1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <inttypes.h>
18 
19 #include <functional>
20 #include <iomanip>
21 #include <mutex>
22 #include <string>
23 #include <sstream>
24 #include <unordered_map>
25 
26 #include <backtrace.h>
27 #include <android-base/macros.h>
28 
29 #include "Allocator.h"
30 #include "HeapWalker.h"
31 #include "Leak.h"
32 #include "LeakFolding.h"
33 #include "LeakPipe.h"
34 #include "ProcessMappings.h"
35 #include "PtracerThread.h"
36 #include "ScopedDisableMalloc.h"
37 #include "Semaphore.h"
38 #include "ThreadCapture.h"
39 
40 #include "memunreachable/memunreachable.h"
41 #include "bionic.h"
42 #include "log.h"
43 
44 const size_t Leak::contents_length;
45 
46 using namespace std::chrono_literals;
47 
48 class MemUnreachable {
49  public:
MemUnreachable(pid_t pid,Allocator<void> allocator)50   MemUnreachable(pid_t pid, Allocator<void> allocator) : pid_(pid), allocator_(allocator),
51       heap_walker_(allocator_) {}
52   bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
53       const allocator::vector<Mapping>& mappings);
54   bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
55       size_t* num_leaks, size_t* leak_bytes);
Allocations()56   size_t Allocations() { return heap_walker_.Allocations(); }
AllocationBytes()57   size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
58  private:
59   bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
60       allocator::vector<Mapping>& heap_mappings,
61       allocator::vector<Mapping>& anon_mappings,
62       allocator::vector<Mapping>& globals_mappings,
63       allocator::vector<Mapping>& stack_mappings);
64   DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
65   pid_t pid_;
66   Allocator<void> allocator_;
67   HeapWalker heap_walker_;
68 };
69 
HeapIterate(const Mapping & heap_mapping,const std::function<void (uintptr_t,size_t)> & func)70 static void HeapIterate(const Mapping& heap_mapping,
71     const std::function<void(uintptr_t, size_t)>& func) {
72   malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
73       [](uintptr_t base, size_t size, void* arg) {
74     auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
75     (*f)(base, size);
76   }, const_cast<void*>(reinterpret_cast<const void*>(&func)));
77 }
78 
CollectAllocations(const allocator::vector<ThreadInfo> & threads,const allocator::vector<Mapping> & mappings)79 bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
80     const allocator::vector<Mapping>& mappings) {
81   ALOGI("searching process %d for allocations", pid_);
82   allocator::vector<Mapping> heap_mappings{mappings};
83   allocator::vector<Mapping> anon_mappings{mappings};
84   allocator::vector<Mapping> globals_mappings{mappings};
85   allocator::vector<Mapping> stack_mappings{mappings};
86   if (!ClassifyMappings(mappings, heap_mappings, anon_mappings,
87       globals_mappings, stack_mappings)) {
88     return false;
89   }
90 
91   for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
92     ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
93     HeapIterate(*it, [&](uintptr_t base, size_t size) {
94       heap_walker_.Allocation(base, base + size);
95     });
96   }
97 
98   for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
99     ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
100     heap_walker_.Allocation(it->begin, it->end);
101   }
102 
103   for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
104     ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
105     heap_walker_.Root(it->begin, it->end);
106   }
107 
108   for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
109     for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
110       if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
111         ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
112         heap_walker_.Root(thread_it->stack.first, it->end);
113       }
114     }
115     heap_walker_.Root(thread_it->regs);
116   }
117 
118   ALOGI("searching done");
119 
120   return true;
121 }
122 
GetUnreachableMemory(allocator::vector<Leak> & leaks,size_t limit,size_t * num_leaks,size_t * leak_bytes)123 bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks,
124     size_t limit, size_t* num_leaks, size_t* leak_bytes) {
125   ALOGI("sweeping process %d for unreachable memory", pid_);
126   leaks.clear();
127 
128   if (!heap_walker_.DetectLeaks()) {
129     return false;
130   }
131 
132 
133   allocator::vector<Range> leaked1{allocator_};
134   heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
135 
136   ALOGI("sweeping done");
137 
138   ALOGI("folding related leaks");
139 
140   LeakFolding folding(allocator_, heap_walker_);
141   if (!folding.FoldLeaks()) {
142     return false;
143   }
144 
145   allocator::vector<LeakFolding::Leak> leaked{allocator_};
146 
147   if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
148     return false;
149   }
150 
151   allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
152 
153   // Prevent reallocations of backing memory so we can store pointers into it
154   // in backtrace_map.
