhs) const
58 {
59     if (CC_LIKELY(mType == IDENTITY))
60         return rhs;
61 
62     Transform r(*this);
63     if (rhs.mType == IDENTITY)
64         return r;
65 
66     // TODO: we could use mType to optimize the matrix multiply
67     const mat33& A(mMatrix);
68     const mat33& B(rhs.mMatrix);
69           mat33& D(r.mMatrix);
70     for (int i=0 ; i<3 ; i++) {
71         const float v0 = A[0][i];
72         const float v1 = A[1][i];
73         const float v2 = A[2][i];
74         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
75         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
76         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
77     }
78     r.mType |= rhs.mType;
79 
80     // TODO: we could recompute this value from r and rhs
81     r.mType &= 0xFF;
82     r.mType |= UNKNOWN_TYPE;
83     return r;
84 }
85 
operator [](size_t i) const86 const vec3& Transform::operator [] (size_t i) const {
87     return mMatrix[i];
88 }
89 
tx() const90 float Transform::tx() const {
91     return mMatrix[2][0];
92 }
93 
ty() const94 float Transform::ty() const {
95     return mMatrix[2][1];
96 }
97 
reset()98 void Transform::reset() {
99     mType = IDENTITY;
100     for(int i=0 ; i<3 ; i++) {
101         vec3& v(mMatrix[i]);
102         for (int j=0 ; j<3 ; j++)
103             v[j] = ((i==j) ? 1.0f : 0.0f);
104     }
105 }
106 
set(float tx,float ty)107 void Transform::set(float tx, float ty)
108 {
109     mMatrix[2][0] = tx;
110     mMatrix[2][1] = ty;
111     mMatrix[2][2] = 1.0f;
112 
113     if (isZero(tx) && isZero(ty)) {
114         mType &= ~TRANSLATE;
115     } else {
116         mType |= TRANSLATE;
117     }
118 }
119 
set(float a,float b,float c,float d)120 void Transform::set(float a, float b, float c, float d)
121 {
122     mat33& M(mMatrix);
123     M[0][0] = a;    M[1][0] = b;
124     M[0][1] = c;    M[1][1] = d;
125     M[0][2] = 0;    M[1][2] = 0;
126     mType = UNKNOWN_TYPE;
127 }
128 
set(uint32_t flags,float w,float h)129 status_t Transform::set(uint32_t flags, float w, float h)
130 {
131     if (flags & ROT_INVALID) {
132         // that's not allowed!
133         reset();
134         return BAD_VALUE;
135     }
136 
137     Transform H, V, R;
138     if (flags & ROT_90) {
139         // w & h are inverted when rotating by 90 degrees
140         swap(w, h);
141     }
142 
143     if (flags & FLIP_H) {
144         H.mType = (FLIP_H << 8) | SCALE;
145         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
146         mat33& M(H.mMatrix);
147         M[0][0] = -1;
148         M[2][0] = w;
149     }
150 
151     if (flags & FLIP_V) {
152         V.mType = (FLIP_V << 8) | SCALE;
153         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
154         mat33& M(V.mMatrix);
155         M[1][1] = -1;
156         M[2][1] = h;
157     }
158 
159     if (flags & ROT_90) {
160         const float original_w = h;
161         R.mType = (ROT_90 << 8) | ROTATE;
162         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
163         mat33& M(R.mMatrix);
164         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
165         M[0][1] = 1;    M[1][1] = 0;
166     }
167 
168     *this = (R*(H*V));
169     return NO_ERROR;
170 }
171 
transform(const vec2 & v) const172 vec2 Transform::transform(const vec2& v) const {
173     vec2 r;
174     const mat33& M(mMatrix);
175     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
176     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
177     return r;
178 }
179 
transform(const vec3 & v) const180 vec3 Transform::transform(const vec3& v) const {
181     vec3 r;
182     const mat33& M(mMatrix);
183     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
184     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
185     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
186     return r;
187 }
188 
transform(int x,int y) const189 vec2 Transform::transform(int x, int y) const
190 {
191     return transform(vec2(x,y));
192 }
193 
makeBounds(int w,int h) const194 Rect Transform::makeBounds(int w, int h) const
195 {
196     return transform( Rect(w, h) );
197 }
198 
transform(const Rect & bounds) const199 Rect Transform::transform(const Rect& bounds) const
200 {
201     Rect r;
202     vec2 lt( bounds.left,  bounds.top    );
203     vec2 rt( bounds.right, bounds.top    );
204     vec2 lb( bounds.left,  bounds.bottom );
205     vec2 rb( bounds.right, bounds.bottom );
206 
207     lt = transform(lt);
208     rt = transform(rt);
209     lb = transform(lb);
210     rb = transform(rb);
211 
212     r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
213     r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
214     r.right  = floorf(max(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
215     r.bottom = floorf(max(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
216 
217     return r;
218 }
219 
transform(const Region & reg) const220 Region Transform::transform(const Region& reg) const
221 {
222     Region out;
223     if (CC_UNLIKELY(type() > TRANSLATE)) {
224         if (CC_LIKELY(preserveRects())) {
225             Region::const_iterator it = reg.begin();
