1 /*
2 ** Copyright 2010 The Android Open Source Project
3 **
4 ** Licensed under the Apache License, Version 2.0 (the "License");
5 ** you may not use this file except in compliance with the License.
6 ** You may obtain a copy of the License at
7 **
8 ** http://www.apache.org/licenses/LICENSE-2.0
9 **
10 ** Unless required by applicable law or agreed to in writing, software
11 ** distributed under the License is distributed on an "AS IS" BASIS,
12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 ** See the License for the specific language governing permissions and
14 ** limitations under the License.
15 */
16
17 /*
18 * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
19 */
20
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <math.h>
26 #include <sched.h>
27 #include <sys/resource.h>
28 #include <time.h>
29 #include <unistd.h>
30
31 // The default size of data that will be manipulated in each iteration of
32 // a memory benchmark. Can be modified with the --data_size option.
33 #define DEFAULT_DATA_SIZE 1000000000
34
35 // The amount of memory allocated for the cold benchmarks to use.
36 #define DEFAULT_COLD_DATA_SIZE 128*1024*1024
37
38 // The default size of the stride between each buffer for cold benchmarks.
39 #define DEFAULT_COLD_STRIDE_SIZE 4096
40
41 // Number of nanoseconds in a second.
42 #define NS_PER_SEC 1000000000
43
44 // The maximum number of arguments that a benchmark will accept.
45 #define MAX_ARGS 2
46
47 // Default memory alignment of malloc.
48 #define DEFAULT_MALLOC_MEMORY_ALIGNMENT 8
49
50 // Contains information about benchmark options.
51 typedef struct {
52 bool print_average;
53 bool print_each_iter;
54
55 int dst_align;
56 int dst_or_mask;
57 int src_align;
58 int src_or_mask;
59
60 int cpu_to_lock;
61
62 int data_size;
63 int dst_str_size;
64 int cold_data_size;
65 int cold_stride_size;
66
67 int args[MAX_ARGS];
68 int num_args;
69 } command_data_t;
70
71 typedef void *(*void_func_t)();
72 typedef void *(*memcpy_func_t)(void *, const void *, size_t);
73 typedef void *(*memset_func_t)(void *, int, size_t);
74 typedef int (*strcmp_func_t)(const char *, const char *);
75 typedef char *(*str_func_t)(char *, const char *);
76 typedef size_t (*strlen_func_t)(const char *);
77
78 // Struct that contains a mapping of benchmark name to benchmark function.
79 typedef struct {
80 const char *name;
81 int (*ptr)(const char *, const command_data_t &, void_func_t func);
82 void_func_t func;
83 } function_t;
84
85 // Get the current time in nanoseconds.
nanoTime()86 uint64_t nanoTime() {
87 struct timespec t;
88
89 t.tv_sec = t.tv_nsec = 0;
90 clock_gettime(CLOCK_MONOTONIC, &t);
91 return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
92 }
93
94 // Static analyzer warns about potential memory leak of orig_ptr
95 // in getAlignedMemory. That is true and the callers in this program
96 // do not free orig_ptr. But, we don't care about that in this
97 // going-obsolete test program. So, here is a hack to trick the
98 // static analyzer.
99 static void *saved_orig_ptr;
100
101 // Allocate memory with a specific alignment and return that pointer.
102 // This function assumes an alignment value that is a power of 2.
103 // If the alignment is 0, then use the pointer returned by malloc.
getAlignedMemory(uint8_t * orig_ptr,int alignment,int or_mask)104 uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
105 uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
106 saved_orig_ptr = orig_ptr;
107 if (alignment > 0) {
108 // When setting the alignment, set it to exactly the alignment chosen.
109 // The pointer returned will be guaranteed not to be aligned to anything
110 // more than that.
111 ptr += alignment - (ptr & (alignment - 1));
112 ptr |= alignment | or_mask;
113 }
114
115 return reinterpret_cast<uint8_t*>(ptr);
116 }
117
118 // Allocate memory with a specific alignment and return that pointer.
119 // This function assumes an alignment value that is a power of 2.