155   leaks.reserve(leaked.size());
156 
157   for (auto& it: leaked) {
158     leaks.emplace_back();
159     Leak* leak = &leaks.back();
160 
161     ssize_t num_backtrace_frames = malloc_backtrace(reinterpret_cast<void*>(it.range.begin),
162         leak->backtrace.frames, leak->backtrace.max_frames);
163     if (num_backtrace_frames > 0) {
164       leak->backtrace.num_frames = num_backtrace_frames;
165 
166       auto inserted = backtrace_map.emplace(leak->backtrace, leak);
167       if (!inserted.second) {
168         // Leak with same backtrace already exists, drop this one and
169         // increment similar counts on the existing one.
170         leaks.pop_back();
171         Leak* similar_leak = inserted.first->second;
172         similar_leak->similar_count++;
173         similar_leak->similar_size += it.range.size();
174         similar_leak->similar_referenced_count += it.referenced_count;
175         similar_leak->similar_referenced_size += it.referenced_size;
176         similar_leak->total_size += it.range.size();
177         similar_leak->total_size += it.referenced_size;
178         continue;
179       }
180     }
181 
182     leak->begin = it.range.begin;
183     leak->size = it.range.size();
184     leak->referenced_count = it.referenced_count;
185     leak->referenced_size = it.referenced_size;
186     leak->total_size = leak->size + leak->referenced_size;
187     memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
188         std::min(leak->size, Leak::contents_length));
189   }
190 
191   ALOGI("folding done");
192 
193   std::sort(leaks.begin(), leaks.end(), [](const Leak& a, const Leak& b) {
194     return a.total_size > b.total_size;
195   });
196 
197   if (leaks.size() > limit) {
198     leaks.resize(limit);
199   }
200 
201   return true;
202 }
203 
has_prefix(const allocator::string & s,const char * prefix)204 static bool has_prefix(const allocator::string& s, const char* prefix) {
205   int ret = s.compare(0, strlen(prefix), prefix);
206   return ret == 0;
207 }
208 
ClassifyMappings(const allocator::vector<Mapping> & mappings,allocator::vector<Mapping> & heap_mappings,allocator::vector<Mapping> & anon_mappings,allocator::vector<Mapping> & globals_mappings,allocator::vector<Mapping> & stack_mappings)209 bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
210     allocator::vector<Mapping>& heap_mappings,
211     allocator::vector<Mapping>& anon_mappings,
212     allocator::vector<Mapping>& globals_mappings,
213     allocator::vector<Mapping>& stack_mappings)
214 {
215   heap_mappings.clear();
216   anon_mappings.clear();
217   globals_mappings.clear();
218   stack_mappings.clear();
219 
220   allocator::string current_lib{allocator_};
221 
222   for (auto it = mappings.begin(); it != mappings.end(); it++) {
223     if (it->execute) {
224       current_lib = it->name;
225       continue;
226     }
227 
228     if (!it->read) {
229       continue;
230     }
231 
232     const allocator::string mapping_name{it->name, allocator_};
233     if (mapping_name == "[anon:.bss]") {
234       // named .bss section
235       globals_mappings.emplace_back(*it);
236     } else if (mapping_name == current_lib) {
237       // .rodata or .data section
238       globals_mappings.emplace_back(*it);
239     } else if (mapping_name == "[anon:libc_malloc]") {
240       // named malloc mapping
241       heap_mappings.emplace_back(*it);
242     } else if (has_prefix(mapping_name, "/dev/ashmem/dalvik")) {
243       // named dalvik heap mapping
244       globals_mappings.emplace_back(*it);
245     } else if (has_prefix(mapping_name, "[stack")) {
246       // named stack mapping
247       stack_mappings.emplace_back(*it);
248     } else if (mapping_name.size() == 0) {
249       globals_mappings.emplace_back(*it);
250     } else if (has_prefix(mapping_name, "[anon:") && mapping_name != "[anon:leak_detector_malloc]") {
251       // TODO(ccross): it would be nice to treat named anonymous mappings as
252       // possible leaks, but naming something in a .bss or .data section makes
253       // it impossible to distinguish them from mmaped and then named mappings.
