1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 import java.util.Random;
29 import sun.misc.FloatConsts;
30 import sun.misc.DoubleConsts;
31 
32 /**
33  * The class {@code Math} contains methods for performing basic
34  * numeric operations such as the elementary exponential, logarithm,
35  * square root, and trigonometric functions.
36  *
37  * <p>Unlike some of the numeric methods of class
38  * {@code StrictMath}, all implementations of the equivalent
39  * functions of class {@code Math} are not defined to return the
40  * bit-for-bit same results.  This relaxation permits
41  * better-performing implementations where strict reproducibility is
42  * not required.
43  *
44  * <p>By default many of the {@code Math} methods simply call
45  * the equivalent method in {@code StrictMath} for their
46  * implementation.  Code generators are encouraged to use
47  * platform-specific native libraries or microprocessor instructions,
48  * where available, to provide higher-performance implementations of
49  * {@code Math} methods.  Such higher-performance
50  * implementations still must conform to the specification for
51  * {@code Math}.
52  *
53  * <p>The quality of implementation specifications concern two
54  * properties, accuracy of the returned result and monotonicity of the
55  * method.  Accuracy of the floating-point {@code Math} methods
56  * is measured in terms of <i>ulps</i>, units in the last place.  For
57  * a given floating-point format, an ulp of a specific real number
58  * value is the distance between the two floating-point values
59  * bracketing that numerical value.  When discussing the accuracy of a
60  * method as a whole rather than at a specific argument, the number of
61  * ulps cited is for the worst-case error at any argument.  If a
62  * method always has an error less than 0.5 ulps, the method always
63  * returns the floating-point number nearest the exact result; such a
64  * method is <i>correctly rounded</i>.  A correctly rounded method is
65  * generally the best a floating-point approximation can be; however,
66  * it is impractical for many floating-point methods to be correctly
67  * rounded.  Instead, for the {@code Math} class, a larger error
68  * bound of 1 or 2 ulps is allowed for certain methods.  Informally,
69  * with a 1 ulp error bound, when the exact result is a representable
70  * number, the exact result should be returned as the computed result;
71  * otherwise, either of the two floating-point values which bracket
72  * the exact result may be returned.  For exact results large in
73  * magnitude, one of the endpoints of the bracket may be infinite.
74  * Besides accuracy at individual arguments, maintaining proper
75  * relations between the method at different arguments is also
76  * important.  Therefore, most methods with more than 0.5 ulp errors
77  * are required to be <i>semi-monotonic</i>: whenever the mathematical
78  * function is non-decreasing, so is the floating-point approximation,
79  * likewise, whenever the mathematical function is non-increasing, so
80  * is the floating-point approximation.  Not all approximations that
81  * have 1 ulp accuracy will automatically meet the monotonicity
82  * requirements.
83  *
84  * @author  unascribed
85  * @author  Joseph D. Darcy
86  * @since   JDK1.0
87  */
88 
89 public final class Math {
90 
91     /**
92      * Don't let anyone instantiate this class.
93      */
Math()94     private Math() {}
95 
96     /**
97      * The {@code double} value that is closer than any other to
98      * <i>e</i>, the base of the natural logarithms.
99      */
100     public static final double E = 2.7182818284590452354;
101 
102     /**
103      * The {@code double} value that is closer than any other to
104      * <i>pi</i>, the ratio of the circumference of a circle to its
105      * diameter.
106      */
107     public static final double PI = 3.14159265358979323846;
108 
109     /**
110      * Returns the trigonometric sine of an angle.  Special cases:
111      * <ul><li>If the argument is NaN or an infinity, then the
112      * result is NaN.
113      * <li>If the argument is zero, then the result is a zero with the
114      * same sign as the argument.</ul>
115      *
116      * <p>The computed result must be within 1 ulp of the exact result.
117      * Results must be semi-monotonic.
118      *
119      * @param   a   an angle, in radians.
120      * @return  the sine of the argument.
121      */
sin(double a)122     public static native double sin(double a);
123 
124     /**
125      * Returns the trigonometric cosine of an angle. Special cases:
126      * <ul><li>If the argument is NaN or an infinity, then the
127      * result is NaN.</ul>
128      *
129      * <p>The computed result must be within 1 ulp of the exact result.
130      * Results must be semi-monotonic.
131      *
132      * @param   a   an angle, in radians.
133      * @return  the cosine of the argument.
134      */
cos(double a)135     public static native double cos(double a);
136 
137     /**
138      * Returns the trigonometric tangent of an angle.  Special cases:
139      * <ul><li>If the argument is NaN or an infinity, then the result
140      * is NaN.
141      * <li>If the argument is zero, then the result is a zero with the
142      * same sign as the argument.</ul>
143      *
144      * <p>The computed result must be within 1 ulp of the exact result.
145      * Results must be semi-monotonic.
146      *
147      * @param   a   an angle, in radians.
148      * @return  the tangent of the argument.
149      */
tan(double a)150     public static native double tan(double a);
151 
152     /**
153      * Returns the arc sine of a value; the returned angle is in the
154      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
155      * <ul><li>If the argument is NaN or its absolute value is greater
156      * than 1, then the result is NaN.
157      * <li>If the argument is zero, then the result is a zero with the
158      * same sign as the argument.</ul>
159      *
160      * <p>The computed result must be within 1 ulp of the exact result.
161      * Results must be semi-monotonic.
162      *
163      * @param   a   the value whose arc sine is to be returned.
164      * @return  the arc sine of the argument.
165      */
asin(double a)166     public static native double asin(double a);
167 
168     /**
169      * Returns the arc cosine of a value; the returned angle is in the
170      * range 0.0 through <i>pi</i>.  Special case:
171      * <ul><li>If the argument is NaN or its absolute value is greater
172      * than 1, then the result is NaN.</ul>
173      *
174      * <p>The computed result must be within 1 ulp of the exact result.
175      * Results must be semi-monotonic.
176      *
177      * @param   a   the value whose arc cosine is to be returned.
178      * @return  the arc cosine of the argument.
179      */
acos(double a)180     public static native double acos(double a);
181 
182     /**
183      * Returns the arc tangent of a value; the returned angle is in the
184      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
185      * <ul><li>If the argument is NaN, then the result is NaN.
186      * <li>If the argument is zero, then the result is a zero with the
187      * same sign as the argument.</ul>
188      *
189      * <p>The computed result must be within 1 ulp of the exact result.
190      * Results must be semi-monotonic.
191      *
192      * @param   a   the value whose arc tangent is to be returned.
193      * @return  the arc tangent of the argument.
194      */
atan(double a)195     public static native double atan(double a);
196 
197     /**
198      * Converts an angle measured in degrees to an approximately
199      * equivalent angle measured in radians.  The conversion from
200      * degrees to radians is generally inexact.
201      *
202      * @param   angdeg   an angle, in degrees
203      * @return  the measurement of the angle {@code angdeg}
204      *          in radians.
205      * @since   1.2
206      */
toRadians(double angdeg)207     public static double toRadians(double angdeg) {
208         return angdeg / 180.0 * PI;
209     }
210 
211     /**
212      * Converts an angle measured in radians to an approximately
213      * equivalent angle measured in degrees.  The conversion from
214      * radians to degrees is generally inexact; users should
215      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
216      * equal {@code 0.0}.
217      *
218      * @param   angrad   an angle, in radians
219      * @return  the measurement of the angle {@code angrad}
220      *          in degrees.
221      * @since   1.2
222      */
toDegrees(double angrad)223     public static double toDegrees(double angrad) {
224         return angrad * 180.0 / PI;
225     }
226 
227     /**
228      * Returns Euler's number <i>e</i> raised to the power of a
229      * {@code double} value.  Special cases:
230      * <ul><li>If the argument is NaN, the result is NaN.
231      * <li>If the argument is positive infinity, then the result is
232      * positive infinity.
233      * <li>If the argument is negative infinity, then the result is
234      * positive zero.</ul>
235      *
236      * <p>The computed result must be within 1 ulp of the exact result.
237      * Results must be semi-monotonic.
238      *
239      * @param   a   the exponent to raise <i>e</i> to.
240      * @return  the value <i>e</i><sup>{@code a}</sup>,
241      *          where <i>e</i> is the base of the natural logarithms.
242      */
exp(double a)243     public static native double exp(double a);
244 
245     /**
246      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
247      * value.  Special cases:
248      * <ul><li>If the argument is NaN or less than zero, then the result
249      * is NaN.
250      * <li>If the argument is positive infinity, then the result is
251      * positive infinity.
252      * <li>If the argument is positive zero or negative zero, then the
253      * result is negative infinity.</ul>
254      *
255      * <p>The computed result must be within 1 ulp of the exact result.