226             Region::const_iterator const end = reg.end();
227             while (it != end) {
228                 out.orSelf(transform(*it++));
229             }
230         } else {
231             out.set(transform(reg.bounds()));
232         }
233     } else {
234         int xpos = floorf(tx() + 0.5f);
235         int ypos = floorf(ty() + 0.5f);
236         out = reg.translate(xpos, ypos);
237     }
238     return out;
239 }
240 
type() const241 uint32_t Transform::type() const
242 {
243     if (mType & UNKNOWN_TYPE) {
244         // recompute what this transform is
245 
246         const mat33& M(mMatrix);
247         const float a = M[0][0];
248         const float b = M[1][0];
249         const float c = M[0][1];
250         const float d = M[1][1];
251         const float x = M[2][0];
252         const float y = M[2][1];
253 
254         bool scale = false;
255         uint32_t flags = ROT_0;
256         if (isZero(b) && isZero(c)) {
257             if (a<0)    flags |= FLIP_H;
258             if (d<0)    flags |= FLIP_V;
259             if (!absIsOne(a) || !absIsOne(d)) {
260                 scale = true;
261             }
262         } else if (isZero(a) && isZero(d)) {
263             flags |= ROT_90;
264             if (b>0)    flags |= FLIP_V;
265             if (c<0)    flags |= FLIP_H;
266             if (!absIsOne(b) || !absIsOne(c)) {
267                 scale = true;
268             }
269         } else {
270             // there is a skew component and/or a non 90 degrees rotation
271             flags = ROT_INVALID;
272         }
273 
274         mType = flags << 8;
275         if (flags & ROT_INVALID) {
276             mType |= UNKNOWN;
277         } else {
278             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
279                 mType |= ROTATE;
280             if (flags & FLIP_H)
281                 mType ^= SCALE;
282             if (flags & FLIP_V)
283                 mType ^= SCALE;
284             if (scale)
285                 mType |= SCALE;
286         }
287 
288         if (!isZero(x) || !isZero(y))
289             mType |= TRANSLATE;
290     }
291     return mType;
292 }
293 
inverse() const294 Transform Transform::inverse() const {
295     // our 3x3 matrix is always of the form of a 2x2 transformation
296     // followed by a translation: T*M, therefore:
297     // (T*M)^-1 = M^-1 * T^-1
298     Transform result;
299     if (mType <= TRANSLATE) {
300         // 1 0 0
301         // 0 1 0
302         // x y 1
303         result = *this;
304         result.mMatrix[2][0] = -result.mMatrix[2][0];
305         result.mMatrix[2][1] = -result.mMatrix[2][1];
306     } else {
307         // a c 0
308         // b d 0
309         // x y 1
310         const mat33& M(mMatrix);
311         const float a = M[0][0];
312         const float b = M[1][0];
313         const float c = M[0][1];
314         const float d = M[1][1];
315         const float x = M[2][0];
316         const float y = M[2][1];
317 
318         const float idet = 1.0 / (a*d - b*c);
319         result.mMatrix[0][0] =  d*idet;
320         result.mMatrix[0][1] = -c*idet;
321         result.mMatrix[1][0] = -b*idet;
322         result.mMatrix[1][1] =  a*idet;
323         result.mType = mType;
324 
325         vec2 T(-x, -y);
326         T = result.transform(T);
327         result.mMatrix[2][0] = T[0];
328         result.mMatrix[2][1] = T[1];
329     }
330     return result;
331 }
332 
getType() const333 uint32_t Transform::getType() const {
334     return type() & 0xFF;
335 }
336 
getOrientation() const337 uint32_t Transform::getOrientation() const
338 {
339     return (type() >> 8) & 0xFF;
340 }
341 
preserveRects() const342 bool Transform::preserveRects() const
343 {
344     return (getOrientation() & ROT_INVALID) ? false : true;
345 }
346 
dump(const char * name) const347 void Transform::dump(const char* name) const
348 {
349     type(); // updates the type
350 
351     String8 flags, type;
352     const mat33& m(mMatrix);
353     uint32_t orient = mType >> 8;
354 
355     if (orient&ROT_INVALID) {
356         flags.append("ROT_INVALID ");
357     } else {
358         if (orient&ROT_90) {
359             flags.append("ROT_90 ");
360         } else {
361             flags.append("ROT_0 ");
362         }
363         if (orient&FLIP_V)
364             flags.append("FLIP_V ");
365         if (orient&FLIP_H)
366             flags.append("FLIP_H ");
367     }
368 
369     if (!(mType&(SCALE|ROTATE|TRANSLATE)))
370         type.append("IDENTITY ");
371     if (mType&SCALE)
372         type.append("SCALE ");
373     if (mType&ROTATE)
374         type.append("ROTATE ");
375     if (mType&TRANSLATE)
376         type.append("TRANSLATE ");
377 
378     ALOGD("%s 0x%08x (%s, %s)", name, mType, flags.string(), type.string());
379     ALOGD("%.4f  %.4f  %.4f", m[0][0], m[1][0], m[2][0]);
380     ALOGD("%.4f  %.4f  %.4f", m[0][1], m[1][1], m[2][1]);
381     ALOGD("%.4f  %.4f  %.4f", m[0][2], m[1][2], m[2][2]);
382 }
383 
384 // ---------------------------------------------------------------------------
385 
386 }; // namespace android
387