120 // If the alignment is 0, then use the pointer returned by malloc.
allocateAlignedMemory(size_t size,int alignment,int or_mask)121 uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
122 uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
123 if (!ptr)
124 return NULL;
125 return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
126 }
127
initString(uint8_t * buf,size_t size)128 void initString(uint8_t *buf, size_t size) {
129 for (size_t i = 0; i < size - 1; i++) {
130 buf[i] = static_cast<char>(32 + (i % 96));
131 }
132 buf[size-1] = '\0';
133 }
134
computeAverage(uint64_t time_ns,size_t size,size_t copies)135 static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
136 return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
137 }
138
computeRunningAvg(double avg,double running_avg,size_t cur_idx)139 static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
140 return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
141 }
142
computeRunningSquareAvg(double avg,double square_avg,size_t cur_idx)143 static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
144 return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
145 }
146
computeStdDev(double square_avg,double running_avg)147 static inline double computeStdDev(double square_avg, double running_avg) {
148 return sqrt(square_avg - running_avg * running_avg);
149 }
150
printIter(uint64_t time_ns,const char * name,size_t size,size_t copies,double avg)151 static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
152 printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n",
153 name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
154 }
155
printSummary(uint64_t,const char * name,size_t size,size_t copies,double running_avg,double std_dev,double min,double max)156 static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
157 printf(" %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
158 name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
159 max/1024.0);
160 }
161
162 // For the cold benchmarks, a large buffer will be created which
163 // contains many "size" buffers. This function will figure out the increment
164 // needed between each buffer so that each one is aligned to "alignment".
getAlignmentIncrement(size_t size,int alignment)165 int getAlignmentIncrement(size_t size, int alignment) {
166 if (alignment == 0) {
167 alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
168 }
169 alignment *= 2;
170 return size + alignment - (size % alignment);
171 }
172
getColdBuffer(int num_buffers,size_t incr,int alignment,int or_mask)173 uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
174 uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
175 if (!buffers) {
176 return NULL;
177 }
178 return getAlignedMemory(buffers, alignment, or_mask);
179 }
180
computeColdAverage(uint64_t time_ns,size_t size,size_t copies,size_t num_buffers)181 static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
182 return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
183 }
184
printColdIter(uint64_t time_ns,const char * name,size_t size,size_t copies,size_t num_buffers,double avg)185 static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
186 printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n",
187 name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
188 }
189
printColdSummary(uint64_t,const char * name,size_t size,size_t copies,size_t num_buffers,double running_avg,double square_avg,double min,double max)190 static void inline printColdSummary(
191 uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers,
192 double running_avg, double square_avg, double min, double max) {
193 printf(" %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
194 name, copies, num_buffers, size, running_avg/1024.0,
195 computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
196 }
197
198 #define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
199 uint64_t time_ns; \
200 int iters = cmd_data.args[1]; \
201 bool print_average = cmd_data.print_average; \
202 bool print_each_iter = cmd_data.print_each_iter; \
203 double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
204 double avg; \
205 for (int i = 0; iters == -1 || i < iters; i++) { \
206 time_ns = nanoTime(); \
207 BENCH; \
208 time_ns = nanoTime() - time_ns; \
209 avg = COMPUTE_AVG; \
210 if (print_average) { \
211 running_avg = computeRunningAvg(avg, running_avg, i); \
212 square_avg = computeRunningSquareAvg(avg, square_avg, i); \
213 if (min == 0.0 || avg < min) { \
214 min = avg; \
215 } \
216 if (avg > max) { \
217 max = avg; \
218 } \
219 } \
220 if (print_each_iter) { \
221 PRINT_ITER; \
222 } \
223 } \
224 if (print_average) { \
225 PRINT_AVG; \
226 }
227
228 #define MAINLOOP_DATA(name, cmd_data, size, BENCH) \
229 size_t copies = cmd_data.data_size/size; \
230 size_t j; \
231 MAINLOOP(cmd_data, \
232 for (j = 0; j < copies; j++) { \
233 BENCH; \
234 }, \
235 computeAverage(time_ns, size, copies), \
236 printIter(time_ns, name, size, copies, avg), \
237 double std_dev = computeStdDev(square_avg, running_avg); \
238 printSummary(time_ns, name, size, copies, running_avg, \
239 std_dev, min, max));
240
241 #define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH) \
242 size_t num_strides = num_buffers / num_incrs; \
243 if ((num_buffers % num_incrs) != 0) { \
244 num_strides--; \
245 } \
246 size_t copies = 1; \
247 num_buffers = num_incrs * num_strides; \
248 if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) { \
249 copies = cmd_data.data_size / (num_buffers * size); \
250 } \
251 if (num_strides == 0) { \
252 printf("%s: Chosen options lead to no copies, aborting.\n", name); \
253 return -1; \
254 } \
255 size_t j, k; \
256 MAINLOOP(cmd_data, \
257 for (j = 0; j < copies; j++) { \
258 for (k = 0; k < num_incrs; k++) { \
259 BENCH; \
260 } \
261 }, \
262 computeColdAverage(time_ns, size, copies, num_buffers), \
263 printColdIter(time_ns, name, size, copies, num_buffers, avg), \
264 printColdSummary(time_ns, name, size, copies, num_buffers, \
265 running_avg, square_avg, min, max));
266
267 // This version of the macro creates a single buffer of the given size and
268 // alignment. The variable "buf" will be a pointer to the buffer and should
269 // be used by the BENCH code.