256      * Results must be semi-monotonic.
257      *
258      * @param   a   a value
259      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
260      *          {@code a}.
261      */
log(double a)262     public static native double log(double a);
263 
264     /**
265      * Returns the base 10 logarithm of a {@code double} value.
266      * Special cases:
267      *
268      * <ul><li>If the argument is NaN or less than zero, then the result
269      * is NaN.
270      * <li>If the argument is positive infinity, then the result is
271      * positive infinity.
272      * <li>If the argument is positive zero or negative zero, then the
273      * result is negative infinity.
274      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
275      * integer <i>n</i>, then the result is <i>n</i>.
276      * </ul>
277      *
278      * <p>The computed result must be within 1 ulp of the exact result.
279      * Results must be semi-monotonic.
280      *
281      * @param   a   a value
282      * @return  the base 10 logarithm of  {@code a}.
283      * @since 1.5
284      */
log10(double a)285     public static native double log10(double a);
286 
287     /**
288      * Returns the correctly rounded positive square root of a
289      * {@code double} value.
290      * Special cases:
291      * <ul><li>If the argument is NaN or less than zero, then the result
292      * is NaN.
293      * <li>If the argument is positive infinity, then the result is positive
294      * infinity.
295      * <li>If the argument is positive zero or negative zero, then the
296      * result is the same as the argument.</ul>
297      * Otherwise, the result is the {@code double} value closest to
298      * the true mathematical square root of the argument value.
299      *
300      * @param   a   a value.
301      * @return  the positive square root of {@code a}.
302      *          If the argument is NaN or less than zero, the result is NaN.
303      */
sqrt(double a)304     public static native double sqrt(double a);
305 
306 
307     /**
308      * Returns the cube root of a {@code double} value.  For
309      * positive finite {@code x}, {@code cbrt(-x) ==
310      * -cbrt(x)}; that is, the cube root of a negative value is
311      * the negative of the cube root of that value's magnitude.
312      *
313      * Special cases:
314      *
315      * <ul>
316      *
317      * <li>If the argument is NaN, then the result is NaN.
318      *
319      * <li>If the argument is infinite, then the result is an infinity
320      * with the same sign as the argument.
321      *
322      * <li>If the argument is zero, then the result is a zero with the
323      * same sign as the argument.
324      *
325      * </ul>
326      *
327      * <p>The computed result must be within 1 ulp of the exact result.
328      *
329      * @param   a   a value.
330      * @return  the cube root of {@code a}.
331      * @since 1.5
332      */
cbrt(double a)333     public static native double cbrt(double a);
334 
335     /**
336      * Computes the remainder operation on two arguments as prescribed
337      * by the IEEE 754 standard.
338      * The remainder value is mathematically equal to
339      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
340      * where <i>n</i> is the mathematical integer closest to the exact
341      * mathematical value of the quotient {@code f1/f2}, and if two
342      * mathematical integers are equally close to {@code f1/f2},
343      * then <i>n</i> is the integer that is even. If the remainder is
344      * zero, its sign is the same as the sign of the first argument.
345      * Special cases:
346      * <ul><li>If either argument is NaN, or the first argument is infinite,
347      * or the second argument is positive zero or negative zero, then the
348      * result is NaN.
349      * <li>If the first argument is finite and the second argument is
350      * infinite, then the result is the same as the first argument.</ul>
351      *
352      * @param   f1   the dividend.
353      * @param   f2   the divisor.
354      * @return  the remainder when {@code f1} is divided by
355      *          {@code f2}.
356      */
IEEEremainder(double f1, double f2)357     public static native double IEEEremainder(double f1, double f2);
358 
359     /**
360      * Returns the smallest (closest to negative infinity)
361      * {@code double} value that is greater than or equal to the
362      * argument and is equal to a mathematical integer. Special cases:
363      * <ul><li>If the argument value is already equal to a
364      * mathematical integer, then the result is the same as the
365      * argument.  <li>If the argument is NaN or an infinity or
366      * positive zero or negative zero, then the result is the same as
367      * the argument.  <li>If the argument value is less than zero but
368      * greater than -1.0, then the result is negative zero.</ul> Note
369      * that the value of {@code Math.ceil(x)} is exactly the
370      * value of {@code -Math.floor(-x)}.
371      *
372      *
373      * @param   a   a value.
374      * @return  the smallest (closest to negative infinity)
375      *          floating-point value that is greater than or equal to
376      *          the argument and is equal to a mathematical integer.
377      */
ceil(double a)378     public static native double ceil(double a);
379 
380     /**
381      * Returns the largest (closest to positive infinity)
382      * {@code double} value that is less than or equal to the
383      * argument and is equal to a mathematical integer. Special cases:
384      * <ul><li>If the argument value is already equal to a
385      * mathematical integer, then the result is the same as the
386      * argument.  <li>If the argument is NaN or an infinity or
387      * positive zero or negative zero, then the result is the same as
388      * the argument.</ul>
389      *
390      * @param   a   a value.
391      * @return  the largest (closest to positive infinity)
392      *          floating-point value that less than or equal to the argument
393      *          and is equal to a mathematical integer.
394      */
floor(double a)395     public static native double floor(double a);
396 
397     /**
398      * Returns the {@code double} value that is closest in value
399      * to the argument and is equal to a mathematical integer. If two
400      * {@code double} values that are mathematical integers are
401      * equally close, the result is the integer value that is
402      * even. Special cases:
403      * <ul><li>If the argument value is already equal to a mathematical
404      * integer, then the result is the same as the argument.
405      * <li>If the argument is NaN or an infinity or positive zero or negative
406      * zero, then the result is the same as the argument.</ul>
407      *
408      * @param   a   a {@code double} value.
409      * @return  the closest floating-point value to {@code a} that is
410      *          equal to a mathematical integer.
411      */
rint(double a)412     public static native double rint(double a);
413 
414     /**
415      * Returns the angle <i>theta</i> from the conversion of rectangular
416      * coordinates ({@code x},&nbsp;{@code y}) to polar
417      * coordinates (r,&nbsp;<i>theta</i>).
418      * This method computes the phase <i>theta</i> by computing an arc tangent
419      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
420      * cases:
421      * <ul><li>If either argument is NaN, then the result is NaN.
422      * <li>If the first argument is positive zero and the second argument
423      * is positive, or the first argument is positive and finite and the
424      * second argument is positive infinity, then the result is positive
425      * zero.
426      * <li>If the first argument is negative zero and the second argument
427      * is positive, or the first argument is negative and finite and the
428      * second argument is positive infinity, then the result is negative zero.
429      * <li>If the first argument is positive zero and the second argument
430      * is negative, or the first argument is positive and finite and the
431      * second argument is negative infinity, then the result is the
432      * {@code double} value closest to <i>pi</i>.
433      * <li>If the first argument is negative zero and the second argument
434      * is negative, or the first argument is negative and finite and the
435      * second argument is negative infinity, then the result is the
436      * {@code double} value closest to -<i>pi</i>.
437      * <li>If the first argument is positive and the second argument is
438      * positive zero or negative zero, or the first argument is positive
439      * infinity and the second argument is finite, then the result is the
440      * {@code double} value closest to <i>pi</i>/2.
441      * <li>If the first argument is negative and the second argument is
442      * positive zero or negative zero, or the first argument is negative
443      * infinity and the second argument is finite, then the result is the
444      * {@code double} value closest to -<i>pi</i>/2.
445      * <li>If both arguments are positive infinity, then the result is the
446      * {@code double} value closest to <i>pi</i>/4.
447      * <li>If the first argument is positive infinity and the second argument
448      * is negative infinity, then the result is the {@code double}
449      * value closest to 3*<i>pi</i>/4.
450      * <li>If the first argument is negative infinity and the second argument
451      * is positive infinity, then the result is the {@code double} value
452      * closest to -<i>pi</i>/4.
453      * <li>If both arguments are negative infinity, then the result is the
454      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
455      *
456      * <p>The computed result must be within 2 ulps of the exact result.
457      * Results must be semi-monotonic.
458      *
459      * @param   y   the ordinate coordinate
460      * @param   x   the abscissa coordinate
461      * @return  the <i>theta</i> component of the point
462      *          (<i>r</i>,&nbsp;<i>theta</i>)
463      *          in polar coordinates that corresponds to the point
464      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
465      */
atan2(double y, double x)466     public static native double atan2(double y, double x);
467 
468     /**
469      * Returns the value of the first argument raised to the power of the
470      * second argument. Special cases:
471      *
472      * <ul><li>If the second argument is positive or negative zero, then the
473      * result is 1.0.
474      * <li>If the second argument is 1.0, then the result is the same as the
475      * first argument.
476      * <li>If the second argument is NaN, then the result is NaN.
