1 /* MMIX-specific support for 64-bit ELF.
2    Copyright (C) 2001-2014 Free Software Foundation, Inc.
3    Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 
23 /* No specific ABI or "processor-specific supplement" defined.  */
24 
25 /* TODO:
26    - "Traditional" linker relaxation (shrinking whole sections).
27    - Merge reloc stubs jumping to same location.
28    - GETA stub relaxation (call a stub for out of range new
29      R_MMIX_GETA_STUBBABLE).  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37 
38 #define MINUS_ONE	(((bfd_vma) 0) - 1)
39 
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41 
42 /* Put these everywhere in new code.  */
43 #define FATAL_DEBUG						\
44  _bfd_abort (__FILE__, __LINE__,				\
45 	     "Internal: Non-debugged code (test-case missing)")
46 
47 #define BAD_CASE(x)				\
48  _bfd_abort (__FILE__, __LINE__,		\
49 	     "bad case for " #x)
50 
51 struct _mmix_elf_section_data
52 {
53   struct bfd_elf_section_data elf;
54   union
55   {
56     struct bpo_reloc_section_info *reloc;
57     struct bpo_greg_section_info *greg;
58   } bpo;
59 
60   struct pushj_stub_info
61   {
62     /* Maximum number of stubs needed for this section.  */
63     bfd_size_type n_pushj_relocs;
64 
65     /* Size of stubs after a mmix_elf_relax_section round.  */
66     bfd_size_type stubs_size_sum;
67 
68     /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
69        of these.  Allocated in mmix_elf_check_common_relocs.  */
70     bfd_size_type *stub_size;
71 
72     /* Offset of next stub during relocation.  Somewhat redundant with the
73        above: error coverage is easier and we don't have to reset the
74        stubs_size_sum for relocation.  */
75     bfd_size_type stub_offset;
76   } pjs;
77 
78   /* Whether there has been a warning that this section could not be
79      linked due to a specific cause.  FIXME: a way to access the
80      linker info or output section, then stuff the limiter guard
81      there. */
82   bfd_boolean has_warned_bpo;
83   bfd_boolean has_warned_pushj;
84 };
85 
86 #define mmix_elf_section_data(sec) \
87   ((struct _mmix_elf_section_data *) elf_section_data (sec))
88 
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90    this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91    NULL.  */
92 struct bpo_reloc_section_info
93   {
94     /* The base is 1; this is the first number in this section.  */
95     size_t first_base_plus_offset_reloc;
96 
97     /* Number of BPO-relocs in this section.  */
98     size_t n_bpo_relocs_this_section;
99 
100     /* Running index, used at relocation time.  */
101     size_t bpo_index;
102 
103     /* We don't have access to the bfd_link_info struct in
104        mmix_final_link_relocate.  What we really want to get at is the
105        global single struct greg_relocation, so we stash it here.  */
106     asection *bpo_greg_section;
107   };
108 
109 /* Helper struct (in global context) for the one below.
110    There's one of these created for every BPO reloc.  */
111 struct bpo_reloc_request
112   {
113     bfd_vma value;
114 
115     /* Valid after relaxation.  The base is 0; the first register number
116        must be added.  The offset is in range 0..255.  */
117     size_t regindex;
118     size_t offset;
119 
120     /* The order number for this BPO reloc, corresponding to the order in
121        which BPO relocs were found.  Used to create an index after reloc
122        requests are sorted.  */
123     size_t bpo_reloc_no;
124 
125     /* Set when the value is computed.  Better than coding "guard values"
126        into the other members.  Is FALSE only for BPO relocs in a GC:ed
127        section.  */
128     bfd_boolean valid;
129   };
130 
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132    greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133    which is linked into the register contents section
134    (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
135    linker; using the same hook as for usual with BPO relocs does not
136    collide.  */
137 struct bpo_greg_section_info
138   {
139     /* After GC, this reflects the number of remaining, non-excluded
140        BPO-relocs.  */
141     size_t n_bpo_relocs;
142 
143     /* This is the number of allocated bpo_reloc_requests; the size of
144        sorted_indexes.  Valid after the check.*relocs functions are called
145        for all incoming sections.  It includes the number of BPO relocs in
146        sections that were GC:ed.  */
147     size_t n_max_bpo_relocs;
148 
149     /* A counter used to find out when to fold the BPO gregs, since we
150        don't have a single "after-relaxation" hook.  */
151     size_t n_remaining_bpo_relocs_this_relaxation_round;
152 
153     /* The number of linker-allocated GREGs resulting from BPO relocs.
154        This is an approximation after _bfd_mmix_before_linker_allocation
155        and supposedly accurate after mmix_elf_relax_section is called for
156        all incoming non-collected sections.  */
157     size_t n_allocated_bpo_gregs;
158 
159     /* Index into reloc_request[], sorted on increasing "value", secondary
160        by increasing index for strict sorting order.  */
161     size_t *bpo_reloc_indexes;
162 
163     /* An array of all relocations, with the "value" member filled in by
164        the relaxation function.  */
165     struct bpo_reloc_request *reloc_request;
166   };
167 
168 
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170 
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172 
173 /* Only intended to be called from a debugger.  */
174 extern void mmix_dump_bpo_gregs
175   (struct bfd_link_info *, bfd_error_handler_type);
176 
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 		asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 			  bfd_signed_vma, bfd_vma, const char *, asection *,
185 			  char **);
186 
187 
188 /* Watch out: this currently needs to have elements with the same index as
189    their R_MMIX_ number.  */
190 static reloc_howto_type elf_mmix_howto_table[] =
191  {
192   /* This reloc does nothing.  */
193   HOWTO (R_MMIX_NONE,		/* type */
194 	 0,			/* rightshift */
195 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
196 	 32,			/* bitsize */
197 	 FALSE,			/* pc_relative */
198 	 0,			/* bitpos */
199 	 complain_overflow_bitfield, /* complain_on_overflow */
200 	 bfd_elf_generic_reloc,	/* special_function */
201 	 "R_MMIX_NONE",		/* name */
202 	 FALSE,			/* partial_inplace */
203 	 0,			/* src_mask */
204 	 0,			/* dst_mask */
205 	 FALSE),		/* pcrel_offset */
206 
207   /* An 8 bit absolute relocation.  */
208   HOWTO (R_MMIX_8,		/* type */
209 	 0,			/* rightshift */
210 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
211 	 8,			/* bitsize */
212 	 FALSE,			/* pc_relative */
213 	 0,			/* bitpos */
214 	 complain_overflow_bitfield, /* complain_on_overflow */
215 	 bfd_elf_generic_reloc,	/* special_function */
216 	 "R_MMIX_8",		/* name */
217 	 FALSE,			/* partial_inplace */
218 	 0,			/* src_mask */
219 	 0xff,			/* dst_mask */
220 	 FALSE),		/* pcrel_offset */
221 
222   /* An 16 bit absolute relocation.  */
223   HOWTO (R_MMIX_16,		/* type */
224 	 0,			/* rightshift */
225 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
226 	 16,			/* bitsize */
227 	 FALSE,			/* pc_relative */
228 	 0,			/* bitpos */
229 	 complain_overflow_bitfield, /* complain_on_overflow */
230 	 bfd_elf_generic_reloc,	/* special_function */
231 	 "R_MMIX_16",		/* name */
232 	 FALSE,			/* partial_inplace */
233 	 0,			/* src_mask */
234 	 0xffff,		/* dst_mask */
235 	 FALSE),		/* pcrel_offset */
236 
237   /* An 24 bit absolute relocation.  */
238   HOWTO (R_MMIX_24,		/* type */
239 	 0,			/* rightshift */
240 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
241 	 24,			/* bitsize */
242 	 FALSE,			/* pc_relative */
243 	 0,			/* bitpos */
244 	 complain_overflow_bitfield, /* complain_on_overflow */
245 	 bfd_elf_generic_reloc,	/* special_function */
246 	 "R_MMIX_24",		/* name */
247 	 FALSE,			/* partial_inplace */
248 	 ~0xffffff,		/* src_mask */
249 	 0xffffff,		/* dst_mask */
250 	 FALSE),		/* pcrel_offset */
251 
252   /* A 32 bit absolute relocation.  */
253   HOWTO (R_MMIX_32,		/* type */
254 	 0,			/* rightshift */
255 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
256 	 32,			/* bitsize */
257 	 FALSE,			/* pc_relative */
258 	 0,			/* bitpos */
259 	 complain_overflow_bitfield, /* complain_on_overflow */
260 	 bfd_elf_generic_reloc,	/* special_function */
261 	 "R_MMIX_32",		/* name */
262 	 FALSE,			/* partial_inplace */
263 	 0,			/* src_mask */
264 	 0xffffffff,		/* dst_mask */
265 	 FALSE),		/* pcrel_offset */
266 
267   /* 64 bit relocation.  */
268   HOWTO (R_MMIX_64,		/* type */
269 	 0,			/* rightshift */
270 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
271 	 64,			/* bitsize */
272 	 FALSE,			/* pc_relative */
273 	 0,			/* bitpos */
274 	 complain_overflow_bitfield, /* complain_on_overflow */
275 	 bfd_elf_generic_reloc,	/* special_function */
276 	 "R_MMIX_64",		/* name */
277 	 FALSE,			/* partial_inplace */
278 	 0,			/* src_mask */
279 	 MINUS_ONE,		/* dst_mask */
280 	 FALSE),		/* pcrel_offset */
281 
282   /* An 8 bit PC-relative relocation.  */
283   HOWTO (R_MMIX_PC_8,		/* type */
284 	 0,			/* rightshift */
285 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
286 	 8,			/* bitsize */
287 	 TRUE,			/* pc_relative */
288 	 0,			/* bitpos */
289 	 complain_overflow_bitfield, /* complain_on_overflow */
290 	 bfd_elf_generic_reloc,	/* special_function */
291 	 "R_MMIX_PC_8",		/* name */
292 	 FALSE,			/* partial_inplace */
293 	 0,			/* src_mask */
294 	 0xff,			/* dst_mask */
295 	 TRUE),			/* pcrel_offset */
296 
297   /* An 16 bit PC-relative relocation.  */
298   HOWTO (R_MMIX_PC_16,		/* type */
299 	 0,			/* rightshift */
300 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
301 	 16,			/* bitsize */
302 	 TRUE,			/* pc_relative */
303 	 0,			/* bitpos */
304 	 complain_overflow_bitfield, /* complain_on_overflow */
305 	 bfd_elf_generic_reloc,	/* special_function */
306 	 "R_MMIX_PC_16",	/* name */
307 	 FALSE,			/* partial_inplace */
308 	 0,			/* src_mask */
309 	 0xffff,		/* dst_mask */
310 	 TRUE),			/* pcrel_offset */
311 
312   /* An 24 bit PC-relative relocation.  */
313   HOWTO (R_MMIX_PC_24,		/* type */
314 	 0,			/* rightshift */
315 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
316 	 24,			/* bitsize */
317 	 TRUE,			/* pc_relative */
318 	 0,			/* bitpos */
319 	 complain_overflow_bitfield, /* complain_on_overflow */
320 	 bfd_elf_generic_reloc,	/* special_function */
321 	 "R_MMIX_PC_24",	/* name */
322 	 FALSE,			/* partial_inplace */
323 	 ~0xffffff,		/* src_mask */
324 	 0xffffff,		/* dst_mask */
325 	 TRUE),			/* pcrel_offset */
326 