270 // INIT - Any specialized code needed to initialize the data. This will only
271 // be executed once.
272 // BENCH - The actual code to benchmark and is timed.
273 #define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH) \
274 size_t size = cmd_data.args[0]; \
275 uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
276 if (!buf) \
277 return -1; \
278 INIT; \
279 MAINLOOP_DATA(name, cmd_data, size, BENCH);
280
281 // This version of the macro creates two buffers of the given sizes and
282 // alignments. The variables "buf1" and "buf2" will be pointers to the
283 // buffers and should be used by the BENCH code.
284 // INIT - Any specialized code needed to initialize the data. This will only
285 // be executed once.
286 // BENCH - The actual code to benchmark and is timed.
287 #define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH) \
288 size_t size = cmd_data.args[0]; \
289 uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
290 if (!buf1) \
291 return -1; \
292 size_t total_size = size; \
293 if (cmd_data.dst_str_size > 0) \
294 total_size += cmd_data.dst_str_size; \
295 uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
296 if (!buf2) \
297 return -1; \
298 INIT; \
299 MAINLOOP_DATA(name, cmd_data, size, BENCH);
300
301 // This version of the macro attempts to benchmark code when the data
302 // being manipulated is not in the cache, thus the cache is cold. It does
303 // this by creating a single large buffer that is designed to be larger than
304 // the largest cache in the system. The variable "buf" will be one slice
305 // of the buffer that the BENCH code should use that is of the correct size
306 // and alignment. In order to avoid any algorithms that prefetch past the end
307 // of their "buf" and into the next sequential buffer, the code strides
308 // through the buffer. Specifically, as "buf" values are iterated in BENCH
309 // code, the end of "buf" is guaranteed to be at least "stride_size" away
310 // from the next "buf".
311 // INIT - Any specialized code needed to initialize the data. This will only
312 // be executed once.
313 // BENCH - The actual code to benchmark and is timed.
314 #define COLD_ONE_BUF(name, cmd_data, INIT, BENCH) \
315 size_t size = cmd_data.args[0]; \
316 size_t incr = getAlignmentIncrement(size, cmd_data.dst_align); \
317 size_t num_buffers = cmd_data.cold_data_size / incr; \
318 size_t buffer_size = num_buffers * incr; \
319 uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
320 if (!buffer) \
321 return -1; \
322 size_t num_incrs = cmd_data.cold_stride_size / incr + 1; \
323 size_t stride_incr = incr * num_incrs; \
324 uint8_t *buf; \
325 size_t l; \
326 INIT; \
327 MAINLOOP_COLD(name, cmd_data, size, num_incrs, \
328 buf = buffer + k * incr; \
329 for (l = 0; l < num_strides; l++) { \
330 BENCH; \
331 buf += stride_incr; \
332 });
333
334 // This version of the macro attempts to benchmark code when the data
335 // being manipulated is not in the cache, thus the cache is cold. It does
336 // this by creating two large buffers each of which is designed to be
337 // larger than the largest cache in the system. Two variables "buf1" and
338 // "buf2" will be the two buffers that BENCH code should use. In order
339 // to avoid any algorithms that prefetch past the end of either "buf1"
340 // or "buf2" and into the next sequential buffer, the code strides through
341 // both buffers. Specifically, as "buf1" and "buf2" values are iterated in
342 // BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
343 // "stride_size" away from the next "buf1" and "buf2".
344 // INIT - Any specialized code needed to initialize the data. This will only
345 // be executed once.
346 // BENCH - The actual code to benchmark and is timed.