477      * <li>If the first argument is NaN and the second argument is nonzero,
478      * then the result is NaN.
479      *
480      * <li>If
481      * <ul>
482      * <li>the absolute value of the first argument is greater than 1
483      * and the second argument is positive infinity, or
484      * <li>the absolute value of the first argument is less than 1 and
485      * the second argument is negative infinity,
486      * </ul>
487      * then the result is positive infinity.
488      *
489      * <li>If
490      * <ul>
491      * <li>the absolute value of the first argument is greater than 1 and
492      * the second argument is negative infinity, or
493      * <li>the absolute value of the
494      * first argument is less than 1 and the second argument is positive
495      * infinity,
496      * </ul>
497      * then the result is positive zero.
498      *
499      * <li>If the absolute value of the first argument equals 1 and the
500      * second argument is infinite, then the result is NaN.
501      *
502      * <li>If
503      * <ul>
504      * <li>the first argument is positive zero and the second argument
505      * is greater than zero, or
506      * <li>the first argument is positive infinity and the second
507      * argument is less than zero,
508      * </ul>
509      * then the result is positive zero.
510      *
511      * <li>If
512      * <ul>
513      * <li>the first argument is positive zero and the second argument
514      * is less than zero, or
515      * <li>the first argument is positive infinity and the second
516      * argument is greater than zero,
517      * </ul>
518      * then the result is positive infinity.
519      *
520      * <li>If
521      * <ul>
522      * <li>the first argument is negative zero and the second argument
523      * is greater than zero but not a finite odd integer, or
524      * <li>the first argument is negative infinity and the second
525      * argument is less than zero but not a finite odd integer,
526      * </ul>
527      * then the result is positive zero.
528      *
529      * <li>If
530      * <ul>
531      * <li>the first argument is negative zero and the second argument
532      * is a positive finite odd integer, or
533      * <li>the first argument is negative infinity and the second
534      * argument is a negative finite odd integer,
535      * </ul>
536      * then the result is negative zero.
537      *
538      * <li>If
539      * <ul>
540      * <li>the first argument is negative zero and the second argument
541      * is less than zero but not a finite odd integer, or
542      * <li>the first argument is negative infinity and the second
543      * argument is greater than zero but not a finite odd integer,
544      * </ul>
545      * then the result is positive infinity.
546      *
547      * <li>If
548      * <ul>
549      * <li>the first argument is negative zero and the second argument
550      * is a negative finite odd integer, or
551      * <li>the first argument is negative infinity and the second
552      * argument is a positive finite odd integer,
553      * </ul>
554      * then the result is negative infinity.
555      *
556      * <li>If the first argument is finite and less than zero
557      * <ul>
558      * <li> if the second argument is a finite even integer, the
559      * result is equal to the result of raising the absolute value of
560      * the first argument to the power of the second argument
561      *
562      * <li>if the second argument is a finite odd integer, the result
563      * is equal to the negative of the result of raising the absolute
564      * value of the first argument to the power of the second
565      * argument
566      *
567      * <li>if the second argument is finite and not an integer, then
568      * the result is NaN.
569      * </ul>
570      *
571      * <li>If both arguments are integers, then the result is exactly equal
572      * to the mathematical result of raising the first argument to the power
573      * of the second argument if that result can in fact be represented
574      * exactly as a {@code double} value.</ul>
575      *
576      * <p>(In the foregoing descriptions, a floating-point value is
577      * considered to be an integer if and only if it is finite and a
578      * fixed point of the method {@link #ceil ceil} or,
579      * equivalently, a fixed point of the method {@link #floor
580      * floor}. A value is a fixed point of a one-argument
581      * method if and only if the result of applying the method to the
582      * value is equal to the value.)
583      *
584      * <p>The computed result must be within 1 ulp of the exact result.
585      * Results must be semi-monotonic.
586      *
587      * @param   a   the base.
588      * @param   b   the exponent.
589      * @return  the value {@code a}<sup>{@code b}</sup>.
590      */
pow(double a, double b)591     public static native double pow(double a, double b);
592 
593     /**
594      * Returns the closest {@code int} to the argument, with ties
595      * rounding to positive infinity.
596      *
597      * <p>
598      * Special cases:
599      * <ul><li>If the argument is NaN, the result is 0.
600      * <li>If the argument is negative infinity or any value less than or
601      * equal to the value of {@code Integer.MIN_VALUE}, the result is
602      * equal to the value of {@code Integer.MIN_VALUE}.
603      * <li>If the argument is positive infinity or any value greater than or
604      * equal to the value of {@code Integer.MAX_VALUE}, the result is
605      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
606      *
607      * @param   a   a floating-point value to be rounded to an integer.
608      * @return  the value of the argument rounded to the nearest
609      *          {@code int} value.
610      * @see     java.lang.Integer#MAX_VALUE
611      * @see     java.lang.Integer#MIN_VALUE
612      */
round(float a)613     public static int round(float a) {
614         int intBits = Float.floatToRawIntBits(a);
615         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
616                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
617         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
618                 + FloatConsts.EXP_BIAS) - biasedExp;
619         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
620             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
621             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
622                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
623             if (intBits < 0) {
624                 r = -r;
625             }
626             // In the comments below each Java expression evaluates to the value
627             // the corresponding mathematical expression:
628             // (r) evaluates to a / ulp(a)
629             // (r >> shift) evaluates to floor(a * 2)
630             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
631             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
632             return ((r >> shift) + 1) >> 1;
633         } else {
634             // a is either
635             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
636             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
637             // - an infinity or NaN
638             return (int) a;
639         }
640     }
641 
642     /**
643      * Returns the closest {@code long} to the argument, with ties
644      * rounding to positive infinity.
645      *
646      * <p>Special cases:
647      * <ul><li>If the argument is NaN, the result is 0.
648      * <li>If the argument is negative infinity or any value less than or
649      * equal to the value of {@code Long.MIN_VALUE}, the result is
650      * equal to the value of {@code Long.MIN_VALUE}.
651      * <li>If the argument is positive infinity or any value greater than or
652      * equal to the value of {@code Long.MAX_VALUE}, the result is
653      * equal to the value of {@code Long.MAX_VALUE}.</ul>
654      *
655      * @param   a   a floating-point value to be rounded to a
656      *          {@code long}.
657      * @return  the value of the argument rounded to the nearest
658      *          {@code long} value.
659      * @see     java.lang.Long#MAX_VALUE
660      * @see     java.lang.Long#MIN_VALUE
661      */
round(double a)662     public static long round(double a) {
663         long longBits = Double.doubleToRawLongBits(a);
664         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
665                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
666         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
667                 + DoubleConsts.EXP_BIAS) - biasedExp;
668         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
669             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
670             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
671                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
672             if (longBits < 0) {
673                 r = -r;
674             }
675             // In the comments below each Java expression evaluates to the value
676             // the corresponding mathematical expression:
677             // (r) evaluates to a / ulp(a)
678             // (r >> shift) evaluates to floor(a * 2)
679             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
680             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
681             return ((r >> shift) + 1) >> 1;
682         } else {
683             // a is either
684             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
685             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
686             // - an infinity or NaN
687             return (long) a;
688         }
689     }
690 
691     private static class NoImagePreloadHolder {
692         private static final Random INSTANCE = new Random();
693     }
694 
695     /**
696      * Returns a {@code double} value with a positive sign, greater
697      * than or equal to {@code 0.0} and less than {@code 1.0}.
698      * Returned values are chosen pseudorandomly with (approximately)
699      * uniform distribution from that range.
700      *
701      * <p>When this method is first called, it creates a single new
702      * pseudorandom-number generator, exactly as if by the expression
703      *
704      * <blockquote>{@code new java.util.Random()}</blockquote>
705      *
706      * This new pseudorandom-number generator is used thereafter for
707      * all calls to this method and is used nowhere else.
708      *
709      * <p>This method is properly synchronized to allow correct use by
710      * more than one thread. However, if many threads need to generate
711      * pseudorandom numbers at a great rate, it may reduce contention
712      * for each thread to have its own pseudorandom-number generator.
713      *
714      * @return  a pseudorandom {@code double} greater than or equal
715      * to {@code 0.0} and less than {@code 1.0}.
716      * @see Random#nextDouble()
717      */
random()718     public static double random() {
719         return NoImagePreloadHolder.INSTANCE.nextDouble();
720     }
721 
722     /**
723      * Set the seed for the pseudo random generator used by {@link #random()}
724      * and {@link #randomIntInternal()}.
725      *
726      * @hide for internal use only.
727      */
setRandomSeedInternal(long seed)728     public static void setRandomSeedInternal(long seed) {
729         NoImagePreloadHolder.INSTANCE.setSeed(seed);
730     }
731 
732     /**
733      * @hide for internal use only.