327   /* A 32 bit absolute PC-relative relocation.  */
328   HOWTO (R_MMIX_PC_32,		/* type */
329 	 0,			/* rightshift */
330 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
331 	 32,			/* bitsize */
332 	 TRUE,			/* pc_relative */
333 	 0,			/* bitpos */
334 	 complain_overflow_bitfield, /* complain_on_overflow */
335 	 bfd_elf_generic_reloc,	/* special_function */
336 	 "R_MMIX_PC_32",	/* name */
337 	 FALSE,			/* partial_inplace */
338 	 0,			/* src_mask */
339 	 0xffffffff,		/* dst_mask */
340 	 TRUE),			/* pcrel_offset */
341 
342   /* 64 bit PC-relative relocation.  */
343   HOWTO (R_MMIX_PC_64,		/* type */
344 	 0,			/* rightshift */
345 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
346 	 64,			/* bitsize */
347 	 TRUE,			/* pc_relative */
348 	 0,			/* bitpos */
349 	 complain_overflow_bitfield, /* complain_on_overflow */
350 	 bfd_elf_generic_reloc,	/* special_function */
351 	 "R_MMIX_PC_64",	/* name */
352 	 FALSE,			/* partial_inplace */
353 	 0,			/* src_mask */
354 	 MINUS_ONE,		/* dst_mask */
355 	 TRUE),			/* pcrel_offset */
356 
357   /* GNU extension to record C++ vtable hierarchy.  */
358   HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 	 0,			/* rightshift */
360 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
361 	 0,			/* bitsize */
362 	 FALSE,			/* pc_relative */
363 	 0,			/* bitpos */
364 	 complain_overflow_dont, /* complain_on_overflow */
365 	 NULL,			/* special_function */
366 	 "R_MMIX_GNU_VTINHERIT", /* name */
367 	 FALSE,			/* partial_inplace */
368 	 0,			/* src_mask */
369 	 0,			/* dst_mask */
370 	 TRUE),			/* pcrel_offset */
371 
372   /* GNU extension to record C++ vtable member usage.  */
373   HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
374 	 0,			/* rightshift */
375 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
376 	 0,			/* bitsize */
377 	 FALSE,			/* pc_relative */
378 	 0,			/* bitpos */
379 	 complain_overflow_dont, /* complain_on_overflow */
380 	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
381 	 "R_MMIX_GNU_VTENTRY", /* name */
382 	 FALSE,			/* partial_inplace */
383 	 0,			/* src_mask */
384 	 0,			/* dst_mask */
385 	 FALSE),		/* pcrel_offset */
386 
387   /* The GETA relocation is supposed to get any address that could
388      possibly be reached by the GETA instruction.  It can silently expand
389      to get a 64-bit operand, but will complain if any of the two least
390      significant bits are set.  The howto members reflect a simple GETA.  */
391   HOWTO (R_MMIX_GETA,		/* type */
392 	 2,			/* rightshift */
393 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
394 	 19,			/* bitsize */
395 	 TRUE,			/* pc_relative */
396 	 0,			/* bitpos */
397 	 complain_overflow_signed, /* complain_on_overflow */
398 	 mmix_elf_reloc,	/* special_function */
399 	 "R_MMIX_GETA",		/* name */
400 	 FALSE,			/* partial_inplace */
401 	 ~0x0100ffff,		/* src_mask */
402 	 0x0100ffff,		/* dst_mask */
403 	 TRUE),			/* pcrel_offset */
404 
405   HOWTO (R_MMIX_GETA_1,		/* type */
406 	 2,			/* rightshift */
407 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
408 	 19,			/* bitsize */
409 	 TRUE,			/* pc_relative */
410 	 0,			/* bitpos */
411 	 complain_overflow_signed, /* complain_on_overflow */
412 	 mmix_elf_reloc,	/* special_function */
413 	 "R_MMIX_GETA_1",		/* name */
414 	 FALSE,			/* partial_inplace */
415 	 ~0x0100ffff,		/* src_mask */
416 	 0x0100ffff,		/* dst_mask */
417 	 TRUE),			/* pcrel_offset */
418 
419   HOWTO (R_MMIX_GETA_2,		/* type */
420 	 2,			/* rightshift */
421 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
422 	 19,			/* bitsize */
423 	 TRUE,			/* pc_relative */
424 	 0,			/* bitpos */
425 	 complain_overflow_signed, /* complain_on_overflow */
426 	 mmix_elf_reloc,	/* special_function */
427 	 "R_MMIX_GETA_2",		/* name */
428 	 FALSE,			/* partial_inplace */
429 	 ~0x0100ffff,		/* src_mask */
430 	 0x0100ffff,		/* dst_mask */
431 	 TRUE),			/* pcrel_offset */
432 
433   HOWTO (R_MMIX_GETA_3,		/* type */
434 	 2,			/* rightshift */
435 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
436 	 19,			/* bitsize */
437 	 TRUE,			/* pc_relative */
438 	 0,			/* bitpos */
439 	 complain_overflow_signed, /* complain_on_overflow */
440 	 mmix_elf_reloc,	/* special_function */
441 	 "R_MMIX_GETA_3",		/* name */
442 	 FALSE,			/* partial_inplace */
443 	 ~0x0100ffff,		/* src_mask */
444 	 0x0100ffff,		/* dst_mask */
445 	 TRUE),			/* pcrel_offset */
446 
447   /* The conditional branches are supposed to reach any (code) address.
448      It can silently expand to a 64-bit operand, but will emit an error if
449      any of the two least significant bits are set.  The howto members
450      reflect a simple branch.  */
451   HOWTO (R_MMIX_CBRANCH,	/* type */
452 	 2,			/* rightshift */
453 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
454 	 19,			/* bitsize */
455 	 TRUE,			/* pc_relative */
456 	 0,			/* bitpos */
457 	 complain_overflow_signed, /* complain_on_overflow */
458 	 mmix_elf_reloc,	/* special_function */
459 	 "R_MMIX_CBRANCH",	/* name */
460 	 FALSE,			/* partial_inplace */
461 	 ~0x0100ffff,		/* src_mask */
462 	 0x0100ffff,		/* dst_mask */
463 	 TRUE),		       	/* pcrel_offset */
464 
465   HOWTO (R_MMIX_CBRANCH_J,	/* type */
466 	 2,			/* rightshift */
467 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
468 	 19,			/* bitsize */
469 	 TRUE,			/* pc_relative */
470 	 0,			/* bitpos */
471 	 complain_overflow_signed, /* complain_on_overflow */
472 	 mmix_elf_reloc,	/* special_function */
473 	 "R_MMIX_CBRANCH_J",	/* name */
474 	 FALSE,			/* partial_inplace */
475 	 ~0x0100ffff,		/* src_mask */
476 	 0x0100ffff,		/* dst_mask */
477 	 TRUE),			/* pcrel_offset */
478 
479   HOWTO (R_MMIX_CBRANCH_1,	/* type */
480 	 2,			/* rightshift */
481 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
482 	 19,			/* bitsize */
483 	 TRUE,			/* pc_relative */
484 	 0,			/* bitpos */
485 	 complain_overflow_signed, /* complain_on_overflow */
486 	 mmix_elf_reloc,	/* special_function */
487 	 "R_MMIX_CBRANCH_1",	/* name */
488 	 FALSE,			/* partial_inplace */
489 	 ~0x0100ffff,		/* src_mask */
490 	 0x0100ffff,		/* dst_mask */
491 	 TRUE),			/* pcrel_offset */
492 
493   HOWTO (R_MMIX_CBRANCH_2,	/* type */
494 	 2,			/* rightshift */
495 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
496 	 19,			/* bitsize */
497 	 TRUE,			/* pc_relative */
498 	 0,			/* bitpos */
499 	 complain_overflow_signed, /* complain_on_overflow */
500 	 mmix_elf_reloc,	/* special_function */
501 	 "R_MMIX_CBRANCH_2",	/* name */
502 	 FALSE,			/* partial_inplace */
503 	 ~0x0100ffff,		/* src_mask */
504 	 0x0100ffff,		/* dst_mask */
505 	 TRUE),			/* pcrel_offset */
506 
507   HOWTO (R_MMIX_CBRANCH_3,	/* type */
508 	 2,			/* rightshift */
509 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
510 	 19,			/* bitsize */
511 	 TRUE,			/* pc_relative */
512 	 0,			/* bitpos */
513 	 complain_overflow_signed, /* complain_on_overflow */
514 	 mmix_elf_reloc,	/* special_function */
515 	 "R_MMIX_CBRANCH_3",	/* name */
516 	 FALSE,			/* partial_inplace */
517 	 ~0x0100ffff,		/* src_mask */
518 	 0x0100ffff,		/* dst_mask */
519 	 TRUE),			/* pcrel_offset */
520 
521   /* The PUSHJ instruction can reach any (code) address, as long as it's
522      the beginning of a function (no usable restriction).  It can silently
523      expand to a 64-bit operand, but will emit an error if any of the two
524      least significant bits are set.  It can also expand into a call to a
525      stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
526      PUSHJ.  */
527   HOWTO (R_MMIX_PUSHJ,		/* type */
528 	 2,			/* rightshift */
529 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
530 	 19,			/* bitsize */
531 	 TRUE,			/* pc_relative */
532 	 0,			/* bitpos */
533 	 complain_overflow_signed, /* complain_on_overflow */
534 	 mmix_elf_reloc,	/* special_function */
535 	 "R_MMIX_PUSHJ",	/* name */
536 	 FALSE,			/* partial_inplace */
537 	 ~0x0100ffff,		/* src_mask */
538 	 0x0100ffff,		/* dst_mask */
539 	 TRUE),			/* pcrel_offset */
540 
541   HOWTO (R_MMIX_PUSHJ_1,	/* type */
542 	 2,			/* rightshift */
543 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
544 	 19,			/* bitsize */
545 	 TRUE,			/* pc_relative */
546 	 0,			/* bitpos */
547 	 complain_overflow_signed, /* complain_on_overflow */
548 	 mmix_elf_reloc,	/* special_function */
549 	 "R_MMIX_PUSHJ_1",	/* name */
550 	 FALSE,			/* partial_inplace */
551 	 ~0x0100ffff,		/* src_mask */
552 	 0x0100ffff,		/* dst_mask */
553 	 TRUE),			/* pcrel_offset */
554 
555   HOWTO (R_MMIX_PUSHJ_2,	/* type */
556 	 2,			/* rightshift */
557 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
558 	 19,			/* bitsize */
559 	 TRUE,			/* pc_relative */
560 	 0,			/* bitpos */
561 	 complain_overflow_signed, /* complain_on_overflow */
562 	 mmix_elf_reloc,	/* special_function */
563 	 "R_MMIX_PUSHJ_2",	/* name */
564 	 FALSE,			/* partial_inplace */
565 	 ~0x0100ffff,		/* src_mask */
566 	 0x0100ffff,		/* dst_mask */
567 	 TRUE),			/* pcrel_offset */
568 
569   HOWTO (R_MMIX_PUSHJ_3,	/* type */
570 	 2,			/* rightshift */
571 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
572 	 19,			/* bitsize */
573 	 TRUE,			/* pc_relative */
574 	 0,			/* bitpos */
575 	 complain_overflow_signed, /* complain_on_overflow */
576 	 mmix_elf_reloc,	/* special_function */
577 	 "R_MMIX_PUSHJ_3",	/* name */
578 	 FALSE,			/* partial_inplace */
579 	 ~0x0100ffff,		/* src_mask */
580 	 0x0100ffff,		/* dst_mask */
581 	 TRUE),			/* pcrel_offset */
582 
583   /* A JMP is supposed to reach any (code) address.  By itself, it can
584      reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
585      limit is soon reached if you link the program in wildly different
586      memory segments.  The howto members reflect a trivial JMP.  */
587   HOWTO (R_MMIX_JMP,		/* type */
588 	 2,			/* rightshift */
589 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
590 	 27,			/* bitsize */
591 	 TRUE,			/* pc_relative */
592 	 0,			/* bitpos */
593 	 complain_overflow_signed, /* complain_on_overflow */
594 	 mmix_elf_reloc,	/* special_function */
595 	 "R_MMIX_JMP",		/* name */
596 	 FALSE,			/* partial_inplace */
597 	 ~0x1ffffff,		/* src_mask */
598 	 0x1ffffff,		/* dst_mask */
599 	 TRUE),			/* pcrel_offset */
600 
601   HOWTO (R_MMIX_JMP_1,		/* type */
602 	 2,			/* rightshift */
603 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
604 	 27,			/* bitsize */
605 	 TRUE,			/* pc_relative */
606 	 0,			/* bitpos */
607 	 complain_overflow_signed, /* complain_on_overflow */
608 	 mmix_elf_reloc,	/* special_function */
609 	 "R_MMIX_JMP_1",	/* name */
610 	 FALSE,			/* partial_inplace */
611 	 ~0x1ffffff,		/* src_mask */
612 	 0x1ffffff,		/* dst_mask */
613 	 TRUE),			/* pcrel_offset */
614 
615   HOWTO (R_MMIX_JMP_2,		/* type */