254       globals_mappings.emplace_back(*it);
255     }
256   }
257 
258   return true;
259 }
260 
261 template<typename T>
plural(T val)262 static inline const char* plural(T val) {
263   return (val == 1) ? "" : "s";
264 }
265 
GetUnreachableMemory(UnreachableMemoryInfo & info,size_t limit)266 bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
267   int parent_pid = getpid();
268   int parent_tid = gettid();
269 
270   Heap heap;
271 
272   Semaphore continue_parent_sem;
273   LeakPipe pipe;
274 
275   PtracerThread thread{[&]() -> int {
276     /////////////////////////////////////////////
277     // Collection thread
278     /////////////////////////////////////////////
279     ALOGI("collecting thread info for process %d...", parent_pid);
280 
281     ThreadCapture thread_capture(parent_pid, heap);
282     allocator::vector<ThreadInfo> thread_info(heap);
283     allocator::vector<Mapping> mappings(heap);
284 
285     // ptrace all the threads
286     if (!thread_capture.CaptureThreads()) {
287       continue_parent_sem.Post();
288       return 1;
289     }
290 
291     // collect register contents and stacks
292     if (!thread_capture.CapturedThreadInfo(thread_info)) {
293       continue_parent_sem.Post();
294       return 1;
295     }
296 
297     // snapshot /proc/pid/maps
298     if (!ProcessMappings(parent_pid, mappings)) {
299       continue_parent_sem.Post();
300       return 1;
301     }
302 
303     // malloc must be enabled to call fork, at_fork handlers take the same
304     // locks as ScopedDisableMalloc.  All threads are paused in ptrace, so
305     // memory state is still consistent.  Unfreeze the original thread so it
306     // can drop the malloc locks, it will block until the collection thread
307     // exits.
308     thread_capture.ReleaseThread(parent_tid);
309     continue_parent_sem.Post();
310 
311     // fork a process to do the heap walking
312     int ret = fork();
313     if (ret < 0) {
314       return 1;
315     } else if (ret == 0) {
316       /////////////////////////////////////////////
317       // Heap walker process
318       /////////////////////////////////////////////
319       // Examine memory state in the child using the data collected above and
320       // the CoW snapshot of the process memory contents.
321 
322       if (!pipe.OpenSender()) {
323         _exit(1);
324       }
325 
326       MemUnreachable unreachable{parent_pid, heap};
327 
328       if (!unreachable.CollectAllocations(thread_info, mappings)) {
329         _exit(2);
330       }
331       size_t num_allocations = unreachable.Allocations();
332       size_t allocation_bytes = unreachable.AllocationBytes();
333 
334       allocator::vector<Leak> leaks{heap};
335 
336       size_t num_leaks = 0;
337       size_t leak_bytes = 0;
338       bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
339 
340       ok = ok && pipe.Sender().Send(num_allocations);
341       ok = ok && pipe.Sender().Send(allocation_bytes);
342       ok = ok && pipe.Sender().Send(num_leaks);
343       ok = ok && pipe.Sender().Send(leak_bytes);
344       ok = ok && pipe.Sender().SendVector(leaks);
345 
346       if (!ok) {
347         _exit(3);
348       }
349 
350       _exit(0);
351     } else {
352       // Nothing left to do in the collection thread, return immediately,
353       // releasing all the captured threads.
354       ALOGI("collection thread done");
355       return 0;
356     }
357   }};
358 
359   /////////////////////////////////////////////
360   // Original thread
361   /////////////////////////////////////////////
362 
363   {
364     // Disable malloc to get a consistent view of memory
365     ScopedDisableMalloc disable_malloc;
366 
367     // Start the collection thread
368     thread.Start();
369 
370     // Wait for the collection thread to signal that it is ready to fork the
371     // heap walker process.
372     continue_parent_sem.Wait(30s);
373 
374     // Re-enable malloc so the collection thread can fork.
375   }
376 
377   // Wait for the collection thread to exit
378   int ret = thread.Join();
379   if (ret != 0) {
380     return false;
381   }
382 
383   // Get a pipe from the heap walker process.  Transferring a new pipe fd
384   // ensures no other forked processes can have it open, so when the heap
385   // walker process dies the remote side of the pipe will close.