734      */
randomIntInternal()735     public static int randomIntInternal() {
736         return NoImagePreloadHolder.INSTANCE.nextInt();
737     }
738 
739     /**
740      * Returns the sum of its arguments,
741      * throwing an exception if the result overflows an {@code int}.
742      *
743      * @param x the first value
744      * @param y the second value
745      * @return the result
746      * @throws ArithmeticException if the result overflows an int
747      * @since 1.8
748      */
addExact(int x, int y)749     public static int addExact(int x, int y) {
750         int r = x + y;
751         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
752         if (((x ^ r) & (y ^ r)) < 0) {
753             throw new ArithmeticException("integer overflow");
754         }
755         return r;
756     }
757 
758     /**
759      * Returns the sum of its arguments,
760      * throwing an exception if the result overflows a {@code long}.
761      *
762      * @param x the first value
763      * @param y the second value
764      * @return the result
765      * @throws ArithmeticException if the result overflows a long
766      * @since 1.8
767      */
addExact(long x, long y)768     public static long addExact(long x, long y) {
769         long r = x + y;
770         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
771         if (((x ^ r) & (y ^ r)) < 0) {
772             throw new ArithmeticException("long overflow");
773         }
774         return r;
775     }
776 
777     /**
778      * Returns the difference of the arguments,
779      * throwing an exception if the result overflows an {@code int}.
780      *
781      * @param x the first value
782      * @param y the second value to subtract from the first
783      * @return the result
784      * @throws ArithmeticException if the result overflows an int
785      * @since 1.8
786      */
subtractExact(int x, int y)787     public static int subtractExact(int x, int y) {
788         int r = x - y;
789         // HD 2-12 Overflow iff the arguments have different signs and
790         // the sign of the result is different than the sign of x
791         if (((x ^ y) & (x ^ r)) < 0) {
792             throw new ArithmeticException("integer overflow");
793         }
794         return r;
795     }
796 
797     /**
798      * Returns the difference of the arguments,
799      * throwing an exception if the result overflows a {@code long}.
800      *
801      * @param x the first value
802      * @param y the second value to subtract from the first
803      * @return the result
804      * @throws ArithmeticException if the result overflows a long
805      * @since 1.8
806      */
subtractExact(long x, long y)807     public static long subtractExact(long x, long y) {
808         long r = x - y;
809         // HD 2-12 Overflow iff the arguments have different signs and
810         // the sign of the result is different than the sign of x
811         if (((x ^ y) & (x ^ r)) < 0) {
812             throw new ArithmeticException("long overflow");
813         }
814         return r;
815     }
816 
817     /**
818      * Returns the product of the arguments,
819      * throwing an exception if the result overflows an {@code int}.
820      *
821      * @param x the first value
822      * @param y the second value
823      * @return the result
824      * @throws ArithmeticException if the result overflows an int
825      * @since 1.8
826      */
multiplyExact(int x, int y)827     public static int multiplyExact(int x, int y) {
828         long r = (long)x * (long)y;
829         if ((int)r != r) {
830             throw new ArithmeticException("integer overflow");
831         }
832         return (int)r;
833     }
834 
835     /**
836      * Returns the product of the arguments,
837      * throwing an exception if the result overflows a {@code long}.
838      *
839      * @param x the first value
840      * @param y the second value
841      * @return the result
842      * @throws ArithmeticException if the result overflows a long
843      * @since 1.8
844      */
multiplyExact(long x, long y)845     public static long multiplyExact(long x, long y) {
846         long r = x * y;
847         long ax = Math.abs(x);
848         long ay = Math.abs(y);
849         if (((ax | ay) >>> 31 != 0)) {
850             // Some bits greater than 2^31 that might cause overflow
851             // Check the result using the divide operator
852             // and check for the special case of Long.MIN_VALUE * -1
853            if (((y != 0) && (r / y != x)) ||
854                (x == Long.MIN_VALUE && y == -1)) {
855                 throw new ArithmeticException("long overflow");
856             }
857         }
858         return r;
859     }
860 
861     /**
862      * Returns the argument incremented by one, throwing an exception if the
863      * result overflows an {@code int}.
864      *
865      * @param a the value to increment
866      * @return the result
867      * @throws ArithmeticException if the result overflows an int
868      * @since 1.8
869      */
incrementExact(int a)870     public static int incrementExact(int a) {
871         if (a == Integer.MAX_VALUE) {
872             throw new ArithmeticException("integer overflow");
873         }
874 
875         return a + 1;
876     }
877 
878     /**
879      * Returns the argument incremented by one, throwing an exception if the
880      * result overflows a {@code long}.
881      *
882      * @param a the value to increment
883      * @return the result
884      * @throws ArithmeticException if the result overflows a long
885      * @since 1.8
886      */
incrementExact(long a)887     public static long incrementExact(long a) {
888         if (a == Long.MAX_VALUE) {
889             throw new ArithmeticException("long overflow");
890         }
891 
892         return a + 1L;
893     }
894 
895     /**
896      * Returns the argument decremented by one, throwing an exception if the
897      * result overflows an {@code int}.
898      *
899      * @param a the value to decrement
900      * @return the result
901      * @throws ArithmeticException if the result overflows an int
902      * @since 1.8
903      */
decrementExact(int a)904     public static int decrementExact(int a) {
905         if (a == Integer.MIN_VALUE) {
906             throw new ArithmeticException("integer overflow");
907         }
908 
909         return a - 1;
910     }
911 
912     /**
913      * Returns the argument decremented by one, throwing an exception if the
914      * result overflows a {@code long}.
915      *
916      * @param a the value to decrement
917      * @return the result
918      * @throws ArithmeticException if the result overflows a long
919      * @since 1.8
920      */
decrementExact(long a)921     public static long decrementExact(long a) {
922         if (a == Long.MIN_VALUE) {
923             throw new ArithmeticException("long overflow");
924         }
925 
926         return a - 1L;
927     }
928 
929     /**
930      * Returns the negation of the argument, throwing an exception if the
931      * result overflows an {@code int}.
932      *
933      * @param a the value to negate
934      * @return the result
935      * @throws ArithmeticException if the result overflows an int
936      * @since 1.8
937      */
negateExact(int a)938     public static int negateExact(int a) {
939         if (a == Integer.MIN_VALUE) {
940             throw new ArithmeticException("integer overflow");
941         }
942 
943         return -a;
944     }
945 
946     /**
947      * Returns the negation of the argument, throwing an exception if the
948      * result overflows a {@code long}.
949      *
950      * @param a the value to negate
951      * @return the result
952      * @throws ArithmeticException if the result overflows a long
953      * @since 1.8
954      */
negateExact(long a)955     public static long negateExact(long a) {
956         if (a == Long.MIN_VALUE) {
957             throw new ArithmeticException("long overflow");
958         }
959 
960         return -a;
961     }
962 
963     /**
964      * Returns the value of the {@code long} argument;
965      * throwing an exception if the value overflows an {@code int}.
966      *
967      * @param value the long value
968      * @return the argument as an int
969      * @throws ArithmeticException if the {@code argument} overflows an int
970      * @since 1.8
971      */
toIntExact(long value)972     public static int toIntExact(long value) {
973         if ((int)value != value) {
974             throw new ArithmeticException("integer overflow");
975         }
976         return (int)value;
977     }
978 
979     /**
980      * Returns the largest (closest to positive infinity)
981      * {@code int} value that is less than or equal to the algebraic quotient.
982      * There is one special case, if the dividend is the
983      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
984      * then integer overflow occurs and
985      * the result is equal to the {@code Integer.MIN_VALUE}.
986      * <p>
987      * Normal integer division operates under the round to zero rounding mode
988      * (truncation).  This operation instead acts under the round toward
989      * negative infinity (floor) rounding mode.
990      * The floor rounding mode gives different results than truncation
991      * when the exact result is negative.
992      * <ul>
993      *   <li>If the signs of the arguments are the same, the results of
994      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
995      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
996      *   <li>If the signs of the arguments are different,  the quotient is negative and
997      *       {@code floorDiv} returns the integer less than or equal to the quotient
998      *       and the {@code /} operator returns the integer closest to zero.<br>
999      *       For example, {@code floorDiv(-4, 3) == -2},
1000      *       whereas {@code (-4 / 3) == -1}.
1001      *   </li>
1002      * </ul>
1003      * <p>
1004      *
1005      * @param x the dividend
1006      * @param y the divisor
1007      * @return the largest (closest to positive infinity)
1008      * {@code int} value that is less than or equal to the algebraic quotient.