616 	 2,			/* rightshift */
617 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
618 	 27,			/* bitsize */
619 	 TRUE,			/* pc_relative */
620 	 0,			/* bitpos */
621 	 complain_overflow_signed, /* complain_on_overflow */
622 	 mmix_elf_reloc,	/* special_function */
623 	 "R_MMIX_JMP_2",	/* name */
624 	 FALSE,			/* partial_inplace */
625 	 ~0x1ffffff,		/* src_mask */
626 	 0x1ffffff,		/* dst_mask */
627 	 TRUE),			/* pcrel_offset */
628 
629   HOWTO (R_MMIX_JMP_3,		/* type */
630 	 2,			/* rightshift */
631 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
632 	 27,			/* bitsize */
633 	 TRUE,			/* pc_relative */
634 	 0,			/* bitpos */
635 	 complain_overflow_signed, /* complain_on_overflow */
636 	 mmix_elf_reloc,	/* special_function */
637 	 "R_MMIX_JMP_3",	/* name */
638 	 FALSE,			/* partial_inplace */
639 	 ~0x1ffffff,		/* src_mask */
640 	 0x1ffffff,		/* dst_mask */
641 	 TRUE),			/* pcrel_offset */
642 
643   /* When we don't emit link-time-relaxable code from the assembler, or
644      when relaxation has done all it can do, these relocs are used.  For
645      GETA/PUSHJ/branches.  */
646   HOWTO (R_MMIX_ADDR19,		/* type */
647 	 2,			/* rightshift */
648 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
649 	 19,			/* bitsize */
650 	 TRUE,			/* pc_relative */
651 	 0,			/* bitpos */
652 	 complain_overflow_signed, /* complain_on_overflow */
653 	 mmix_elf_reloc,	/* special_function */
654 	 "R_MMIX_ADDR19",	/* name */
655 	 FALSE,			/* partial_inplace */
656 	 ~0x0100ffff,		/* src_mask */
657 	 0x0100ffff,		/* dst_mask */
658 	 TRUE),			/* pcrel_offset */
659 
660   /* For JMP.  */
661   HOWTO (R_MMIX_ADDR27,		/* type */
662 	 2,			/* rightshift */
663 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
664 	 27,			/* bitsize */
665 	 TRUE,			/* pc_relative */
666 	 0,			/* bitpos */
667 	 complain_overflow_signed, /* complain_on_overflow */
668 	 mmix_elf_reloc,	/* special_function */
669 	 "R_MMIX_ADDR27",	/* name */
670 	 FALSE,			/* partial_inplace */
671 	 ~0x1ffffff,		/* src_mask */
672 	 0x1ffffff,		/* dst_mask */
673 	 TRUE),			/* pcrel_offset */
674 
675   /* A general register or the value 0..255.  If a value, then the
676      instruction (offset -3) needs adjusting.  */
677   HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
678 	 0,			/* rightshift */
679 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
680 	 8,			/* bitsize */
681 	 FALSE,			/* pc_relative */
682 	 0,			/* bitpos */
683 	 complain_overflow_bitfield, /* complain_on_overflow */
684 	 mmix_elf_reloc,	/* special_function */
685 	 "R_MMIX_REG_OR_BYTE",	/* name */
686 	 FALSE,			/* partial_inplace */
687 	 0,			/* src_mask */
688 	 0xff,			/* dst_mask */
689 	 FALSE),		/* pcrel_offset */
690 
691   /* A general register.  */
692   HOWTO (R_MMIX_REG,		/* type */
693 	 0,			/* rightshift */
694 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
695 	 8,			/* bitsize */
696 	 FALSE,			/* pc_relative */
697 	 0,			/* bitpos */
698 	 complain_overflow_bitfield, /* complain_on_overflow */
699 	 mmix_elf_reloc,	/* special_function */
700 	 "R_MMIX_REG",		/* name */
701 	 FALSE,			/* partial_inplace */
702 	 0,			/* src_mask */
703 	 0xff,			/* dst_mask */
704 	 FALSE),		/* pcrel_offset */
705 
706   /* A register plus an index, corresponding to the relocation expression.
707      The sizes must correspond to the valid range of the expression, while
708      the bitmasks correspond to what we store in the image.  */
709   HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
710 	 0,			/* rightshift */
711 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
712 	 64,			/* bitsize */
713 	 FALSE,			/* pc_relative */
714 	 0,			/* bitpos */
715 	 complain_overflow_bitfield, /* complain_on_overflow */
716 	 mmix_elf_reloc,	/* special_function */
717 	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 	 FALSE,			/* partial_inplace */
719 	 0,			/* src_mask */
720 	 0xffff,		/* dst_mask */
721 	 FALSE),		/* pcrel_offset */
722 
723   /* A "magic" relocation for a LOCAL expression, asserting that the
724      expression is less than the number of global registers.  No actual
725      modification of the contents is done.  Implementing this as a
726      relocation was less intrusive than e.g. putting such expressions in a
727      section to discard *after* relocation.  */
728   HOWTO (R_MMIX_LOCAL,		/* type */
729 	 0,			/* rightshift */
730 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
731 	 0,			/* bitsize */
732 	 FALSE,			/* pc_relative */
733 	 0,			/* bitpos */
734 	 complain_overflow_dont, /* complain_on_overflow */
735 	 mmix_elf_reloc,	/* special_function */
736 	 "R_MMIX_LOCAL",	/* name */
737 	 FALSE,			/* partial_inplace */
738 	 0,			/* src_mask */
739 	 0,			/* dst_mask */
740 	 FALSE),		/* pcrel_offset */
741 
742   HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 	 2,			/* rightshift */
744 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
745 	 19,			/* bitsize */
746 	 TRUE,			/* pc_relative */
747 	 0,			/* bitpos */
748 	 complain_overflow_signed, /* complain_on_overflow */
749 	 mmix_elf_reloc,	/* special_function */
750 	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 	 FALSE,			/* partial_inplace */
752 	 ~0x0100ffff,		/* src_mask */
753 	 0x0100ffff,		/* dst_mask */
754 	 TRUE)			/* pcrel_offset */
755  };
756 
757 
758 /* Map BFD reloc types to MMIX ELF reloc types.  */
759 
760 struct mmix_reloc_map
761   {
762     bfd_reloc_code_real_type bfd_reloc_val;
763     enum elf_mmix_reloc_type elf_reloc_val;
764   };
765 
766 
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768   {
769     {BFD_RELOC_NONE, R_MMIX_NONE},
770     {BFD_RELOC_8, R_MMIX_8},
771     {BFD_RELOC_16, R_MMIX_16},
772     {BFD_RELOC_24, R_MMIX_24},
773     {BFD_RELOC_32, R_MMIX_32},
774     {BFD_RELOC_64, R_MMIX_64},
775     {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776     {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777     {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778     {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779     {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780     {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781     {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782     {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783     {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784     {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785     {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786     {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787     {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788     {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789     {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790     {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791     {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792     {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793   };
794 
795 static reloc_howto_type *
bfd_elf64_bfd_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 				 bfd_reloc_code_real_type code)
798 {
799   unsigned int i;
800 
801   for (i = 0;
802        i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803        i++)
804     {
805       if (mmix_reloc_map[i].bfd_reloc_val == code)
806 	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807     }
808 
809   return NULL;
810 }
811 
812 static reloc_howto_type *
bfd_elf64_bfd_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 				 const char *r_name)
815 {
816   unsigned int i;
817 
818   for (i = 0;
819        i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820        i++)
821     if (elf_mmix_howto_table[i].name != NULL
822 	&& strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823       return &elf_mmix_howto_table[i];
824 
825   return NULL;
826 }
827 
828 static bfd_boolean
mmix_elf_new_section_hook(bfd * abfd,asection * sec)829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831   if (!sec->used_by_bfd)
832     {
833       struct _mmix_elf_section_data *sdata;
834       bfd_size_type amt = sizeof (*sdata);
835 
836       sdata = bfd_zalloc (abfd, amt);
837       if (sdata == NULL)
838 	return FALSE;
839       sec->used_by_bfd = sdata;
840     }
841 
842   return _bfd_elf_new_section_hook (abfd, sec);
843 }
844 
845 
846 /* This function performs the actual bitfiddling and sanity check for a
847    final relocation.  Each relocation gets its *worst*-case expansion
848    in size when it arrives here; any reduction in size should have been
849    caught in linker relaxation earlier.  When we get here, the relocation
850    looks like the smallest instruction with SWYM:s (nop:s) appended to the
851    max size.  We fill in those nop:s.
852 
853    R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854     GETA $N,foo
855    ->
856     SETL $N,foo & 0xffff
857     INCML $N,(foo >> 16) & 0xffff
858     INCMH $N,(foo >> 32) & 0xffff
859     INCH $N,(foo >> 48) & 0xffff
860 
861    R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862    condbranches needing relaxation might be rare enough to not be
863    worthwhile.)
864     [P]Bcc $N,foo
865    ->
866     [~P]B~cc $N,.+20
867     SETL $255,foo & ...
868     INCML ...
869     INCMH ...
870     INCH ...
871     GO $255,$255,0
872 
873    R_MMIX_PUSHJ: (FIXME: Relaxation...)
874     PUSHJ $N,foo
875    ->
876     SETL $255,foo & ...
877     INCML ...
878     INCMH ...
879     INCH ...
880     PUSHGO $N,$255,0
881 
882    R_MMIX_JMP: (FIXME: Relaxation...)
883     JMP foo
884    ->
885     SETL $255,foo & ...
886     INCML ...
887     INCMH ...
888     INCH ...
889     GO $255,$255,0
890 
891    R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
892 
893 static bfd_reloc_status_type
mmix_elf_perform_relocation(asection * isec,reloc_howto_type * howto,void * datap,bfd_vma addr,bfd_vma value,char ** error_message)894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 			     void *datap, bfd_vma addr, bfd_vma value,
896 			     char **error_message)
897 {
898   bfd *abfd = isec->owner;
899   bfd_reloc_status_type flag = bfd_reloc_ok;
900   bfd_reloc_status_type r;
901   int offs = 0;
902   int reg = 255;
903 
904   /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905      We handle the differences here and the common sequence later.  */
906   switch (howto->type)
907     {
908     case R_MMIX_GETA:
909       offs = 0;
910       reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911 
912       /* We change to an absolute value.  */
913       value += addr;
914       break;
915 
916     case R_MMIX_CBRANCH:
917       {
918 	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919 
920 	/* Invert the condition and prediction bit, and set the offset
921 	   to five instructions ahead.