386   if (!pipe.OpenReceiver()) {
387     return false;
388   }
389 
390   bool ok = true;
391   ok = ok && pipe.Receiver().Receive(&info.num_allocations);
392   ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
393   ok = ok && pipe.Receiver().Receive(&info.num_leaks);
394   ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
395   ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
396   if (!ok) {
397     return false;
398   }
399 
400   ALOGI("unreachable memory detection done");
401   ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
402       info.leak_bytes, info.num_leaks, plural(info.num_leaks),
403       info.allocation_bytes, info.num_allocations, plural(info.num_allocations));
404   return true;
405 }
406 
ToString(bool log_contents) const407 std::string Leak::ToString(bool log_contents) const {
408 
409   std::ostringstream oss;
410 
411   oss << "  " << std::dec << size;
412   oss << " bytes unreachable at ";
413   oss << std::hex << begin;
414   oss << std::endl;
415   if (referenced_count > 0) {
416     oss << std::dec;
417     oss << "   referencing " << referenced_size << " unreachable bytes";
418     oss << " in " << referenced_count << " allocation" << plural(referenced_count);
419     oss << std::endl;
420   }
421   if (similar_count > 0) {
422     oss << std::dec;
423     oss << "   and " << similar_size << " similar unreachable bytes";
424     oss << " in " << similar_count << " allocation" << plural(similar_count);
425     oss << std::endl;
426     if (similar_referenced_count > 0) {
427       oss << "   referencing " << similar_referenced_size << " unreachable bytes";
428       oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
429       oss << std::endl;
430     }
431   }
432 
433   if (log_contents) {
434     const int bytes_per_line = 16;
435     const size_t bytes = std::min(size, contents_length);
436 
437     if (bytes == size) {
438       oss << "   contents:" << std::endl;
439     } else {
440       oss << "   first " << bytes << " bytes of contents:" << std::endl;
441     }
442 
443     for (size_t i = 0; i < bytes; i += bytes_per_line) {
444       oss << "   " << std::hex << begin + i << ": ";
445       size_t j;
446       oss << std::setfill('0');
447       for (j = i; j < bytes && j < i + bytes_per_line; j++) {
448         oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
449       }
450       oss << std::setfill(' ');
451       for (; j < i + bytes_per_line; j++) {
452         oss << "   ";
453       }
454       for (j = i; j < bytes && j < i + bytes_per_line; j++) {
455         char c = contents[j];
456         if (c < ' ' || c >= 0x7f) {
457           c = '.';
458         }
459         oss << c;
460       }
461       oss << std::endl;
462     }
463   }
464   if (backtrace.num_frames > 0) {
465     oss << backtrace_string(backtrace.frames, backtrace.num_frames);
466   }
467 
468   return oss.str();
469 }
470 
471 // Figure out the abi based on defined macros.
472 #if defined(__arm__)
473 #define ABI_STRING "arm"
474 #elif defined(__aarch64__)
475 #define ABI_STRING "arm64"
476 #elif defined(__mips__) && !defined(__LP64__)
477 #define ABI_STRING "mips"
478 #elif defined(__mips__) && defined(__LP64__)
479 #define ABI_STRING "mips64"
480 #elif defined(__i386__)
481 #define ABI_STRING "x86"
482 #elif defined(__x86_64__)
483 #define ABI_STRING "x86_64"
484 #else
485 #error "Unsupported ABI"
486 #endif
487 
ToString(bool log_contents) const488 std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
489   std::ostringstream oss;
490   oss << "  " << leak_bytes << " bytes in ";
491   oss << num_leaks << " unreachable allocation" << plural(num_leaks);
492   oss << std::endl;
493   oss << "  ABI: '" ABI_STRING "'" << std::endl;
494   oss << std::endl;
495 
496   for (auto it = leaks.begin(); it != leaks.end(); it++) {
497       oss << it->ToString(log_contents);
498       oss << std::endl;
499   }
500 
501   return oss.str();
502 }
503 
GetUnreachableMemoryString(bool log_contents,size_t limit)504 std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
505   UnreachableMemoryInfo info;
506   if (!GetUnreachableMemory(info, limit)) {
507     return "Failed to get unreachable memory\n";
508   }
509 
510   return info.ToString(log_contents);
511 }
512 
LogUnreachableMemory(bool log_contents,size_t limit)513 bool LogUnreachableMemory(bool log_contents, size_t limit) {
514   UnreachableMemoryInfo info;
515   if (!GetUnreachableMemory(info, limit)) {
516     return false;
517   }
518 
519   for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
520     ALOGE("%s", it->ToString(log_contents).c_str());
521   }
522   return true;
523 }
524 
525 
NoLeaks()526 bool NoLeaks() {
527   UnreachableMemoryInfo info;
528   if (!GetUnreachableMemory(info, 0)) {
529     return false;
530   }
531 
532   return info.num_leaks == 0;
533 }
534