1009      * @throws ArithmeticException if the divisor {@code y} is zero
1010      * @see #floorMod(int, int)
1011      * @see #floor(double)
1012      * @since 1.8
1013      */
floorDiv(int x, int y)1014     public static int floorDiv(int x, int y) {
1015         int r = x / y;
1016         // if the signs are different and modulo not zero, round down
1017         if ((x ^ y) < 0 && (r * y != x)) {
1018             r--;
1019         }
1020         return r;
1021     }
1022 
1023     /**
1024      * Returns the largest (closest to positive infinity)
1025      * {@code long} value that is less than or equal to the algebraic quotient.
1026      * There is one special case, if the dividend is the
1027      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1028      * then integer overflow occurs and
1029      * the result is equal to the {@code Long.MIN_VALUE}.
1030      * <p>
1031      * Normal integer division operates under the round to zero rounding mode
1032      * (truncation).  This operation instead acts under the round toward
1033      * negative infinity (floor) rounding mode.
1034      * The floor rounding mode gives different results than truncation
1035      * when the exact result is negative.
1036      * <p>
1037      * For examples, see {@link #floorDiv(int, int)}.
1038      *
1039      * @param x the dividend
1040      * @param y the divisor
1041      * @return the largest (closest to positive infinity)
1042      * {@code long} value that is less than or equal to the algebraic quotient.
1043      * @throws ArithmeticException if the divisor {@code y} is zero
1044      * @see #floorMod(long, long)
1045      * @see #floor(double)
1046      * @since 1.8
1047      */
floorDiv(long x, long y)1048     public static long floorDiv(long x, long y) {
1049         long r = x / y;
1050         // if the signs are different and modulo not zero, round down
1051         if ((x ^ y) < 0 && (r * y != x)) {
1052             r--;
1053         }
1054         return r;
1055     }
1056 
1057     /**
1058      * Returns the floor modulus of the {@code int} arguments.
1059      * <p>
1060      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1061      * has the same sign as the divisor {@code y}, and
1062      * is in the range of {@code -abs(y) < r < +abs(y)}.
1063      *
1064      * <p>
1065      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1066      * <ul>
1067      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1068      * </ul>
1069      * <p>
1070      * The difference in values between {@code floorMod} and
1071      * the {@code %} operator is due to the difference between
1072      * {@code floorDiv} that returns the integer less than or equal to the quotient
1073      * and the {@code /} operator that returns the integer closest to zero.
1074      * <p>
1075      * Examples:
1076      * <ul>
1077      *   <li>If the signs of the arguments are the same, the results
1078      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
1079      *       <ul>
1080      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
1081      *       </ul>
1082      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
1083      *      <ul>
1084      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
1085      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
1086      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
1087      *      </ul>
1088      *   </li>
1089      * </ul>
1090      * <p>
1091      * If the signs of arguments are unknown and a positive modulus
1092      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1093      *
1094      * @param x the dividend
1095      * @param y the divisor
1096      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1097      * @throws ArithmeticException if the divisor {@code y} is zero
1098      * @see #floorDiv(int, int)
1099      * @since 1.8
1100      */
floorMod(int x, int y)1101     public static int floorMod(int x, int y) {
1102         int r = x - floorDiv(x, y) * y;
1103         return r;
1104     }
1105 
1106     /**
1107      * Returns the floor modulus of the {@code long} arguments.
1108      * <p>
1109      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1110      * has the same sign as the divisor {@code y}, and
1111      * is in the range of {@code -abs(y) < r < +abs(y)}.
1112      *
1113      * <p>
1114      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1115      * <ul>
1116      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1117      * </ul>
1118      * <p>
1119      * For examples, see {@link #floorMod(int, int)}.
1120      *
1121      * @param x the dividend
1122      * @param y the divisor
1123      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1124      * @throws ArithmeticException if the divisor {@code y} is zero
1125      * @see #floorDiv(long, long)
1126      * @since 1.8
1127      */
floorMod(long x, long y)1128     public static long floorMod(long x, long y) {
1129         return x - floorDiv(x, y) * y;
1130     }
1131 
1132     /**
1133      * Returns the absolute value of an {@code int} value.
1134      * If the argument is not negative, the argument is returned.
1135      * If the argument is negative, the negation of the argument is returned.
1136      *
1137      * <p>Note that if the argument is equal to the value of
1138      * {@link Integer#MIN_VALUE}, the most negative representable
1139      * {@code int} value, the result is that same value, which is
1140      * negative.
1141      *
1142      * @param   a   the argument whose absolute value is to be determined
1143      * @return  the absolute value of the argument.
1144      */
abs(int a)1145     public static int abs(int a) {
1146         return (a < 0) ? -a : a;
1147     }
1148 
1149     /**
1150      * Returns the absolute value of a {@code long} value.
1151      * If the argument is not negative, the argument is returned.
1152      * If the argument is negative, the negation of the argument is returned.
1153      *
1154      * <p>Note that if the argument is equal to the value of
1155      * {@link Long#MIN_VALUE}, the most negative representable
1156      * {@code long} value, the result is that same value, which
1157      * is negative.
1158      *
1159      * @param   a   the argument whose absolute value is to be determined
1160      * @return  the absolute value of the argument.
1161      */
abs(long a)1162     public static long abs(long a) {
1163         return (a < 0) ? -a : a;
1164     }
1165 
1166     /**
1167      * Returns the absolute value of a {@code float} value.
1168      * If the argument is not negative, the argument is returned.
1169      * If the argument is negative, the negation of the argument is returned.
1170      * Special cases:
1171      * <ul><li>If the argument is positive zero or negative zero, the
1172      * result is positive zero.
1173      * <li>If the argument is infinite, the result is positive infinity.
1174      * <li>If the argument is NaN, the result is NaN.</ul>
1175      * In other words, the result is the same as the value of the expression:
1176      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
1177      *
1178      * @param   a   the argument whose absolute value is to be determined
1179      * @return  the absolute value of the argument.
1180      */
abs(float a)1181     public static float abs(float a) {
1182         return (a <= 0.0F) ? 0.0F - a : a;
1183     }
1184 
1185     /**
1186      * Returns the absolute value of a {@code double} value.
1187      * If the argument is not negative, the argument is returned.
1188      * If the argument is negative, the negation of the argument is returned.
1189      * Special cases:
1190      * <ul><li>If the argument is positive zero or negative zero, the result
1191      * is positive zero.
1192      * <li>If the argument is infinite, the result is positive infinity.
1193      * <li>If the argument is NaN, the result is NaN.</ul>
1194      * In other words, the result is the same as the value of the expression:
1195      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
1196      *
1197      * @param   a   the argument whose absolute value is to be determined
1198      * @return  the absolute value of the argument.
1199      */
abs(double a)1200     public static double abs(double a) {
1201         return (a <= 0.0D) ? 0.0D - a : a;
1202     }
1203 
1204     /**
1205      * Returns the greater of two {@code int} values. That is, the
1206      * result is the argument closer to the value of
1207      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1208      * the result is that same value.
1209      *
1210      * @param   a   an argument.
1211      * @param   b   another argument.
1212      * @return  the larger of {@code a} and {@code b}.
1213      */
max(int a, int b)1214     public static int max(int a, int b) {
1215         return (a >= b) ? a : b;
1216     }
1217 
1218     /**
1219      * Returns the greater of two {@code long} values. That is, the
1220      * result is the argument closer to the value of
1221      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1222      * the result is that same value.
1223      *
1224      * @param   a   an argument.
1225      * @param   b   another argument.
1226      * @return  the larger of {@code a} and {@code b}.
1227      */
max(long a, long b)1228     public static long max(long a, long b) {
1229         return (a >= b) ? a : b;
1230     }
1231 
1232     private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
1233     private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
1234 
1235     /**
1236      * Returns the greater of two {@code float} values.  That is,
1237      * the result is the argument closer to positive infinity. If the
1238      * arguments have the same value, the result is that same
1239      * value. If either value is NaN, then the result is NaN.  Unlike
1240      * the numerical comparison operators, this method considers
1241      * negative zero to be strictly smaller than positive zero. If one
1242      * argument is positive zero and the other negative zero, the
1243      * result is positive zero.
1244      *
1245      * @param   a   an argument.
1246      * @param   b   another argument.
1247      * @return  the larger of {@code a} and {@code b}.
1248      */
max(float a, float b)1249     public static float max(float a, float b) {
1250         if (a != a) return a;   // a is NaN
1251         if ((a == 0.0f) && (b == 0.0f)
1252             && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
1253             return b;
1254         }
1255         return (a >= b) ? a : b;
1256     }
1257 
1258     /**
1259      * Returns the greater of two {@code double} values.  That
1260      * is, the result is the argument closer to positive infinity. If
1261      * the arguments have the same value, the result is that same
1262      * value. If either value is NaN, then the result is NaN.  Unlike
1263      * the numerical comparison operators, this method considers
1264      * negative zero to be strictly smaller than positive zero. If one
1265      * argument is positive zero and the other negative zero, the
1266      * result is positive zero.