922 
923 	   We *can* do better if we want to.  If the branch is found to be
924 	   within limits, we could leave the branch as is; there'll just
925 	   be a bunch of NOP:s after it.  But we shouldn't see this
926 	   sequence often enough that it's worth doing it.  */
927 
928 	bfd_put_32 (abfd,
929 		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 		     | (24/4)),
931 		    (bfd_byte *) datap);
932 
933 	/* Put a "GO $255,$255,0" after the common sequence.  */
934 	bfd_put_32 (abfd,
935 		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 		    (bfd_byte *) datap + 20);
937 
938 	/* Common sequence starts at offset 4.  */
939 	offs = 4;
940 
941 	/* We change to an absolute value.  */
942 	value += addr;
943       }
944       break;
945 
946     case R_MMIX_PUSHJ_STUBBABLE:
947       /* If the address fits, we're fine.  */
948       if ((value & 3) == 0
949 	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
950 	  && (r = bfd_check_overflow (complain_overflow_signed,
951 				      howto->bitsize,
952 				      0,
953 				      bfd_arch_bits_per_address (abfd),
954 				      value)) == bfd_reloc_ok)
955 	goto pcrel_mmix_reloc_fits;
956       else
957 	{
958 	  bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959 
960 	  /* We have the bytes at the PUSHJ insn and need to get the
961 	     position for the stub.  There's supposed to be room allocated
962 	     for the stub.  */
963 	  bfd_byte *stubcontents
964 	    = ((bfd_byte *) datap
965 	       - (addr - (isec->output_section->vma + isec->output_offset))
966 	       + size
967 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
968 	  bfd_vma stubaddr;
969 
970 	  if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 	    {
972 	      /* This shouldn't happen when linking to ELF or mmo, so
973 		 this is an attempt to link to "binary", right?  We
974 		 can't access the output bfd, so we can't verify that
975 		 assumption.  We only know that the critical
976 		 mmix_elf_check_common_relocs has not been called,
977 		 which happens when the output format is different
978 		 from the input format (and is not mmo).  */
979 	      if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 		{
981 		  /* For the first such error per input section, produce
982 		     a verbose message.  */
983 		  *error_message
984 		    = _("invalid input relocation when producing"
985 			" non-ELF, non-mmo format output."
986 			"\n Please use the objcopy program to convert from"
987 			" ELF or mmo,"
988 			"\n or assemble using"
989 			" \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 		  mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 		  return bfd_reloc_dangerous;
992 		}
993 
994 	      /* For subsequent errors, return this one, which is
995 		 rate-limited but looks a little bit different,
996 		 hopefully without affecting user-friendliness.  */
997 	      return bfd_reloc_overflow;
998 	    }
999 
1000 	  /* The address doesn't fit, so redirect the PUSHJ to the
1001 	     location of the stub.  */
1002 	  r = mmix_elf_perform_relocation (isec,
1003 					   &elf_mmix_howto_table
1004 					   [R_MMIX_ADDR19],
1005 					   datap,
1006 					   addr,
1007 					   isec->output_section->vma
1008 					   + isec->output_offset
1009 					   + size
1010 					   + (mmix_elf_section_data (isec)
1011 					      ->pjs.stub_offset)
1012 					   - addr,
1013 					   error_message);
1014 	  if (r != bfd_reloc_ok)
1015 	    return r;
1016 
1017 	  stubaddr
1018 	    = (isec->output_section->vma
1019 	       + isec->output_offset
1020 	       + size
1021 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1022 
1023 	  /* We generate a simple JMP if that suffices, else the whole 5
1024 	     insn stub.  */
1025 	  if (bfd_check_overflow (complain_overflow_signed,
1026 				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 				  0,
1028 				  bfd_arch_bits_per_address (abfd),
1029 				  addr + value - stubaddr) == bfd_reloc_ok)
1030 	    {
1031 	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 	      r = mmix_elf_perform_relocation (isec,
1033 					       &elf_mmix_howto_table
1034 					       [R_MMIX_ADDR27],
1035 					       stubcontents,
1036 					       stubaddr,
1037 					       value + addr - stubaddr,
1038 					       error_message);
1039 	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040 
1041 	      if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 		  > isec->size)
1043 		abort ();
1044 
1045 	      return r;
1046 	    }
1047 	  else
1048 	    {
1049 	      /* Put a "GO $255,0" after the common sequence.  */
1050 	      bfd_put_32 (abfd,
1051 			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 			  | 0xff00, (bfd_byte *) stubcontents + 16);
1053 
1054 	      /* Prepare for the general code to set the first part of the
1055 		 linker stub, and */
1056 	      value += addr;
1057 	      datap = stubcontents;
1058 	      mmix_elf_section_data (isec)->pjs.stub_offset
1059 		+= MAX_PUSHJ_STUB_SIZE;
1060 	    }
1061 	}
1062       break;
1063 
1064     case R_MMIX_PUSHJ:
1065       {
1066 	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067 
1068 	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1069 	bfd_put_32 (abfd,
1070 		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 		    | (inreg << 16)
1072 		    | 0xff00,
1073 		    (bfd_byte *) datap + 16);
1074 
1075 	/* We change to an absolute value.  */
1076 	value += addr;
1077       }
1078       break;
1079 
1080     case R_MMIX_JMP:
1081       /* This one is a little special.  If we get here on a non-relaxing
1082 	 link, and the destination is actually in range, we don't need to
1083 	 execute the nops.
1084 	 If so, we fall through to the bit-fiddling relocs.
1085 
1086 	 FIXME: bfd_check_overflow seems broken; the relocation is
1087 	 rightshifted before testing, so supply a zero rightshift.  */
1088 
1089       if (! ((value & 3) == 0
1090 	     && (r = bfd_check_overflow (complain_overflow_signed,
1091 					 howto->bitsize,
1092 					 0,
1093 					 bfd_arch_bits_per_address (abfd),
1094 					 value)) == bfd_reloc_ok))
1095 	{
1096 	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 	     modified below, and put a "GO $255,$255,0" after the
1098 	     address-loading sequence.  */
1099 	  bfd_put_32 (abfd,
1100 		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 		      | 0xffff00,
1102 		      (bfd_byte *) datap + 16);
1103 
1104 	  /* We change to an absolute value.  */
1105 	  value += addr;
1106 	  break;
1107 	}
1108       /* FALLTHROUGH.  */
1109     case R_MMIX_ADDR19:
1110     case R_MMIX_ADDR27:
1111     pcrel_mmix_reloc_fits:
1112       /* These must be in range, or else we emit an error.  */
1113       if ((value & 3) == 0
1114 	  /* Note rightshift 0; see above.  */
1115 	  && (r = bfd_check_overflow (complain_overflow_signed,
1116 				      howto->bitsize,
1117 				      0,
1118 				      bfd_arch_bits_per_address (abfd),
1119 				      value)) == bfd_reloc_ok)
1120 	{
1121 	  bfd_vma in1
1122 	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 	  bfd_vma highbit;
1124 
1125 	  if ((bfd_signed_vma) value < 0)
1126 	    {
1127 	      highbit = 1 << 24;
1128 	      value += (1 << (howto->bitsize - 1));
1129 	    }
1130 	  else
1131 	    highbit = 0;
1132 
1133 	  value >>= 2;
1134 
1135 	  bfd_put_32 (abfd,
1136 		      (in1 & howto->src_mask)
1137 		      | highbit
1138 		      | (value & howto->dst_mask),
1139 		      (bfd_byte *) datap);
1140 
1141 	  return bfd_reloc_ok;
1142 	}
1143       else
1144 	return bfd_reloc_overflow;
1145 
1146     case R_MMIX_BASE_PLUS_OFFSET:
1147       {
1148 	struct bpo_reloc_section_info *bpodata
1149 	  = mmix_elf_section_data (isec)->bpo.reloc;
1150 	asection *bpo_greg_section;
1151 	struct bpo_greg_section_info *gregdata;
1152 	size_t bpo_index;
1153 
1154 	if (bpodata == NULL)
1155 	  {
1156 	    /* This shouldn't happen when linking to ELF or mmo, so
1157 	       this is an attempt to link to "binary", right?  We
1158 	       can't access the output bfd, so we can't verify that
1159 	       assumption.  We only know that the critical
1160 	       mmix_elf_check_common_relocs has not been called, which
1161 	       happens when the output format is different from the
1162 	       input format (and is not mmo).  */
1163 	    if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 	      {
1165 		/* For the first such error per input section, produce
1166 		   a verbose message.  */
1167 		*error_message
1168 		  = _("invalid input relocation when producing"
1169 		      " non-ELF, non-mmo format output."