347 #define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH) \
348 size_t size = cmd_data.args[0]; \
349 size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align); \
350 size_t total_size = size; \
351 if (cmd_data.dst_str_size > 0) \
352 total_size += cmd_data.dst_str_size; \
353 size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
354 size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr; \
355 size_t num_buffers = cmd_data.cold_data_size / max_incr; \
356 size_t buffer1_size = num_buffers * buf1_incr; \
357 size_t buffer2_size = num_buffers * buf2_incr; \
358 uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
359 if (!buffer1) \
360 return -1; \
361 uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
362 if (!buffer2) \
363 return -1; \
364 size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr; \
365 size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1; \
366 size_t buf1_stride_incr = buf1_incr * num_incrs; \
367 size_t buf2_stride_incr = buf2_incr * num_incrs; \
368 size_t l; \
369 uint8_t *buf1; \
370 uint8_t *buf2; \
371 INIT; \
372 MAINLOOP_COLD(name, cmd_data, size, num_incrs, \
373 buf1 = buffer1 + k * buf1_incr; \
374 buf2 = buffer2 + k * buf2_incr; \
375 for (l = 0; l < num_strides; l++) { \
376 BENCH; \
377 buf1 += buf1_stride_incr; \
378 buf2 += buf2_stride_incr; \
379 });
380
benchmarkSleep(const char *,const command_data_t & cmd_data,void_func_t)381 int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
382 int delay = cmd_data.args[0];
383 MAINLOOP(cmd_data, sleep(delay),
384 (double)time_ns/NS_PER_SEC,
385 printf("sleep(%d) took %.06f seconds\n", delay, avg);,
386 printf(" sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
387 delay, running_avg, computeStdDev(square_avg, running_avg), \
388 min, max));
389
390 return 0;
391 }
392
benchmarkMemset(const char * name,const command_data_t & cmd_data,void_func_t func)393 int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
394 memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
395 BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
396
397 return 0;
398 }
399
benchmarkMemsetCold(const char * name,const command_data_t & cmd_data,void_func_t func)400 int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
401 memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
402 COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
403
404 return 0;
405 }
406
benchmarkMemcpy(const char * name,const command_data_t & cmd_data,void_func_t func)407 int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
408 memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
409
410 BENCH_TWO_BUFS(name, cmd_data,
411 memset(buf1, 0xff, size); \
412 memset(buf2, 0, size),
413 memcpy_func(buf2, buf1, size));
414
415 return 0;
416 }
417
benchmarkMemcpyCold(const char * name,const command_data_t & cmd_data,void_func_t func)418 int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
419 memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
420
421 COLD_TWO_BUFS(name, cmd_data,
422 memset(buffer1, 0xff, buffer1_size); \
423 memset(buffer2, 0x0, buffer2_size),
424 memcpy_func(buf2, buf1, size));
425
426 return 0;
427 }
428
benchmarkMemmoveBackwards(const char * name,const command_data_t & cmd_data,void_func_t func)429 int benchmarkMemmoveBackwards(const char *name, const command_data_t &cmd_data, void_func_t func) {
430 memcpy_func_t memmove_func = reinterpret_cast<memcpy_func_t>(func);
431
432 size_t size = cmd_data.args[0];
433 size_t alloc_size = size * 2 + 3 * cmd_data.dst_align;
434 uint8_t* src = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask);
435 if (!src)
436 return -1;
437 // Force memmove to do a backwards copy by getting a pointer into the source buffer.
438 uint8_t* dst = getAlignedMemory(src+1, cmd_data.dst_align, cmd_data.dst_or_mask);
439 if (!dst)
440 return -1;
441 MAINLOOP_DATA(name, cmd_data, size, memmove_func(dst, src, size));
442 return 0;
443 }
444
benchmarkMemread(const char * name,const command_data_t & cmd_data,void_func_t)445 int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) {
446 int size = cmd_data.args[0];
447
448 uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
449 if (!src)
450 return -1;
451 memset(src, 0xff, size);
452
453 // Use volatile so the compiler does not optimize away the reads.