1267      *
1268      * @param   a   an argument.
1269      * @param   b   another argument.
1270      * @return  the larger of {@code a} and {@code b}.
1271      */
max(double a, double b)1272     public static double max(double a, double b) {
1273         if (a != a) return a;   // a is NaN
1274         if ((a == 0.0d) && (b == 0.0d)
1275             && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
1276             return b;
1277         }
1278         return (a >= b) ? a : b;
1279     }
1280 
1281     /**
1282      * Returns the smaller of two {@code int} values. That is,
1283      * the result the argument closer to the value of
1284      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1285      * value, the result is that same value.
1286      *
1287      * @param   a   an argument.
1288      * @param   b   another argument.
1289      * @return  the smaller of {@code a} and {@code b}.
1290      */
min(int a, int b)1291     public static int min(int a, int b) {
1292         return (a <= b) ? a : b;
1293     }
1294 
1295     /**
1296      * Returns the smaller of two {@code long} values. That is,
1297      * the result is the argument closer to the value of
1298      * {@link Long#MIN_VALUE}. If the arguments have the same
1299      * value, the result is that same value.
1300      *
1301      * @param   a   an argument.
1302      * @param   b   another argument.
1303      * @return  the smaller of {@code a} and {@code b}.
1304      */
min(long a, long b)1305     public static long min(long a, long b) {
1306         return (a <= b) ? a : b;
1307     }
1308 
1309     /**
1310      * Returns the smaller of two {@code float} values.  That is,
1311      * the result is the value closer to negative infinity. If the
1312      * arguments have the same value, the result is that same
1313      * value. If either value is NaN, then the result is NaN.  Unlike
1314      * the numerical comparison operators, this method considers
1315      * negative zero to be strictly smaller than positive zero.  If
1316      * one argument is positive zero and the other is negative zero,
1317      * the result is negative zero.
1318      *
1319      * @param   a   an argument.
1320      * @param   b   another argument.
1321      * @return  the smaller of {@code a} and {@code b}.
1322      */
min(float a, float b)1323     public static float min(float a, float b) {
1324         if (a != a) return a;   // a is NaN
1325         if ((a == 0.0f) && (b == 0.0f)
1326             && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
1327             return b;
1328         }
1329         return (a <= b) ? a : b;
1330     }
1331 
1332     /**
1333      * Returns the smaller of two {@code double} values.  That
1334      * is, the result is the value closer to negative infinity. If the
1335      * arguments have the same value, the result is that same
1336      * value. If either value is NaN, then the result is NaN.  Unlike
1337      * the numerical comparison operators, this method considers
1338      * negative zero to be strictly smaller than positive zero. If one
1339      * argument is positive zero and the other is negative zero, the
1340      * result is negative zero.
1341      *
1342      * @param   a   an argument.
1343      * @param   b   another argument.
1344      * @return  the smaller of {@code a} and {@code b}.
1345      */
min(double a, double b)1346     public static double min(double a, double b) {
1347         if (a != a) return a;   // a is NaN
1348         if ((a == 0.0d) && (b == 0.0d)
1349             && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
1350             return b;
1351         }
1352         return (a <= b) ? a : b;
1353     }
1354 
1355     /**
1356      * Returns the size of an ulp of the argument.  An ulp of a
1357      * {@code double} value is the positive distance between this
1358      * floating-point value and the {@code double} value next
1359      * larger in magnitude.  Note that for non-NaN <i>x</i>,
1360      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1361      *
1362      * <p>Special Cases:
1363      * <ul>
1364      * <li> If the argument is NaN, then the result is NaN.
1365      * <li> If the argument is positive or negative infinity, then the
1366      * result is positive infinity.
1367      * <li> If the argument is positive or negative zero, then the result is
1368      * {@code Double.MIN_VALUE}.
1369      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1370      * the result is equal to 2<sup>971</sup>.
1371      * </ul>
1372      *
1373      * @param d the floating-point value whose ulp is to be returned
1374      * @return the size of an ulp of the argument
1375      * @author Joseph D. Darcy
1376      * @since 1.5
1377      */
ulp(double d)1378     public static double ulp(double d) {
1379         return sun.misc.FpUtils.ulp(d);
1380     }
1381 
1382     /**
1383      * Returns the size of an ulp of the argument.  An ulp of a
1384      * {@code float} value is the positive distance between this
1385      * floating-point value and the {@code float} value next
1386      * larger in magnitude.  Note that for non-NaN <i>x</i>,
1387      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1388      *
1389      * <p>Special Cases:
1390      * <ul>
1391      * <li> If the argument is NaN, then the result is NaN.
1392      * <li> If the argument is positive or negative infinity, then the
1393      * result is positive infinity.
1394      * <li> If the argument is positive or negative zero, then the result is
1395      * {@code Float.MIN_VALUE}.
1396      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1397      * the result is equal to 2<sup>104</sup>.
1398      * </ul>
1399      *
1400      * @param f the floating-point value whose ulp is to be returned
1401      * @return the size of an ulp of the argument
1402      * @author Joseph D. Darcy
1403      * @since 1.5
1404      */
ulp(float f)1405     public static float ulp(float f) {
1406         return sun.misc.FpUtils.ulp(f);
1407     }
1408 
1409     /**
1410      * Returns the signum function of the argument; zero if the argument
1411      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1412      * argument is less than zero.
1413      *
1414      * <p>Special Cases:
1415      * <ul>
1416      * <li> If the argument is NaN, then the result is NaN.
1417      * <li> If the argument is positive zero or negative zero, then the
1418      *      result is the same as the argument.
1419      * </ul>
1420      *
1421      * @param d the floating-point value whose signum is to be returned
1422      * @return the signum function of the argument
1423      * @author Joseph D. Darcy
1424      * @since 1.5
1425      */
signum(double d)1426     public static double signum(double d) {
1427         return sun.misc.FpUtils.signum(d);
1428     }
1429 
1430     /**
1431      * Returns the signum function of the argument; zero if the argument
1432      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1433      * argument is less than zero.
1434      *
1435      * <p>Special Cases:
1436      * <ul>
1437      * <li> If the argument is NaN, then the result is NaN.
1438      * <li> If the argument is positive zero or negative zero, then the
1439      *      result is the same as the argument.
1440      * </ul>
1441      *
1442      * @param f the floating-point value whose signum is to be returned
1443      * @return the signum function of the argument
1444      * @author Joseph D. Darcy
1445      * @since 1.5
1446      */
signum(float f)1447     public static float signum(float f) {
1448         return sun.misc.FpUtils.signum(f);
1449     }
1450 
1451     /**
1452      * Returns the hyperbolic sine of a {@code double} value.
1453      * The hyperbolic sine of <i>x</i> is defined to be
1454      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1455      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1456      *
1457      * <p>Special cases:
1458      * <ul>
1459      *
1460      * <li>If the argument is NaN, then the result is NaN.
1461      *
1462      * <li>If the argument is infinite, then the result is an infinity
1463      * with the same sign as the argument.
1464      *
1465      * <li>If the argument is zero, then the result is a zero with the
1466      * same sign as the argument.
1467      *
1468      * </ul>
1469      *
1470      * <p>The computed result must be within 2.5 ulps of the exact result.
1471      *
1472      * @param   x The number whose hyperbolic sine is to be returned.
1473      * @return  The hyperbolic sine of {@code x}.
1474      * @since 1.5
1475      */
sinh(double x)1476     public static native double sinh(double x);
1477 
1478     /**
1479      * Returns the hyperbolic cosine of a {@code double} value.
1480      * The hyperbolic cosine of <i>x</i> is defined to be
1481      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1482      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1483      *
1484      * <p>Special cases:
1485      * <ul>
1486      *
1487      * <li>If the argument is NaN, then the result is NaN.
1488      *
1489      * <li>If the argument is infinite, then the result is positive
1490      * infinity.
1491      *
1492      * <li>If the argument is zero, then the result is {@code 1.0}.
1493      *
1494      * </ul>
1495      *
1496      * <p>The computed result must be within 2.5 ulps of the exact result.
1497      *
1498      * @param   x The number whose hyperbolic cosine is to be returned.
1499      * @return  The hyperbolic cosine of {@code x}.
1500      * @since 1.5
1501      */
cosh(double x)1502     public static native double cosh(double x);
1503 
1504     /**
1505      * Returns the hyperbolic tangent of a {@code double} value.