1170 		      "\n Please use the objcopy program to convert from"
1171 		      " ELF or mmo,"
1172 		      "\n or compile using the gcc-option"
1173 		      " \"-mno-base-addresses\".");
1174 		mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 		return bfd_reloc_dangerous;
1176 	      }
1177 
1178 	    /* For subsequent errors, return this one, which is
1179 	       rate-limited but looks a little bit different,
1180 	       hopefully without affecting user-friendliness.  */
1181 	    return bfd_reloc_overflow;
1182 	  }
1183 
1184 	bpo_greg_section = bpodata->bpo_greg_section;
1185 	gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 	bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187 
1188 	/* A consistency check: The value we now have in "relocation" must
1189 	   be the same as the value we stored for that relocation.  It
1190 	   doesn't cost much, so can be left in at all times.  */
1191 	if (value != gregdata->reloc_request[bpo_index].value)
1192 	  {
1193 	    (*_bfd_error_handler)
1194 	      (_("%s: Internal inconsistency error for value for\n\
1195  linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1196 	       bfd_get_filename (isec->owner),
1197 	       (unsigned long) (value >> 32), (unsigned long) value,
1198 	       (unsigned long) (gregdata->reloc_request[bpo_index].value
1199 				>> 32),
1200 	       (unsigned long) gregdata->reloc_request[bpo_index].value);
1201 	    bfd_set_error (bfd_error_bad_value);
1202 	    return bfd_reloc_overflow;
1203 	  }
1204 
1205 	/* Then store the register number and offset for that register
1206 	   into datap and datap + 1 respectively.  */
1207 	bfd_put_8 (abfd,
1208 		   gregdata->reloc_request[bpo_index].regindex
1209 		   + bpo_greg_section->output_section->vma / 8,
1210 		   datap);
1211 	bfd_put_8 (abfd,
1212 		   gregdata->reloc_request[bpo_index].offset,
1213 		   ((unsigned char *) datap) + 1);
1214 	return bfd_reloc_ok;
1215       }
1216 
1217     case R_MMIX_REG_OR_BYTE:
1218     case R_MMIX_REG:
1219       if (value > 255)
1220 	return bfd_reloc_overflow;
1221       bfd_put_8 (abfd, value, datap);
1222       return bfd_reloc_ok;
1223 
1224     default:
1225       BAD_CASE (howto->type);
1226     }
1227 
1228   /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1229      sequence.  */
1230 
1231   /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1232      everything that looks strange.  */
1233   if (value & 3)
1234     flag = bfd_reloc_overflow;
1235 
1236   bfd_put_32 (abfd,
1237 	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1238 	      (bfd_byte *) datap + offs);
1239   bfd_put_32 (abfd,
1240 	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1241 	      (bfd_byte *) datap + offs + 4);
1242   bfd_put_32 (abfd,
1243 	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1244 	      (bfd_byte *) datap + offs + 8);
1245   bfd_put_32 (abfd,
1246 	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1247 	      (bfd_byte *) datap + offs + 12);
1248 
1249   return flag;
1250 }
1251 
1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1253 
1254 static void
mmix_info_to_howto_rela(bfd * abfd ATTRIBUTE_UNUSED,arelent * cache_ptr,Elf_Internal_Rela * dst)1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1256 			 arelent *cache_ptr,
1257 			 Elf_Internal_Rela *dst)
1258 {
1259   unsigned int r_type;
1260 
1261   r_type = ELF64_R_TYPE (dst->r_info);
1262   BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1263   cache_ptr->howto = &elf_mmix_howto_table[r_type];
1264 }
1265 
1266 /* Any MMIX-specific relocation gets here at assembly time or when linking
1267    to other formats (such as mmo); this is the relocation function from
1268    the reloc_table.  We don't get here for final pure ELF linking.  */
1269 
1270 static bfd_reloc_status_type
mmix_elf_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)1271 mmix_elf_reloc (bfd *abfd,
1272 		arelent *reloc_entry,
1273 		asymbol *symbol,
1274 		void * data,
1275 		asection *input_section,
1276 		bfd *output_bfd,
1277 		char **error_message)
1278 {
1279   bfd_vma relocation;
1280   bfd_reloc_status_type r;
1281   asection *reloc_target_output_section;
1282   bfd_reloc_status_type flag = bfd_reloc_ok;
1283   bfd_vma output_base = 0;
1284 
1285   r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1286 			     input_section, output_bfd, error_message);
1287 
1288   /* If that was all that was needed (i.e. this isn't a final link, only
1289      some segment adjustments), we're done.  */
1290   if (r != bfd_reloc_continue)
1291     return r;
1292 
1293   if (bfd_is_und_section (symbol->section)
1294       && (symbol->flags & BSF_WEAK) == 0
1295       && output_bfd == (bfd *) NULL)
1296     return bfd_reloc_undefined;
1297 
1298   /* Is the address of the relocation really within the section?  */
1299   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1300     return bfd_reloc_outofrange;
1301 
1302   /* Work out which section the relocation is targeted at and the
1303      initial relocation command value.  */
1304 
1305   /* Get symbol value.  (Common symbols are special.)  */
1306   if (bfd_is_com_section (symbol->section))
1307     relocation = 0;
1308   else
1309     relocation = symbol->value;
1310 
1311   reloc_target_output_section = bfd_get_output_section (symbol);
1312 
1313   /* Here the variable relocation holds the final address of the symbol we
1314      are relocating against, plus any addend.  */
1315   if (output_bfd)
1316     output_base = 0;
1317   else
1318     output_base = reloc_target_output_section->vma;
1319 
1320   relocation += output_base + symbol->section->output_offset;
1321 
1322   if (output_bfd != (bfd *) NULL)
1323     {
1324       /* Add in supplied addend.  */
1325       relocation += reloc_entry->addend;
1326 
1327       /* This is a partial relocation, and we want to apply the
1328 	 relocation to the reloc entry rather than the raw data.
1329 	 Modify the reloc inplace to reflect what we now know.  */
1330       reloc_entry->addend = relocation;
1331       reloc_entry->address += input_section->output_offset;
1332       return flag;
1333     }
1334 
1335   return mmix_final_link_relocate (reloc_entry->howto, input_section,
1336 				   data, reloc_entry->address,
1337 				   reloc_entry->addend, relocation,
1338 				   bfd_asymbol_name (symbol),
1339 				   reloc_target_output_section,
1340 				   error_message);
1341 }
1342 
1343 /* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1344    for guidance if you're thinking of copying this.  */
1345 
1346 static bfd_boolean
mmix_elf_relocate_section(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)1347 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1348 			   struct bfd_link_info *info,
1349 			   bfd *input_bfd,
1350 			   asection *input_section,
1351 			   bfd_byte *contents,
1352 			   Elf_Internal_Rela *relocs,
1353 			   Elf_Internal_Sym *local_syms,
1354 			   asection **local_sections)
1355 {
1356   Elf_Internal_Shdr *symtab_hdr;
1357   struct elf_link_hash_entry **sym_hashes;
1358   Elf_Internal_Rela *rel;
1359   Elf_Internal_Rela *relend;
1360   bfd_size_type size;
1361   size_t pjsno = 0;
1362 
1363   size = input_section->rawsize ? input_section->rawsize : input_section->size;
1364   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1365   sym_hashes = elf_sym_hashes (input_bfd);
1366   relend = relocs + input_section->reloc_count;
1367 
1368   /* Zero the stub area before we start.  */
1369   if (input_section->rawsize != 0
1370       && input_section->size > input_section->rawsize)
1371     memset (contents + input_section->rawsize, 0,
1372 	    input_section->size - input_section->rawsize);
1373 
1374   for (rel = relocs; rel < relend; rel ++)
1375     {
1376       reloc_howto_type *howto;
1377       unsigned long r_symndx;
1378       Elf_Internal_Sym *sym;
1379       asection *sec;
1380       struct elf_link_hash_entry *h;
1381       bfd_vma relocation;
1382       bfd_reloc_status_type r;
1383       const char *name = NULL;
1384       int r_type;
1385       bfd_boolean undefined_signalled = FALSE;
1386 
1387       r_type = ELF64_R_TYPE (rel->r_info);
1388 
1389       if (r_type == R_MMIX_GNU_VTINHERIT
1390 	  || r_type == R_MMIX_GNU_VTENTRY)
1391 	continue;
1392 
1393       r_symndx = ELF64_R_SYM (rel->r_info);
1394 
1395       howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1396       h = NULL;
1397       sym = NULL;
1398       sec = NULL;
1399 
1400       if (r_symndx < symtab_hdr->sh_info)
1401 	{
1402 	  sym = local_syms + r_symndx;
1403 	  sec = local_sections [r_symndx];
1404 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1405 
1406 	  name = bfd_elf_string_from_elf_section (input_bfd,
1407 						  symtab_hdr->sh_link,
1408 						  sym->st_name);
1409 	  if (name == NULL)
1410 	    name = bfd_section_name (input_bfd, sec);
1411 	}
1412       else
1413 	{
1414 	  bfd_boolean unresolved_reloc, ignored;
1415 
1416 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1417 				   r_symndx, symtab_hdr, sym_hashes,
1418 				   h, sec, relocation,
1419 				   unresolved_reloc, undefined_signalled,
1420 				   ignored);
1421 	  name = h->root.root.string;
1422 	}
1423 
1424       if (sec != NULL && discarded_section (sec))
1425 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1426 					 rel, 1, relend, howto, 0, contents);
1427 
1428       if (info->relocatable)
1429 	{
1430 	  /* This is a relocatable link.  For most relocs we don't have to
1431 	     change anything, unless the reloc is against a section
1432 	     symbol, in which case we have to adjust according to where
1433 	     the section symbol winds up in the output section.  */
1434 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1435 	    rel->r_addend += sec->output_offset;
1436 
1437 	  /* For PUSHJ stub relocs however, we may need to change the
1438 	     reloc and the section contents, if the reloc doesn't reach
1439 	     beyond the end of the output section and previous stubs.
1440 	     Then we change the section contents to be a PUSHJ to the end
1441 	     of the input section plus stubs (we can do that without using
1442 	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1443 	     at the stub location.  */
1444 	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1445 	    {
1446 	      /* We've already checked whether we need a stub; use that
1447 		 knowledge.  */
1448 	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1449 		  != 0)
1450 		{
1451 		  Elf_Internal_Rela relcpy;
1452 
1453 		  if (mmix_elf_section_data (input_section)
1454 		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1455 		    abort ();
1456 
1457 		  /* There's already a PUSHJ insn there, so just fill in
1458 		     the offset bits to the stub.  */
1459 		  if (mmix_final_link_relocate (elf_mmix_howto_table
1460 						+ R_MMIX_ADDR19,
1461 						input_section,
1462 						contents,
1463 						rel->r_offset,
1464 						0,
1465 						input_section
1466 						->output_section->vma
1467 						+ input_section->output_offset
1468 						+ size
1469 						+ mmix_elf_section_data (input_section)
1470 						->pjs.stub_offset,
1471 						NULL, NULL, NULL) != bfd_reloc_ok)
1472 		    return FALSE;
1473 
1474 		  /* Put a JMP insn at the stub; it goes with the
1475 		     R_MMIX_JMP reloc.  */
1476 		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1477 			      contents
1478 			      + size
1479 			      + mmix_elf_section_data (input_section)
1480 			      ->pjs.stub_offset);
1481 
1482 		  /* Change the reloc to be at the stub, and to a full
1483 		     R_MMIX_JMP reloc.  */
1484 		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1485 		  rel->r_offset
1486 		    = (size
1487 		       + mmix_elf_section_data (input_section)
1488 		       ->pjs.stub_offset);
1489 
1490 		  mmix_elf_section_data (input_section)->pjs.stub_offset
1491 		    += MAX_PUSHJ_STUB_SIZE;
1492 
1493 		  /* Shift this reloc to the end of the relocs to maintain
1494 		     the r_offset sorted reloc order.  */
1495 		  relcpy = *rel;
1496 		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1497 		  relend[-1] = relcpy;
1498 
1499 		  /* Back up one reloc, or else we'd skip the next reloc
1500 		   in turn.  */
1501 		  rel--;
1502 		}
1503 
1504 	      pjsno++;
1505 	    }
1506 	  continue;
1507 	}
1508 
1509       r = mmix_final_link_relocate (howto, input_section,
1510 				    contents, rel->r_offset,
1511 				    rel->r_addend, relocation, name, sec, NULL);
1512 
1513       if (r != bfd_reloc_ok)
1514 	{
1515 	  bfd_boolean check_ok = TRUE;
1516 	  const char * msg = (const char *) NULL;
1517 
1518 	  switch (r)
1519 	    {
1520 	    case bfd_reloc_overflow:
1521 	      check_ok = info->callbacks->reloc_overflow
1522 		(info, (h ? &h->root : NULL), name, howto->name,
1523 		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1524 	      break;
1525 
1526 	    case bfd_reloc_undefined:
1527 	      /* We may have sent this message above.  */
1528 	      if (! undefined_signalled)
1529 		check_ok = info->callbacks->undefined_symbol
1530 		  (info, name, input_bfd, input_section, rel->r_offset,
1531 		   TRUE);
1532 	      undefined_signalled = TRUE;
1533 	      break;
1534 
1535 	    case bfd_reloc_outofrange:
1536 	      msg = _("internal error: out of range error");
1537 	      break;
1538 
1539 	    case bfd_reloc_notsupported:
1540 	      msg = _("internal error: unsupported relocation error");
1541 	      break;
1542 
1543 	    case bfd_reloc_dangerous:
1544 	      msg = _("internal error: dangerous relocation");
1545 	      break;
1546 
1547 	    default:
1548 	      msg = _("internal error: unknown error");
1549 	      break;
1550 	    }
1551 
1552 	  if (msg)
1553 	    check_ok = info->callbacks->warning
1554 	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1555 
1556 	  if (! check_ok)
1557 	    return FALSE;
1558 	}
1559     }
1560 
1561   return TRUE;
1562 }
1563 
1564 /* Perform a single relocation.  By default we use the standard BFD
1565    routines.  A few relocs we have to do ourselves.  */
1566 
1567 static bfd_reloc_status_type
mmix_final_link_relocate(reloc_howto_type * howto,asection * input_section,bfd_byte * contents,bfd_vma r_offset,bfd_signed_vma r_addend,bfd_vma relocation,const char * symname,asection * symsec,char ** error_message)1568 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1569 			  bfd_byte *contents, bfd_vma r_offset,
1570 			  bfd_signed_vma r_addend, bfd_vma relocation,
1571 			  const char *symname, asection *symsec,
1572 			  char **error_message)
1573 {
1574   bfd_reloc_status_type r = bfd_reloc_ok;
1575   bfd_vma addr
1576     = (input_section->output_section->vma
1577        + input_section->output_offset
1578        + r_offset);
1579   bfd_signed_vma srel
1580     = (bfd_signed_vma) relocation + r_addend;
1581 
1582   switch (howto->type)
1583     {
1584       /* All these are PC-relative.  */
1585     case R_MMIX_PUSHJ_STUBBABLE:
1586     case R_MMIX_PUSHJ:
1587     case R_MMIX_CBRANCH:
1588     case R_MMIX_ADDR19:
1589     case R_MMIX_GETA:
1590     case R_MMIX_ADDR27:
1591     case R_MMIX_JMP:
1592       contents += r_offset;
1593 
1594       srel -= (input_section->output_section->vma
1595 	       + input_section->output_offset
1596 	       + r_offset);
1597 
1598       r = mmix_elf_perform_relocation (input_section, howto, contents,
1599 				       addr, srel, error_message);
1600       break;
1601 
1602     case R_MMIX_BASE_PLUS_OFFSET:
1603       if (symsec == NULL)
1604 	return bfd_reloc_undefined;
1605 
1606       /* Check that we're not relocating against a register symbol.  */
1607       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1608 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1609 	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1610 		     MMIX_REG_SECTION_NAME) == 0)
1611 	{
1612 	  /* Note: This is separated out into two messages in order
1613 	     to ease the translation into other languages.  */
1614 	  if (symname == NULL || *symname == 0)
1615 	    (*_bfd_error_handler)
1616 	      (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1617 	       bfd_get_filename (input_section->owner),
1618 	       bfd_get_section_name (symsec->owner, symsec));
1619 	  else
1620 	    (*_bfd_error_handler)
1621 	      (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1622 	       bfd_get_filename (input_section->owner), symname,
1623 	       bfd_get_section_name (symsec->owner, symsec));
1624 	  return bfd_reloc_overflow;
1625 	}
1626       goto do_mmix_reloc;
1627 
1628     case R_MMIX_REG_OR_BYTE:
1629     case R_MMIX_REG:
1630       /* For now, we handle these alike.  They must refer to an register
1631 	 symbol, which is either relative to the register section and in
1632 	 the range 0..255, or is in the register contents section with vma
1633 	 regno * 8.  */
1634 
1635       /* FIXME: A better way to check for reg contents section?