454 volatile int foo;
455 size_t k;
456 MAINLOOP_DATA(name, cmd_data, size,
457 for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
458 free(src);
459
460 return 0;
461 }
462
benchmarkStrcmp(const char * name,const command_data_t & cmd_data,void_func_t func)463 int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
464 strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
465
466 int retval;
467 BENCH_TWO_BUFS(name, cmd_data,
468 initString(buf1, size); \
469 initString(buf2, size),
470 retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
471 if (retval != 0) printf("%s failed, return value %d\n", name, retval));
472
473 return 0;
474 }
475
benchmarkStrcmpCold(const char * name,const command_data_t & cmd_data,void_func_t func)476 int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
477 strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
478
479 int retval;
480 COLD_TWO_BUFS(name, cmd_data,
481 memset(buffer1, 'a', buffer1_size); \
482 memset(buffer2, 'a', buffer2_size); \
483 for (size_t i =0; i < num_buffers; i++) { \
484 buffer1[size-1+buf1_incr*i] = '\0'; \
485 buffer2[size-1+buf2_incr*i] = '\0'; \
486 },
487 retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
488 if (retval != 0) printf("%s failed, return value %d\n", name, retval));
489
490 return 0;
491 }
492
benchmarkStrlen(const char * name,const command_data_t & cmd_data,void_func_t func)493 int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
494 size_t real_size;
495 strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
496 BENCH_ONE_BUF(name, cmd_data,
497 initString(buf, size),
498 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
499 if (real_size + 1 != size) { \
500 printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
501 return -1; \
502 });
503
504 return 0;
505 }
506
benchmarkStrlenCold(const char * name,const command_data_t & cmd_data,void_func_t func)507 int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
508 strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
509 size_t real_size;
510 COLD_ONE_BUF(name, cmd_data,
511 memset(buffer, 'a', buffer_size); \
512 for (size_t i = 0; i < num_buffers; i++) { \
513 buffer[size-1+incr*i] = '\0'; \
514 },
515 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
516 if (real_size + 1 != size) { \
517 printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
518 return -1; \
519 });
520 return 0;
521 }
522
benchmarkStrcat(const char * name,const command_data_t & cmd_data,void_func_t func)523 int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
524 str_func_t str_func = reinterpret_cast<str_func_t>(func);
525
526 int dst_str_size = cmd_data.dst_str_size;
527 if (dst_str_size <= 0) {
528 printf("%s requires --dst_str_size to be set to a non-zero value.\n",
529 name);
530 return -1;
531 }
532 BENCH_TWO_BUFS(name, cmd_data,
533 initString(buf1, size); \
534 initString(buf2, dst_str_size),
535 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
536
537 return 0;
538 }
539
benchmarkStrcatCold(const char * name,const command_data_t & cmd_data,void_func_t func)540 int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
541 str_func_t str_func = reinterpret_cast<str_func_t>(func);
542
543 int dst_str_size = cmd_data.dst_str_size;
544 if (dst_str_size <= 0) {
545 printf("%s requires --dst_str_size to be set to a non-zero value.\n",
546 name);
547 return -1;
548 }
549 COLD_TWO_BUFS(name, cmd_data,
550 memset(buffer1, 'a', buffer1_size); \
551 memset(buffer2, 'b', buffer2_size); \
552 for (size_t i = 0; i < num_buffers; i++) { \
553 buffer1[size-1+buf1_incr*i] = '\0'; \
554 buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
555 },
556 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
557
558 return 0;
559 }
560
561
benchmarkStrcpy(const char * name,const command_data_t & cmd_data,void_func_t func)562 int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
563 str_func_t str_func = reinterpret_cast<str_func_t>(func);
564
565 BENCH_TWO_BUFS(name, cmd_data,
566 initString(buf1, size); \
567 memset(buf2, 0, size),
568 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
569
570 return 0;
571 }
572
benchmarkStrcpyCold(const char * name,const command_data_t & cmd_data,void_func_t func)573 int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
574 str_func_t str_func = reinterpret_cast<str_func_t>(func);
575
576 COLD_TWO_BUFS(name, cmd_data,
577 memset(buffer1, 'a', buffer1_size); \
578 for (size_t i = 0; i < num_buffers; i++) { \
579 buffer1[size-1+buf1_incr*i] = '\0'; \
580 } \
581 memset(buffer2, 0, buffer2_size),
582 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
583
584 return 0;
585 }
586
587 // Create the mapping structure.