1506      * The hyperbolic tangent of <i>x</i> is defined to be
1507      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1508      * in other words, {@linkplain Math#sinh
1509      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1510      * that the absolute value of the exact tanh is always less than
1511      * 1.
1512      *
1513      * <p>Special cases:
1514      * <ul>
1515      *
1516      * <li>If the argument is NaN, then the result is NaN.
1517      *
1518      * <li>If the argument is zero, then the result is a zero with the
1519      * same sign as the argument.
1520      *
1521      * <li>If the argument is positive infinity, then the result is
1522      * {@code +1.0}.
1523      *
1524      * <li>If the argument is negative infinity, then the result is
1525      * {@code -1.0}.
1526      *
1527      * </ul>
1528      *
1529      * <p>The computed result must be within 2.5 ulps of the exact result.
1530      * The result of {@code tanh} for any finite input must have
1531      * an absolute value less than or equal to 1.  Note that once the
1532      * exact result of tanh is within 1/2 of an ulp of the limit value
1533      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1534      * be returned.
1535      *
1536      * @param   x The number whose hyperbolic tangent is to be returned.
1537      * @return  The hyperbolic tangent of {@code x}.
1538      * @since 1.5
1539      */
tanh(double x)1540     public static native double tanh(double x);
1541 
1542     /**
1543      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1544      * without intermediate overflow or underflow.
1545      *
1546      * <p>Special cases:
1547      * <ul>
1548      *
1549      * <li> If either argument is infinite, then the result
1550      * is positive infinity.
1551      *
1552      * <li> If either argument is NaN and neither argument is infinite,
1553      * then the result is NaN.
1554      *
1555      * </ul>
1556      *
1557      * <p>The computed result must be within 1 ulp of the exact
1558      * result.  If one parameter is held constant, the results must be
1559      * semi-monotonic in the other parameter.
1560      *
1561      * @param x a value
1562      * @param y a value
1563      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1564      * without intermediate overflow or underflow
1565      * @since 1.5
1566      */
hypot(double x, double y)1567     public static native double hypot(double x, double y);
1568 
1569     /**
1570      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1571      * <i>x</i> near 0, the exact sum of
1572      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1573      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1574      *
1575      * <p>Special cases:
1576      * <ul>
1577      * <li>If the argument is NaN, the result is NaN.
1578      *
1579      * <li>If the argument is positive infinity, then the result is
1580      * positive infinity.
1581      *
1582      * <li>If the argument is negative infinity, then the result is
1583      * -1.0.
1584      *
1585      * <li>If the argument is zero, then the result is a zero with the
1586      * same sign as the argument.
1587      *
1588      * </ul>
1589      *
1590      * <p>The computed result must be within 1 ulp of the exact result.
1591      * Results must be semi-monotonic.  The result of
1592      * {@code expm1} for any finite input must be greater than or
1593      * equal to {@code -1.0}.  Note that once the exact result of
1594      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1595      * ulp of the limit value -1, {@code -1.0} should be
1596      * returned.
1597      *
1598      * @param   x   the exponent to raise <i>e</i> to in the computation of
1599      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1600      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1601      * @since 1.5
1602      */
expm1(double x)1603     public static native double expm1(double x);
1604 
1605     /**
1606      * Returns the natural logarithm of the sum of the argument and 1.
1607      * Note that for small values {@code x}, the result of
1608      * {@code log1p(x)} is much closer to the true result of ln(1
1609      * + {@code x}) than the floating-point evaluation of
1610      * {@code log(1.0+x)}.
1611      *
1612      * <p>Special cases:
1613      *
1614      * <ul>
1615      *
1616      * <li>If the argument is NaN or less than -1, then the result is
1617      * NaN.
1618      *
1619      * <li>If the argument is positive infinity, then the result is
1620      * positive infinity.
1621      *
1622      * <li>If the argument is negative one, then the result is
1623      * negative infinity.
1624      *
1625      * <li>If the argument is zero, then the result is a zero with the
1626      * same sign as the argument.
1627      *
1628      * </ul>
1629      *
1630      * <p>The computed result must be within 1 ulp of the exact result.
1631      * Results must be semi-monotonic.
1632      *
1633      * @param   x   a value
1634      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1635      * log of {@code x}&nbsp;+&nbsp;1
1636      * @since 1.5
1637      */
log1p(double x)1638     public static native double log1p(double x);
1639 
1640     /**
1641      * Returns the first floating-point argument with the sign of the
1642      * second floating-point argument.  Note that unlike the {@link
1643      * StrictMath#copySign(double, double) StrictMath.copySign}
1644      * method, this method does not require NaN {@code sign}
1645      * arguments to be treated as positive values; implementations are
1646      * permitted to treat some NaN arguments as positive and other NaN
1647      * arguments as negative to allow greater performance.
1648      *
1649      * @param magnitude  the parameter providing the magnitude of the result
1650      * @param sign   the parameter providing the sign of the result
1651      * @return a value with the magnitude of {@code magnitude}
1652      * and the sign of {@code sign}.
1653      * @since 1.6
1654      */
copySign(double magnitude, double sign)1655     public static double copySign(double magnitude, double sign) {
1656         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
1657     }
1658 
1659     /**
1660      * Returns the first floating-point argument with the sign of the
1661      * second floating-point argument.  Note that unlike the {@link
1662      * StrictMath#copySign(float, float) StrictMath.copySign}
1663      * method, this method does not require NaN {@code sign}
1664      * arguments to be treated as positive values; implementations are
1665      * permitted to treat some NaN arguments as positive and other NaN
1666      * arguments as negative to allow greater performance.
1667      *
1668      * @param magnitude  the parameter providing the magnitude of the result
1669      * @param sign   the parameter providing the sign of the result
1670      * @return a value with the magnitude of {@code magnitude}
1671      * and the sign of {@code sign}.
1672      * @since 1.6
1673      */
copySign(float magnitude, float sign)1674     public static float copySign(float magnitude, float sign) {
1675         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
1676     }
1677 
1678     /**
1679      * Returns the unbiased exponent used in the representation of a
1680      * {@code float}.  Special cases:
1681      *
1682      * <ul>
1683      * <li>If the argument is NaN or infinite, then the result is
1684      * {@link Float#MAX_EXPONENT} + 1.
1685      * <li>If the argument is zero or subnormal, then the result is
1686      * {@link Float#MIN_EXPONENT} -1.
1687      * </ul>
1688      * @param f a {@code float} value
1689      * @return the unbiased exponent of the argument
1690      * @since 1.6
1691      */
getExponent(float f)1692     public static int getExponent(float f) {
1693         return sun.misc.FpUtils.getExponent(f);
1694     }
1695 
1696     /**
1697      * Returns the unbiased exponent used in the representation of a
1698      * {@code double}.  Special cases:
1699      *
1700      * <ul>
1701      * <li>If the argument is NaN or infinite, then the result is
1702      * {@link Double#MAX_EXPONENT} + 1.
1703      * <li>If the argument is zero or subnormal, then the result is
1704      * {@link Double#MIN_EXPONENT} -1.
1705      * </ul>
1706      * @param d a {@code double} value
1707      * @return the unbiased exponent of the argument
1708      * @since 1.6
1709      */
getExponent(double d)1710     public static int getExponent(double d) {
1711         return sun.misc.FpUtils.getExponent(d);
1712     }
1713 
1714     /**
1715      * Returns the floating-point number adjacent to the first
1716      * argument in the direction of the second argument.  If both
1717      * arguments compare as equal the second argument is returned.
1718      *
1719      * <p>
1720      * Special cases:
1721      * <ul>
1722      * <li> If either argument is a NaN, then NaN is returned.
1723      *
1724      * <li> If both arguments are signed zeros, {@code direction}
1725      * is returned unchanged (as implied by the requirement of
1726      * returning the second argument if the arguments compare as
1727      * equal).
1728      *
1729      * <li> If {@code start} is
1730      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1731      * has a value such that the result should have a smaller
1732      * magnitude, then a zero with the same sign as {@code start}
1733      * is returned.
1734      *
1735      * <li> If {@code start} is infinite and
1736      * {@code direction} has a value such that the result should
1737      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1738      * same sign as {@code start} is returned.
1739      *
1740      * <li> If {@code start} is equal to &plusmn;
1741      * {@link Double#MAX_VALUE} and {@code direction} has a
1742      * value such that the result should have a larger magnitude, an
1743      * infinity with same sign as {@code start} is returned.
1744      * </ul>
1745      *
1746      * @param start  starting floating-point value
1747      * @param direction value indicating which of
1748      * {@code start}'s neighbors or {@code start} should
1749      * be returned
1750      * @return The floating-point number adjacent to {@code start} in the
1751      * direction of {@code direction}.