1636 	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1637       if (symsec == NULL)
1638 	return bfd_reloc_undefined;
1639 
1640       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1641 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1642 	{
1643 	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1644 	    {
1645 	      /* The bfd_reloc_outofrange return value, though intuitively
1646 		 a better value, will not get us an error.  */
1647 	      return bfd_reloc_overflow;
1648 	    }
1649 	  srel /= 8;
1650 	}
1651       else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1652 		       MMIX_REG_SECTION_NAME) == 0)
1653 	{
1654 	  if (srel < 0 || srel > 255)
1655 	    /* The bfd_reloc_outofrange return value, though intuitively a
1656 	       better value, will not get us an error.  */
1657 	    return bfd_reloc_overflow;
1658 	}
1659       else
1660 	{
1661 	  /* Note: This is separated out into two messages in order
1662 	     to ease the translation into other languages.  */
1663 	  if (symname == NULL || *symname == 0)
1664 	    (*_bfd_error_handler)
1665 	      (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1666 	       bfd_get_filename (input_section->owner),
1667 	       bfd_get_section_name (symsec->owner, symsec));
1668 	  else
1669 	    (*_bfd_error_handler)
1670 	      (_("%s: register relocation against non-register symbol: %s in %s"),
1671 	       bfd_get_filename (input_section->owner), symname,
1672 	       bfd_get_section_name (symsec->owner, symsec));
1673 
1674 	  /* The bfd_reloc_outofrange return value, though intuitively a
1675 	     better value, will not get us an error.  */
1676 	  return bfd_reloc_overflow;
1677 	}
1678     do_mmix_reloc:
1679       contents += r_offset;
1680       r = mmix_elf_perform_relocation (input_section, howto, contents,
1681 				       addr, srel, error_message);
1682       break;
1683 
1684     case R_MMIX_LOCAL:
1685       /* This isn't a real relocation, it's just an assertion that the
1686 	 final relocation value corresponds to a local register.  We
1687 	 ignore the actual relocation; nothing is changed.  */
1688       {
1689 	asection *regsec
1690 	  = bfd_get_section_by_name (input_section->output_section->owner,
1691 				     MMIX_REG_CONTENTS_SECTION_NAME);
1692 	bfd_vma first_global;
1693 
1694 	/* Check that this is an absolute value, or a reference to the
1695 	   register contents section or the register (symbol) section.
1696 	   Absolute numbers can get here as undefined section.  Undefined
1697 	   symbols are signalled elsewhere, so there's no conflict in us
1698 	   accidentally handling it.  */
1699 	if (!bfd_is_abs_section (symsec)
1700 	    && !bfd_is_und_section (symsec)
1701 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1702 		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1703 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1704 		       MMIX_REG_SECTION_NAME) != 0)
1705 	{
1706 	  (*_bfd_error_handler)
1707 	    (_("%s: directive LOCAL valid only with a register or absolute value"),
1708 	     bfd_get_filename (input_section->owner));
1709 
1710 	  return bfd_reloc_overflow;
1711 	}
1712 
1713       /* If we don't have a register contents section, then $255 is the
1714 	 first global register.  */
1715       if (regsec == NULL)
1716 	first_global = 255;
1717       else
1718 	{
1719 	  first_global
1720 	    = bfd_get_section_vma (input_section->output_section->owner,
1721 				   regsec) / 8;
1722 	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1723 		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1724 	    {
1725 	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1726 		/* The bfd_reloc_outofrange return value, though
1727 		   intuitively a better value, will not get us an error.  */
1728 		return bfd_reloc_overflow;
1729 	      srel /= 8;
1730 	    }
1731 	}
1732 
1733 	if ((bfd_vma) srel >= first_global)
1734 	  {
1735 	    /* FIXME: Better error message.  */
1736 	    (*_bfd_error_handler)
1737 	      (_("%s: LOCAL directive: Register $%ld is not a local register.  First global register is $%ld."),
1738 	       bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1739 
1740 	    return bfd_reloc_overflow;
1741 	  }
1742       }
1743       r = bfd_reloc_ok;
1744       break;
1745 
1746     default:
1747       r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1748 				    contents, r_offset,
1749 				    relocation, r_addend);
1750     }
1751 
1752   return r;
1753 }
1754 
1755 /* Return the section that should be marked against GC for a given
1756    relocation.  */
1757 
1758 static asection *
mmix_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)1759 mmix_elf_gc_mark_hook (asection *sec,
1760 		       struct bfd_link_info *info,
1761 		       Elf_Internal_Rela *rel,
1762 		       struct elf_link_hash_entry *h,
1763 		       Elf_Internal_Sym *sym)
1764 {
1765   if (h != NULL)
1766     switch (ELF64_R_TYPE (rel->r_info))
1767       {
1768       case R_MMIX_GNU_VTINHERIT:
1769       case R_MMIX_GNU_VTENTRY:
1770 	return NULL;
1771       }
1772 
1773   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1774 }
1775 
1776 /* Update relocation info for a GC-excluded section.  We could supposedly
1777    perform the allocation after GC, but there's no suitable hook between
1778    GC (or section merge) and the point when all input sections must be
1779    present.  Better to waste some memory and (perhaps) a little time.  */
1780 
1781 static bfd_boolean
mmix_elf_gc_sweep_hook(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)1782 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1783 			struct bfd_link_info *info ATTRIBUTE_UNUSED,
1784 			asection *sec,
1785 			const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1786 {
1787   struct bpo_reloc_section_info *bpodata
1788     = mmix_elf_section_data (sec)->bpo.reloc;
1789   asection *allocated_gregs_section;
1790 
1791   /* If no bpodata here, we have nothing to do.  */
1792   if (bpodata == NULL)
1793     return TRUE;
1794 
1795   allocated_gregs_section = bpodata->bpo_greg_section;
1796 
1797   mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1798     -= bpodata->n_bpo_relocs_this_section;
1799 
1800   return TRUE;
1801 }
1802 
1803 /* Sort register relocs to come before expanding relocs.  */
1804 
1805 static int
mmix_elf_sort_relocs(const void * p1,const void * p2)1806 mmix_elf_sort_relocs (const void * p1, const void * p2)
1807 {
1808   const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1809   const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1810   int r1_is_reg, r2_is_reg;
1811 
1812   /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1813      insns.  */
1814   if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1815     return 1;
1816   else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1817     return -1;
1818 
1819   r1_is_reg
1820     = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1821        || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1822   r2_is_reg
1823     = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1824        || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1825   if (r1_is_reg != r2_is_reg)
1826     return r2_is_reg - r1_is_reg;
1827 
1828   /* Neither or both are register relocs.  Then sort on full offset.  */
1829   if (r1->r_offset > r2->r_offset)
1830     return 1;
1831   else if (r1->r_offset < r2->r_offset)
1832     return -1;
1833   return 0;
1834 }
1835 
1836 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1837 
1838 static bfd_boolean
mmix_elf_check_common_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1839 mmix_elf_check_common_relocs  (bfd *abfd,
1840 			       struct bfd_link_info *info,
1841 			       asection *sec,
1842 			       const Elf_Internal_Rela *relocs)
1843 {
1844   bfd *bpo_greg_owner = NULL;
1845   asection *allocated_gregs_section = NULL;
1846   struct bpo_greg_section_info *gregdata = NULL;
1847   struct bpo_reloc_section_info *bpodata = NULL;
1848   const Elf_Internal_Rela *rel;
1849   const Elf_Internal_Rela *rel_end;
1850 
1851   /* We currently have to abuse this COFF-specific member, since there's
1852      no target-machine-dedicated member.  There's no alternative outside
1853      the bfd_link_info struct; we can't specialize a hash-table since
1854      they're different between ELF and mmo.  */
1855   bpo_greg_owner = (bfd *) info->base_file;
1856 
1857   rel_end = relocs + sec->reloc_count;
1858   for (rel = relocs; rel < rel_end; rel++)
1859     {
1860       switch (ELF64_R_TYPE (rel->r_info))
1861         {
1862 	  /* This relocation causes a GREG allocation.  We need to count
1863 	     them, and we need to create a section for them, so we need an
1864 	     object to fake as the owner of that section.  We can't use
1865 	     the ELF dynobj for this, since the ELF bits assume lots of
1866 	     DSO-related stuff if that member is non-NULL.  */
1867 	case R_MMIX_BASE_PLUS_OFFSET:
1868 	  /* We don't do anything with this reloc for a relocatable link.  */
1869 	  if (info->relocatable)
1870 	    break;
1871 
1872 	  if (bpo_greg_owner == NULL)
1873 	    {
1874 	      bpo_greg_owner = abfd;
1875 	      info->base_file = bpo_greg_owner;
1876 	    }
1877 
1878 	  if (allocated_gregs_section == NULL)
1879 	    allocated_gregs_section
1880 	      = bfd_get_section_by_name (bpo_greg_owner,
1881 					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1882 
1883 	  if (allocated_gregs_section == NULL)
1884 	    {
1885 	      allocated_gregs_section
1886 		= bfd_make_section_with_flags (bpo_greg_owner,
1887 					       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1888 					       (SEC_HAS_CONTENTS
1889 						| SEC_IN_MEMORY
1890 						| SEC_LINKER_CREATED));
1891 	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1892 		 treated like any other section, and we'd get errors for
1893 		 address overlap with the text section.  Let's set none of
1894 		 those flags, as that is what currently happens for usual
1895 		 GREG allocations, and that works.  */
1896 	      if (allocated_gregs_section == NULL
1897 		  || !bfd_set_section_alignment (bpo_greg_owner,
1898 						 allocated_gregs_section,
1899 						 3))
1900 		return FALSE;
1901 
1902 	      gregdata = (struct bpo_greg_section_info *)
1903 		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1904 	      if (gregdata == NULL)