588 function_t function_table[] = {
589 { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
590 { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
591 { "memmove_forward", benchmarkMemcpy, reinterpret_cast<void_func_t>(memmove) },
592 { "memmove_backward", benchmarkMemmoveBackwards, reinterpret_cast<void_func_t>(memmove) },
593 { "memread", benchmarkMemread, NULL },
594 { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
595 { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
596 { "sleep", benchmarkSleep, NULL },
597 { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
598 { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
599 { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
600 { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
601 { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
602 { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
603 { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
604 { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
605 };
606
usage()607 void usage() {
608 printf("Usage:\n");
609 printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n");
610 printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n");
611 printf(" [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
612 printf(" [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
613 printf(" [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
614 printf(" [--cold_stride_size SIZE]\n");
615 printf(" --data_size DATA_BYTES\n");
616 printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n");
617 printf(" size of data, in bytes, that will be manipulated in each iteration.\n");
618 printf(" --print_average\n");
619 printf(" Print the average and standard deviation of all iterations.\n");
620 printf(" --no_print_each_iter\n");
621 printf(" Do not print any values in each iteration.\n");
622 printf(" --lock_to_cpu CORE\n");
623 printf(" Lock to the specified CORE. The default is to use the last core found.\n");
624 printf(" --dst_align ALIGN\n");
625 printf(" If the command supports it, align the destination pointer to ALIGN.\n");
626 printf(" The default is to use the value returned by malloc.\n");
627 printf(" --dst_or_mask OR_MASK\n");
628 printf(" If the command supports it, or in the OR_MASK on to the destination pointer.\n");
629 printf(" The OR_MASK must be smaller than the dst_align value.\n");
630 printf(" The default value is 0.\n");
631
632 printf(" --src_align ALIGN\n");
633 printf(" If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
634 printf(" value returned by malloc.\n");
635 printf(" --src_or_mask OR_MASK\n");
636 printf(" If the command supports it, or in the OR_MASK on to the source pointer.\n");
637 printf(" The OR_MASK must be smaller than the src_align value.\n");
638 printf(" The default value is 0.\n");
639 printf(" --dst_str_size SIZE\n");
640 printf(" If the command supports it, create a destination string of this length.\n");
641 printf(" The default is to not update the destination string.\n");
642 printf(" --cold_data_size DATA_SIZE\n");
643 printf(" For _cold benchmarks, use this as the total amount of memory to use.\n");
644 printf(" The default is 128MB, and the number should be larger than the cache on the chip.\n");
645 printf(" This value is specified in bytes.\n");
646 printf(" --cold_stride_size SIZE\n");
647 printf(" For _cold benchmarks, use this as the minimum stride between iterations.\n");
648 printf(" The default is 4096 bytes and the number should be larger than the amount of data\n");
649 printf(" pulled in to the cache by each run of the benchmark.\n");
650 printf(" ITERS\n");
651 printf(" The number of iterations to execute each benchmark. If not\n");
652 printf(" passed in then run forever.\n");
653 printf(" micro_bench cpu UNUSED [ITERS]\n");
654 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
655 printf(" micro_bench memread NUM_BYTES [ITERS]\n");
656 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
657 printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
658 printf(" TIME_TO_SLEEP\n");
659 printf(" The time in seconds to sleep.\n");
660 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
661 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
662 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
663 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
664 printf("\n");
665 printf(" In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
666 printf(" that will execute the function on a buffer not in the cache.\n");
667 }
668
processOptions(int argc,char ** argv,command_data_t * cmd_data)669 function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
670 function_t *command = NULL;
671
672 // Initialize the command_flags.
673 cmd_data->print_average = false;
674 cmd_data->print_each_iter = true;
675 cmd_data->dst_align = 0;
676 cmd_data->src_align = 0;
677 cmd_data->src_or_mask = 0;
678 cmd_data->dst_or_mask = 0;
679 cmd_data->num_args = 0;
680 cmd_data->cpu_to_lock = -1;
681 cmd_data->data_size = DEFAULT_DATA_SIZE;
682 cmd_data->dst_str_size = -1;
683 cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
684 cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
685 for (int i = 0; i < MAX_ARGS; i++) {
686 cmd_data->args[i] = -1;
687 }
688
689 for (int i = 1; i < argc; i++) {
690 if (argv[i][0] == '-') {
691 int *save_value = NULL;
692 if (strcmp(argv[i], "--print_average") == 0) {
693 cmd_data->print_average = true;
694 } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
695 cmd_data->print_each_iter = false;
696 } else if (strcmp(argv[i], "--dst_align") == 0) {
697 save_value = &cmd_data->dst_align;
698 } else if (strcmp(argv[i], "--src_align") == 0) {
699 save_value = &cmd_data->src_align;
700 } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
701 save_value = &cmd_data->dst_or_mask;
702 } else if (strcmp(argv[i], "--src_or_mask") == 0) {
703 save_value = &cmd_data->src_or_mask;
704 } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
705 save_value = &cmd_data->cpu_to_lock;
706 } else if (strcmp(argv[i], "--data_size") == 0) {
707 save_value = &cmd_data->data_size;
708 } else if (strcmp(argv[i], "--dst_str_size") == 0) {
709 save_value = &cmd_data->dst_str_size;
710 } else if (strcmp(argv[i], "--cold_data_size") == 0) {
711 save_value = &cmd_data->cold_data_size;
712 } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
713 save_value = &cmd_data->cold_stride_size;
714 } else {
715 printf("Unknown option %s\n", argv[i]);
716 return NULL;
717 }
718 if (save_value) {
719 // Checking both characters without a strlen() call should be
720 // safe since as long as the argument exists, one character will
721 // be present (\0). And if the first character is '-', then
722 // there will always be a second character (\0 again).