1752      * @since 1.6
1753      */
nextAfter(double start, double direction)1754     public static double nextAfter(double start, double direction) {
1755         return sun.misc.FpUtils.nextAfter(start, direction);
1756     }
1757 
1758     /**
1759      * Returns the floating-point number adjacent to the first
1760      * argument in the direction of the second argument.  If both
1761      * arguments compare as equal a value equivalent to the second argument
1762      * is returned.
1763      *
1764      * <p>
1765      * Special cases:
1766      * <ul>
1767      * <li> If either argument is a NaN, then NaN is returned.
1768      *
1769      * <li> If both arguments are signed zeros, a value equivalent
1770      * to {@code direction} is returned.
1771      *
1772      * <li> If {@code start} is
1773      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1774      * has a value such that the result should have a smaller
1775      * magnitude, then a zero with the same sign as {@code start}
1776      * is returned.
1777      *
1778      * <li> If {@code start} is infinite and
1779      * {@code direction} has a value such that the result should
1780      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1781      * same sign as {@code start} is returned.
1782      *
1783      * <li> If {@code start} is equal to &plusmn;
1784      * {@link Float#MAX_VALUE} and {@code direction} has a
1785      * value such that the result should have a larger magnitude, an
1786      * infinity with same sign as {@code start} is returned.
1787      * </ul>
1788      *
1789      * @param start  starting floating-point value
1790      * @param direction value indicating which of
1791      * {@code start}'s neighbors or {@code start} should
1792      * be returned
1793      * @return The floating-point number adjacent to {@code start} in the
1794      * direction of {@code direction}.
1795      * @since 1.6
1796      */
nextAfter(float start, double direction)1797     public static float nextAfter(float start, double direction) {
1798         return sun.misc.FpUtils.nextAfter(start, direction);
1799     }
1800 
1801     /**
1802      * Returns the floating-point value adjacent to {@code d} in
1803      * the direction of positive infinity.  This method is
1804      * semantically equivalent to {@code nextAfter(d,
1805      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1806      * implementation may run faster than its equivalent
1807      * {@code nextAfter} call.
1808      *
1809      * <p>Special Cases:
1810      * <ul>
1811      * <li> If the argument is NaN, the result is NaN.
1812      *
1813      * <li> If the argument is positive infinity, the result is
1814      * positive infinity.
1815      *
1816      * <li> If the argument is zero, the result is
1817      * {@link Double#MIN_VALUE}
1818      *
1819      * </ul>
1820      *
1821      * @param d starting floating-point value
1822      * @return The adjacent floating-point value closer to positive
1823      * infinity.
1824      * @since 1.6
1825      */
nextUp(double d)1826     public static double nextUp(double d) {
1827         return sun.misc.FpUtils.nextUp(d);
1828     }
1829 
1830     /**
1831      * Returns the floating-point value adjacent to {@code f} in
1832      * the direction of positive infinity.  This method is
1833      * semantically equivalent to {@code nextAfter(f,
1834      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1835      * implementation may run faster than its equivalent
1836      * {@code nextAfter} call.
1837      *
1838      * <p>Special Cases:
1839      * <ul>
1840      * <li> If the argument is NaN, the result is NaN.
1841      *
1842      * <li> If the argument is positive infinity, the result is
1843      * positive infinity.
1844      *
1845      * <li> If the argument is zero, the result is
1846      * {@link Float#MIN_VALUE}
1847      *
1848      * </ul>
1849      *
1850      * @param f starting floating-point value
1851      * @return The adjacent floating-point value closer to positive
1852      * infinity.
1853      * @since 1.6
1854      */
nextUp(float f)1855     public static float nextUp(float f) {
1856         return sun.misc.FpUtils.nextUp(f);
1857     }
1858     /**
1859      * Returns the floating-point value adjacent to {@code d} in
1860      * the direction of negative infinity.  This method is
1861      * semantically equivalent to {@code nextAfter(d,
1862      * Double.NEGATIVE_INFINITY)}; however, a
1863      * {@code nextDown} implementation may run faster than its
1864      * equivalent {@code nextAfter} call.
1865      *
1866      * <p>Special Cases:
1867      * <ul>
1868      * <li> If the argument is NaN, the result is NaN.
1869      *
1870      * <li> If the argument is negative infinity, the result is
1871      * negative infinity.
1872      *
1873      * <li> If the argument is zero, the result is
1874      * {@code -Double.MIN_VALUE}
1875      *
1876      * </ul>
1877      *
1878      * @param d  starting floating-point value
1879      * @return The adjacent floating-point value closer to negative
1880      * infinity.
1881      * @since 1.8
1882      */
nextDown(double d)1883     public static double nextDown(double d) {
1884         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
1885             return d;
1886         else {
1887             if (d == 0.0)
1888                 return -Double.MIN_VALUE;
1889             else
1890                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
1891                                                ((d > 0.0d)?-1L:+1L));
1892         }
1893     }
1894 
1895     /**
1896      * Returns the floating-point value adjacent to {@code f} in
1897      * the direction of negative infinity.  This method is
1898      * semantically equivalent to {@code nextAfter(f,
1899      * Float.NEGATIVE_INFINITY)}; however, a
1900      * {@code nextDown} implementation may run faster than its
1901      * equivalent {@code nextAfter} call.
1902      *
1903      * <p>Special Cases:
1904      * <ul>
1905      * <li> If the argument is NaN, the result is NaN.
1906      *
1907      * <li> If the argument is negative infinity, the result is
1908      * negative infinity.
1909      *
1910      * <li> If the argument is zero, the result is
1911      * {@code -Float.MIN_VALUE}
1912      *
1913      * </ul>
1914      *
1915      * @param f  starting floating-point value
1916      * @return The adjacent floating-point value closer to negative
1917      * infinity.
1918      * @since 1.8
1919      */
nextDown(float f)1920     public static float nextDown(float f) {
1921         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
1922             return f;
1923         else {
1924             if (f == 0.0f)
1925                 return -Float.MIN_VALUE;
1926             else
1927                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
1928                                             ((f > 0.0f)?-1:+1));
1929         }
1930     }
1931 
1932     /**
1933      * Return {@code d} &times;
1934      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1935      * by a single correctly rounded floating-point multiply to a
1936      * member of the double value set.  See the Java
1937      * Language Specification for a discussion of floating-point
1938      * value sets.  If the exponent of the result is between {@link
1939      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1940      * answer is calculated exactly.  If the exponent of the result
1941      * would be larger than {@code Double.MAX_EXPONENT}, an
1942      * infinity is returned.  Note that if the result is subnormal,
1943      * precision may be lost; that is, when {@code scalb(x, n)}
1944      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1945      * <i>x</i>.  When the result is non-NaN, the result has the same
1946      * sign as {@code d}.
1947      *
1948      * <p>Special cases:
1949      * <ul>
1950      * <li> If the first argument is NaN, NaN is returned.
1951      * <li> If the first argument is infinite, then an infinity of the
1952      * same sign is returned.
1953      * <li> If the first argument is zero, then a zero of the same
1954      * sign is returned.
1955      * </ul>
1956      *
1957      * @param d number to be scaled by a power of two.
1958      * @param scaleFactor power of 2 used to scale {@code d}
1959      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1960      * @since 1.6
1961      */
scalb(double d, int scaleFactor)1962     public static double scalb(double d, int scaleFactor) {
1963         return sun.misc.FpUtils.scalb(d, scaleFactor);
1964     }
1965 
1966     /**
1967      * Return {@code f} &times;
1968      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1969      * by a single correctly rounded floating-point multiply to a
1970      * member of the float value set.  See the Java
1971      * Language Specification for a discussion of floating-point
1972      * value sets.  If the exponent of the result is between {@link
1973      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1974      * answer is calculated exactly.  If the exponent of the result
1975      * would be larger than {@code Float.MAX_EXPONENT}, an
1976      * infinity is returned.  Note that if the result is subnormal,
1977      * precision may be lost; that is, when {@code scalb(x, n)}
1978      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1979      * <i>x</i>.  When the result is non-NaN, the result has the same
1980      * sign as {@code f}.
1981      *
1982      * <p>Special cases:
1983      * <ul>
1984      * <li> If the first argument is NaN, NaN is returned.
1985      * <li> If the first argument is infinite, then an infinity of the
1986      * same sign is returned.
1987      * <li> If the first argument is zero, then a zero of the same
1988      * sign is returned.
1989      * </ul>
1990      *
1991      * @param f number to be scaled by a power of two.
1992      * @param scaleFactor power of 2 used to scale {@code f}
1993      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1994      * @since 1.6
1995      */
scalb(float f, int scaleFactor)1996     public static float scalb(float f, int scaleFactor) {
1997         return sun.misc.FpUtils.scalb(f, scaleFactor);
1998     }
1999 }
2000