1905 		return FALSE;
1906 	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1907 		= gregdata;
1908 	    }
1909 	  else if (gregdata == NULL)
1910 	    gregdata
1911 	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1912 
1913 	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1914 	  if (bpodata == NULL)
1915 	    {
1916 	      /* No use doing a separate iteration pass to find the upper
1917 		 limit - just use the number of relocs.  */
1918 	      bpodata = (struct bpo_reloc_section_info *)
1919 		bfd_alloc (bpo_greg_owner,
1920 			   sizeof (struct bpo_reloc_section_info)
1921 			   * (sec->reloc_count + 1));
1922 	      if (bpodata == NULL)
1923 		return FALSE;
1924 	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1925 	      bpodata->first_base_plus_offset_reloc
1926 		= bpodata->bpo_index
1927 		= gregdata->n_max_bpo_relocs;
1928 	      bpodata->bpo_greg_section
1929 		= allocated_gregs_section;
1930 	      bpodata->n_bpo_relocs_this_section = 0;
1931 	    }
1932 
1933 	  bpodata->n_bpo_relocs_this_section++;
1934 	  gregdata->n_max_bpo_relocs++;
1935 
1936 	  /* We don't get another chance to set this before GC; we've not
1937 	     set up any hook that runs before GC.  */
1938 	  gregdata->n_bpo_relocs
1939 	    = gregdata->n_max_bpo_relocs;
1940 	  break;
1941 
1942 	case R_MMIX_PUSHJ_STUBBABLE:
1943 	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1944 	  break;
1945 	}
1946     }
1947 
1948   /* Allocate per-reloc stub storage and initialize it to the max stub
1949      size.  */
1950   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1951     {
1952       size_t i;
1953 
1954       mmix_elf_section_data (sec)->pjs.stub_size
1955 	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1956 		     * sizeof (mmix_elf_section_data (sec)
1957 			       ->pjs.stub_size[0]));
1958       if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1959 	return FALSE;
1960 
1961       for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1962 	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1963     }
1964 
1965   return TRUE;
1966 }
1967 
1968 /* Look through the relocs for a section during the first phase.  */
1969 
1970 static bfd_boolean
mmix_elf_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1971 mmix_elf_check_relocs (bfd *abfd,
1972 		       struct bfd_link_info *info,
1973 		       asection *sec,
1974 		       const Elf_Internal_Rela *relocs)
1975 {
1976   Elf_Internal_Shdr *symtab_hdr;
1977   struct elf_link_hash_entry **sym_hashes;
1978   const Elf_Internal_Rela *rel;
1979   const Elf_Internal_Rela *rel_end;
1980 
1981   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1982   sym_hashes = elf_sym_hashes (abfd);
1983 
1984   /* First we sort the relocs so that any register relocs come before
1985      expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
1986   qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1987 	 mmix_elf_sort_relocs);
1988 
1989   /* Do the common part.  */
1990   if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1991     return FALSE;
1992 
1993   if (info->relocatable)
1994     return TRUE;
1995 
1996   rel_end = relocs + sec->reloc_count;
1997   for (rel = relocs; rel < rel_end; rel++)
1998     {
1999       struct elf_link_hash_entry *h;
2000       unsigned long r_symndx;
2001 
2002       r_symndx = ELF64_R_SYM (rel->r_info);
2003       if (r_symndx < symtab_hdr->sh_info)
2004         h = NULL;
2005       else
2006 	{
2007 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2008 	  while (h->root.type == bfd_link_hash_indirect
2009 		 || h->root.type == bfd_link_hash_warning)
2010 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2011 
2012 	  /* PR15323, ref flags aren't set for references in the same
2013 	     object.  */
2014 	  h->root.non_ir_ref = 1;
2015 	}
2016 
2017       switch (ELF64_R_TYPE (rel->r_info))
2018 	{
2019         /* This relocation describes the C++ object vtable hierarchy.
2020            Reconstruct it for later use during GC.  */
2021         case R_MMIX_GNU_VTINHERIT:
2022           if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2023             return FALSE;
2024           break;
2025 
2026         /* This relocation describes which C++ vtable entries are actually
2027            used.  Record for later use during GC.  */
2028         case R_MMIX_GNU_VTENTRY:
2029           BFD_ASSERT (h != NULL);
2030           if (h != NULL
2031               && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2032             return FALSE;
2033           break;
2034 	}
2035     }
2036 
2037   return TRUE;
2038 }
2039 
2040 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2041    Copied from elf_link_add_object_symbols.  */
2042 
2043 bfd_boolean
_bfd_mmix_check_all_relocs(bfd * abfd,struct bfd_link_info * info)2044 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2045 {
2046   asection *o;
2047 
2048   for (o = abfd->sections; o != NULL; o = o->next)
2049     {
2050       Elf_Internal_Rela *internal_relocs;
2051       bfd_boolean ok;
2052 
2053       if ((o->flags & SEC_RELOC) == 0
2054 	  || o->reloc_count == 0
2055 	  || ((info->strip == strip_all || info->strip == strip_debugger)
2056 	      && (o->flags & SEC_DEBUGGING) != 0)
2057 	  || bfd_is_abs_section (o->output_section))
2058 	continue;
2059 
2060       internal_relocs
2061 	= _bfd_elf_link_read_relocs (abfd, o, NULL,
2062 				     (Elf_Internal_Rela *) NULL,
2063 				     info->keep_memory);
2064       if (internal_relocs == NULL)
2065 	return FALSE;
2066 
2067       ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2068 
2069       if (! info->keep_memory)
2070 	free (internal_relocs);
2071 
2072       if (! ok)
2073 	return FALSE;
2074     }
2075 
2076   return TRUE;
2077 }
2078 
2079 /* Change symbols relative to the reg contents section to instead be to
2080    the register section, and scale them down to correspond to the register
2081    number.  */
2082 
2083 static int
mmix_elf_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,asection * input_sec,struct elf_link_hash_entry * h ATTRIBUTE_UNUSED)2084 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2085 				  const char *name ATTRIBUTE_UNUSED,
2086 				  Elf_Internal_Sym *sym,
2087 				  asection *input_sec,
2088 				  struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2089 {
2090   if (input_sec != NULL
2091       && input_sec->name != NULL
2092       && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2093       && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2094     {
2095       sym->st_value /= 8;
2096       sym->st_shndx = SHN_REGISTER;
2097     }
2098 
2099   return 1;
2100 }
2101 
2102 /* We fake a register section that holds values that are register numbers.
2103    Having a SHN_REGISTER and register section translates better to other
2104    formats (e.g. mmo) than for example a STT_REGISTER attribute.
2105    This section faking is based on a construct in elf32-mips.c.  */
2106 static asection mmix_elf_reg_section;
2107 static asymbol mmix_elf_reg_section_symbol;
2108 static asymbol *mmix_elf_reg_section_symbol_ptr;
2109 
2110 /* Handle the special section numbers that a symbol may use.  */
2111 
2112 void
mmix_elf_symbol_processing(abfd,asym)2113 mmix_elf_symbol_processing (abfd, asym)
2114      bfd *abfd ATTRIBUTE_UNUSED;
2115      asymbol *asym;
2116 {
2117   elf_symbol_type *elfsym;
2118 
2119   elfsym = (elf_symbol_type *) asym;
2120   switch (elfsym->internal_elf_sym.st_shndx)
2121     {
2122     case SHN_REGISTER:
2123       if (mmix_elf_reg_section.name == NULL)
2124 	{
2125 	  /* Initialize the register section.  */
2126 	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2127 	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2128 	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2129 	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2130 	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2131 	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2132 	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2133 	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2134 	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2135 	}
2136       asym->section = &mmix_elf_reg_section;
2137       break;
2138 
2139     default:
2140       break;
2141     }
2142 }
2143 
2144 /* Given a BFD section, try to locate the corresponding ELF section
2145    index.  */
2146 
2147 static bfd_boolean
mmix_elf_section_from_bfd_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,int * retval)2148 mmix_elf_section_from_bfd_section (bfd *       abfd ATTRIBUTE_UNUSED,
2149 				   asection *  sec,
2150 				   int *       retval)
2151 {
2152   if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2153     *retval = SHN_REGISTER;
2154   else
2155     return FALSE;
2156 
2157   return TRUE;
2158 }
2159 
2160 /* Hook called by the linker routine which adds symbols from an object
2161    file.  We must handle the special SHN_REGISTER section number here.
2162 
2163    We also check that we only have *one* each of the section-start
2164    symbols, since otherwise having two with the same value would cause
2165    them to be "merged", but with the contents serialized.  */
2166 
2167 static bfd_boolean
mmix_elf_add_symbol_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,const char ** namep ATTRIBUTE_UNUSED,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp ATTRIBUTE_UNUSED)2168 mmix_elf_add_symbol_hook (bfd *abfd,
2169 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2170 			  Elf_Internal_Sym *sym,
2171 			  const char **namep ATTRIBUTE_UNUSED,
2172 			  flagword *flagsp ATTRIBUTE_UNUSED,
2173 			  asection **secp,
2174 			  bfd_vma *valp ATTRIBUTE_UNUSED)
2175 {
2176   if (sym->st_shndx == SHN_REGISTER)
2177     {
2178       *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2179       (*secp)->flags |= SEC_LINKER_CREATED;
2180     }
2181   else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2182 	   && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2183     {
2184       /* See if we have another one.  */
2185       struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2186 							    *namep,
2187 							    FALSE,
2188 							    FALSE,
2189 							    FALSE);
2190 
2191       if (h != NULL && h->type != bfd_link_hash_undefined)
2192 	{
2193 	  /* How do we get the asymbol (or really: the filename) from h?
