1 /*
2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 import java.util.*;
25 import java.util.function.*;
26 import java.util.stream.*;
27 
28 import static java.lang.Double.*;
29 
30 /*
31  * @test
32  * @bug 8006572 8030212
33  * @summary Test for use of non-naive summation in stream-related sum and average operations.
34  */
35 public class TestDoubleSumAverage {
main(String... args)36     public static void main(String... args) {
37         int failures = 0;
38 
39         failures += testZeroAverageOfNonEmptyStream();
40         failures += testForCompenstation();
41         failures += testNonfiniteSum();
42 
43         if (failures > 0) {
44             throw new RuntimeException("Found " + failures + " numerical failure(s).");
45         }
46     }
47 
48     /**
49      * Test to verify that a non-empty stream with a zero average is non-empty.
50      */
testZeroAverageOfNonEmptyStream()51     private static int testZeroAverageOfNonEmptyStream() {
52         Supplier<DoubleStream> ds = () -> DoubleStream.iterate(0.0, e -> 0.0).limit(10);
53 
54         return  compareUlpDifference(0.0, ds.get().average().getAsDouble(), 0);
55     }
56 
57     /**
58      * Compute the sum and average of a sequence of double values in
59      * various ways and report an error if naive summation is used.
60      */
testForCompenstation()61     private static int testForCompenstation() {
62         int failures = 0;
63 
64         /*
65          * The exact sum of the test stream is 1 + 1e6*ulp(1.0) but a
66          * naive summation algorithm will return 1.0 since (1.0 +
67          * ulp(1.0)/2) will round to 1.0 again.
68          */
69         double base = 1.0;
70         double increment = Math.ulp(base)/2.0;
71         int count = 1_000_001;
72 
73         double expectedSum = base + (increment * (count - 1));
74         double expectedAvg = expectedSum / count;
75 
76         // Factory for double a stream of [base, increment, ..., increment] limited to a size of count
77         Supplier<DoubleStream> ds = () -> DoubleStream.iterate(base, e -> increment).limit(count);
78 
79         DoubleSummaryStatistics stats = ds.get().collect(DoubleSummaryStatistics::new,
80                                                          DoubleSummaryStatistics::accept,
81                                                          DoubleSummaryStatistics::combine);
82 
83         failures += compareUlpDifference(expectedSum, stats.getSum(), 3);
84         failures += compareUlpDifference(expectedAvg, stats.getAverage(), 3);
85 
86         failures += compareUlpDifference(expectedSum,
87                                          ds.get().sum(), 3);
88         failures += compareUlpDifference(expectedAvg,
89                                          ds.get().average().getAsDouble(), 3);
90 
91         failures += compareUlpDifference(expectedSum,
92                                          ds.get().boxed().collect(Collectors.summingDouble(d -> d)), 3);
93         failures += compareUlpDifference(expectedAvg,
94                                          ds.get().boxed().collect(Collectors.averagingDouble(d -> d)),3);
95         return failures;
96     }
97 
testNonfiniteSum()98     private static int testNonfiniteSum() {
99         int failures = 0;
100 
101         Map<Supplier<DoubleStream>, Double> testCases = new LinkedHashMap<>();
102         testCases.put(() -> DoubleStream.of(MAX_VALUE, MAX_VALUE),   POSITIVE_INFINITY);
103         testCases.put(() -> DoubleStream.of(-MAX_VALUE, -MAX_VALUE), NEGATIVE_INFINITY);
104 
105         testCases.put(() -> DoubleStream.of(1.0d, POSITIVE_INFINITY, 1.0d), POSITIVE_INFINITY);
106         testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY),             POSITIVE_INFINITY);
107         testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, POSITIVE_INFINITY), POSITIVE_INFINITY);
108         testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, POSITIVE_INFINITY, 0.0), POSITIVE_INFINITY);
109 
110         testCases.put(() -> DoubleStream.of(1.0d, NEGATIVE_INFINITY, 1.0d), NEGATIVE_INFINITY);
111         testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY),             NEGATIVE_INFINITY);
112         testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NEGATIVE_INFINITY), NEGATIVE_INFINITY);
113         testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NEGATIVE_INFINITY, 0.0), NEGATIVE_INFINITY);
114 
115         testCases.put(() -> DoubleStream.of(1.0d, NaN, 1.0d),               NaN);
116         testCases.put(() -> DoubleStream.of(NaN),                           NaN);
117         testCases.put(() -> DoubleStream.of(1.0d, NEGATIVE_INFINITY, POSITIVE_INFINITY, 1.0d), NaN);
118         testCases.put(() -> DoubleStream.of(1.0d, POSITIVE_INFINITY, NEGATIVE_INFINITY, 1.0d), NaN);
119         testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, NaN), NaN);
120         testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NaN), NaN);
121         testCases.put(() -> DoubleStream.of(NaN, POSITIVE_INFINITY), NaN);
122         testCases.put(() -> DoubleStream.of(NaN, NEGATIVE_INFINITY), NaN);
123 
124         for(Map.Entry<Supplier<DoubleStream>, Double> testCase : testCases.entrySet()) {
125             Supplier<DoubleStream> ds = testCase.getKey();
126             double expected = testCase.getValue();
127 
128             DoubleSummaryStatistics stats = ds.get().collect(DoubleSummaryStatistics::new,
129                                                              DoubleSummaryStatistics::accept,
130                                                              DoubleSummaryStatistics::combine);
131 
132             failures += compareUlpDifference(expected, stats.getSum(), 0);
133             failures += compareUlpDifference(expected, stats.getAverage(), 0);
134 
135             failures += compareUlpDifference(expected, ds.get().sum(), 0);
136             failures += compareUlpDifference(expected, ds.get().average().getAsDouble(), 0);
137 
138             failures += compareUlpDifference(expected, ds.get().boxed().collect(Collectors.summingDouble(d -> d)), 0);
139             failures += compareUlpDifference(expected, ds.get().boxed().collect(Collectors.averagingDouble(d -> d)), 0);
140         }
141 
142         return failures;
143     }
144 
145     /**
146      * Compute the ulp difference of two double values and compare against an error threshold.
147      */
compareUlpDifference(double expected, double computed, double threshold)148     private static int compareUlpDifference(double expected, double computed, double threshold) {
149         if (!Double.isFinite(expected)) {
150             // Handle NaN and infinity cases
151             if (Double.compare(expected, computed) == 0)
152                 return 0;
153             else {
154                 System.err.printf("Unexpected sum, %g rather than %g.%n",
155                                   computed, expected);
156                 return 1;
157             }
158         }
159 
160         double ulpDifference = Math.abs(expected - computed) / Math.ulp(expected);
161 
162         if (ulpDifference > threshold) {
163             System.err.printf("Numerical summation error too large, %g ulps rather than %g.%n",
164                               ulpDifference, threshold);
165             return 1;
166         } else
167             return 0;
168     }
169 }
170