723 if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
724 printf("The option %s requires one argument.\n",
725 argv[i]);
726 return NULL;
727 }
728 *save_value = (int)strtol(argv[++i], NULL, 0);
729 }
730 } else if (!command) {
731 for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
732 if (strcmp(argv[i], function_table[j].name) == 0) {
733 command = &function_table[j];
734 break;
735 }
736 }
737 if (!command) {
738 printf("Uknown command %s\n", argv[i]);
739 return NULL;
740 }
741 } else if (cmd_data->num_args > MAX_ARGS) {
742 printf("More than %d number arguments passed in.\n", MAX_ARGS);
743 return NULL;
744 } else {
745 cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
746 }
747 }
748
749 // Check the arguments passed in make sense.
750 if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
751 printf("Not enough arguments passed in.\n");
752 return NULL;
753 } else if (cmd_data->dst_align < 0) {
754 printf("The --dst_align option must be greater than or equal to 0.\n");
755 return NULL;
756 } else if (cmd_data->src_align < 0) {
757 printf("The --src_align option must be greater than or equal to 0.\n");
758 return NULL;
759 } else if (cmd_data->data_size <= 0) {
760 printf("The --data_size option must be a positive number.\n");
761 return NULL;
762 } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
763 printf("The --dst_align option must be a power of 2.\n");
764 return NULL;
765 } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
766 printf("The --src_align option must be a power of 2.\n");
767 return NULL;
768 } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
769 printf("The --src_or_mask option requires that --src_align be set.\n");
770 return NULL;
771 } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
772 printf("The --dst_or_mask option requires that --dst_align be set.\n");
773 return NULL;
774 } else if (cmd_data->src_or_mask > cmd_data->src_align) {
775 printf("The value of --src_or_mask cannot be larger that --src_align.\n");
776 return NULL;
777 } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
778 printf("The value of --src_or_mask cannot be larger that --src_align.\n");
779 return NULL;
780 }
781
782 return command;
783 }
784
raisePriorityAndLock(int cpu_to_lock)785 bool raisePriorityAndLock(int cpu_to_lock) {
786 cpu_set_t cpuset;
787
788 if (setpriority(PRIO_PROCESS, 0, -20)) {
789 perror("Unable to raise priority of process.\n");
790 return false;
791 }
792
793 CPU_ZERO(&cpuset);
794 if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
795 perror("sched_getaffinity failed");
796 return false;
797 }
798
799 if (cpu_to_lock < 0) {
800 // Lock to the last active core we find.
801 for (int i = 0; i < CPU_SETSIZE; i++) {
802 if (CPU_ISSET(i, &cpuset)) {
803 cpu_to_lock = i;
804 }
805 }
806 } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
807 printf("Cpu %d does not exist.\n", cpu_to_lock);
808 return false;
809 }
810
811 if (cpu_to_lock < 0) {
812 printf("Cannot find any valid cpu to lock.\n");
813 return false;
814 }
815
816 CPU_ZERO(&cpuset);
817 CPU_SET(cpu_to_lock, &cpuset);
818 if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
819 perror("sched_setaffinity failed");
820 return false;
821 }
822
823 return true;
824 }
825
main(int argc,char ** argv)826 int main(int argc, char **argv) {
827 command_data_t cmd_data;
828
829 function_t *command = processOptions(argc, argv, &cmd_data);
830 if (!command) {
831 usage();
832 return -1;
833 }
834
835 if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
836 return -1;
837 }
838
839 printf("%s\n", command->name);
840 return (*command->ptr)(command->name, cmd_data, command->func);
841 }
842