2194 	     h->u.def.section->owner is NULL.  */
2195 	  ((*_bfd_error_handler)
2196 	   (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2197 	    bfd_get_filename (abfd), *namep,
2198 	    *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2199 	   bfd_set_error (bfd_error_bad_value);
2200 	   return FALSE;
2201 	}
2202     }
2203 
2204   return TRUE;
2205 }
2206 
2207 /* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2208 
2209 static bfd_boolean
mmix_elf_is_local_label_name(bfd * abfd,const char * name)2210 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2211 {
2212   const char *colpos;
2213   int digits;
2214 
2215   /* Also include the default local-label definition.  */
2216   if (_bfd_elf_is_local_label_name (abfd, name))
2217     return TRUE;
2218 
2219   if (*name != 'L')
2220     return FALSE;
2221 
2222   /* If there's no ":", or more than one, it's not a local symbol.  */
2223   colpos = strchr (name, ':');
2224   if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2225     return FALSE;
2226 
2227   /* Check that there are remaining characters and that they are digits.  */
2228   if (colpos[1] == 0)
2229     return FALSE;
2230 
2231   digits = strspn (colpos + 1, "0123456789");
2232   return digits != 0 && colpos[1 + digits] == 0;
2233 }
2234 
2235 /* We get rid of the register section here.  */
2236 
2237 bfd_boolean
mmix_elf_final_link(bfd * abfd,struct bfd_link_info * info)2238 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2239 {
2240   /* We never output a register section, though we create one for
2241      temporary measures.  Check that nobody entered contents into it.  */
2242   asection *reg_section;
2243 
2244   reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2245 
2246   if (reg_section != NULL)
2247     {
2248       /* FIXME: Pass error state gracefully.  */
2249       if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2250 	_bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2251 
2252       /* Really remove the section, if it hasn't already been done.  */
2253       if (!bfd_section_removed_from_list (abfd, reg_section))
2254 	{
2255 	  bfd_section_list_remove (abfd, reg_section);
2256 	  --abfd->section_count;
2257 	}
2258     }
2259 
2260   if (! bfd_elf_final_link (abfd, info))
2261     return FALSE;
2262 
2263   /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2264      the regular linker machinery.  We do it here, like other targets with
2265      special sections.  */
2266   if (info->base_file != NULL)
2267     {
2268       asection *greg_section
2269 	= bfd_get_section_by_name ((bfd *) info->base_file,
2270 				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2271       if (!bfd_set_section_contents (abfd,
2272 				     greg_section->output_section,
2273 				     greg_section->contents,
2274 				     (file_ptr) greg_section->output_offset,
2275 				     greg_section->size))
2276 	return FALSE;
2277     }
2278   return TRUE;
2279 }
2280 
2281 /* We need to include the maximum size of PUSHJ-stubs in the initial
2282    section size.  This is expected to shrink during linker relaxation.  */
2283 
2284 static void
mmix_set_relaxable_size(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,void * ptr)2285 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2286 			 asection *sec,
2287 			 void *ptr)
2288 {
2289   struct bfd_link_info *info = ptr;
2290 
2291   /* Make sure we only do this for section where we know we want this,
2292      otherwise we might end up resetting the size of COMMONs.  */
2293   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2294     return;
2295 
2296   sec->rawsize = sec->size;
2297   sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2298 		* MAX_PUSHJ_STUB_SIZE);
2299 
2300   /* For use in relocatable link, we start with a max stubs size.  See
2301      mmix_elf_relax_section.  */
2302   if (info->relocatable && sec->output_section)
2303     mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2304       += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2305 	  * MAX_PUSHJ_STUB_SIZE);
2306 }
2307 
2308 /* Initialize stuff for the linker-generated GREGs to match
2309    R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2310 
2311 bfd_boolean
_bfd_mmix_before_linker_allocation(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2312 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2313 				    struct bfd_link_info *info)
2314 {
2315   asection *bpo_gregs_section;
2316   bfd *bpo_greg_owner;
2317   struct bpo_greg_section_info *gregdata;
2318   size_t n_gregs;
2319   bfd_vma gregs_size;
2320   size_t i;
2321   size_t *bpo_reloc_indexes;
2322   bfd *ibfd;
2323 
2324   /* Set the initial size of sections.  */
2325   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2326     bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2327 
2328   /* The bpo_greg_owner bfd is supposed to have been set by
2329      mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2330      If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2331   bpo_greg_owner = (bfd *) info->base_file;
2332   if (bpo_greg_owner == NULL)
2333     return TRUE;
2334 
2335   bpo_gregs_section
2336     = bfd_get_section_by_name (bpo_greg_owner,
2337 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2338 
2339   if (bpo_gregs_section == NULL)
2340     return TRUE;
2341 
2342   /* We use the target-data handle in the ELF section data.  */
2343   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2344   if (gregdata == NULL)
2345     return FALSE;
2346 
2347   n_gregs = gregdata->n_bpo_relocs;
2348   gregdata->n_allocated_bpo_gregs = n_gregs;
2349 
2350   /* When this reaches zero during relaxation, all entries have been
2351      filled in and the size of the linker gregs can be calculated.  */
2352   gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2353 
2354   /* Set the zeroth-order estimate for the GREGs size.  */
2355   gregs_size = n_gregs * 8;
2356 
2357   if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2358     return FALSE;
2359 
2360   /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2361      time.  Note that we must use the max number ever noted for the array,
2362      since the index numbers were created before GC.  */
2363   gregdata->reloc_request
2364     = bfd_zalloc (bpo_greg_owner,
2365 		  sizeof (struct bpo_reloc_request)
2366 		  * gregdata->n_max_bpo_relocs);
2367 
2368   gregdata->bpo_reloc_indexes
2369     = bpo_reloc_indexes
2370     = bfd_alloc (bpo_greg_owner,
2371 		 gregdata->n_max_bpo_relocs
2372 		 * sizeof (size_t));
2373   if (bpo_reloc_indexes == NULL)
2374     return FALSE;
2375 
2376   /* The default order is an identity mapping.  */
2377   for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2378     {
2379       bpo_reloc_indexes[i] = i;
2380       gregdata->reloc_request[i].bpo_reloc_no = i;
2381     }
2382 
2383   return TRUE;
2384 }
2385 
2386 /* Fill in contents in the linker allocated gregs.  Everything is
2387    calculated at this point; we just move the contents into place here.  */
2388 
2389 bfd_boolean
_bfd_mmix_after_linker_allocation(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * link_info)2390 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2391 				   struct bfd_link_info *link_info)
2392 {
2393   asection *bpo_gregs_section;
2394   bfd *bpo_greg_owner;
2395   struct bpo_greg_section_info *gregdata;
2396   size_t n_gregs;
2397   size_t i, j;
2398   size_t lastreg;
2399   bfd_byte *contents;
2400 
2401   /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2402      when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2403      object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2404   bpo_greg_owner = (bfd *) link_info->base_file;
2405   if (bpo_greg_owner == NULL)
2406     return TRUE;
2407 
2408   bpo_gregs_section
2409     = bfd_get_section_by_name (bpo_greg_owner,
2410 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2411 
2412   /* This can't happen without DSO handling.  When DSOs are handled
2413      without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2414      section.  */
2415   if (bpo_gregs_section == NULL)
2416     return TRUE;
2417 
2418   /* We use the target-data handle in the ELF section data.  */
2419 
2420   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2421   if (gregdata == NULL)
2422     return FALSE;
2423 
2424   n_gregs = gregdata->n_allocated_bpo_gregs;
2425 
2426   bpo_gregs_section->contents
2427     = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2428   if (contents == NULL)
2429     return FALSE;
2430 
2431   /* Sanity check: If these numbers mismatch, some relocation has not been
2432      accounted for and the rest of gregdata is probably inconsistent.
2433      It's a bug, but it's more helpful to identify it than segfaulting
2434      below.  */
2435   if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2436       != gregdata->n_bpo_relocs)
2437     {
2438       (*_bfd_error_handler)
2439 	(_("Internal inconsistency: remaining %u != max %u.\n\
2440   Please report this bug."),
2441 	 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2442 	 gregdata->n_bpo_relocs);
2443       return FALSE;
2444     }
2445 
2446   for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2447     if (gregdata->reloc_request[i].regindex != lastreg)
2448       {
2449 	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2450 		    contents + j * 8);
2451 	lastreg = gregdata->reloc_request[i].regindex;
2452 	j++;
2453       }
2454 
2455   return TRUE;
2456 }
2457 
2458 /* Sort valid relocs to come before non-valid relocs, then on increasing
2459    value.  */
2460 
2461 static int
bpo_reloc_request_sort_fn(const void * p1,const void * p2)2462 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2463 {
2464   const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2465   const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2466 
2467   /* Primary function is validity; non-valid relocs sorted after valid
2468      ones.  */
2469   if (r1->valid != r2->valid)
2470     return r2->valid - r1->valid;
2471 
2472   /* Then sort on value.  Don't simplify and return just the difference of
2473      the values: the upper bits of the 64-bit value would be truncated on
2474      a host with 32-bit ints.  */
2475   if (r1->value != r2->value)
2476     return r1->value > r2->value ? 1 : -1;
2477 
2478   /* As a last re-sort, use the relocation number, so we get a stable
2479      sort.  The *addresses* aren't stable since items are swapped during
2480      sorting.  It depends on the qsort implementation if this actually
2481      happens.  */
2482   return r1->bpo_reloc_no > r2->bpo_reloc_no
2483     ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2484 }
2485 
2486 /* For debug use only.  Dumps the global register allocations resulting
2487    from base-plus-offset relocs.  */
2488 
2489 void
mmix_dump_bpo_gregs(link_info,pf)2490 mmix_dump_bpo_gregs (link_info, pf)
2491      struct bfd_link_info *link_info;
2492      bfd_error_handler_type pf;
2493 {
2494   bfd *bpo_greg_owner;
2495   asection *bpo_gregs_section;
2496   struct bpo_greg_section_info *gregdata;
2497   unsigned int i;
2498 
2499   if (link_info == NULL || link_info->base_file == NULL)
2500     return;
2501 
2502   bpo_greg_owner = (bfd *) link_info->base_file;
2503 
2504   bpo_gregs_section
2505     = bfd_get_section_by_name (bpo_greg_owner,
2506 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2507 
2508   if (bpo_gregs_section == NULL)
2509     return;
2510 
2511   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2512   if (gregdata == NULL)
2513     return;
2514 
2515   if (pf == NULL)
2516     pf = _bfd_error_handler;
2517 
2518   /* These format strings are not translated.  They are for debug purposes
2519      only and never displayed to an end user.  Should they escape, we
2520      surely want them in original.  */
2521   (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2522  n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2523      gregdata->n_max_bpo_relocs,
2524      gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2525      gregdata->n_allocated_bpo_gregs);
2526 
2527   if (gregdata->reloc_request)
2528     for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2529       (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2530 	     i,
2531 	     (gregdata->bpo_reloc_indexes != NULL
2532 	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2533 	     gregdata->reloc_request[i].bpo_reloc_no,
2534 	     gregdata->reloc_request[i].valid,
2535 
2536 	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2537 	     (unsigned long) gregdata->reloc_request[i].value,
2538 	     gregdata->reloc_request[i].regindex,
2539 	     gregdata->reloc_request[i].offset);
2540 }
2541 
2542 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2543    when the last such reloc is done, an index-array is sorted according to
2544    the values and iterated over to produce register numbers (indexed by 0
2545    from the first allocated register number) and offsets for use in real
2546    relocation.  (N.B.: Relocatable runs are handled, not just punted.)
2547 
2548    PUSHJ stub accounting is also done here.
2549 
2550    Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2551 
2552 static bfd_boolean
mmix_elf_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)2553 mmix_elf_relax_section (bfd *abfd,
2554 			asection *sec,
2555 			struct bfd_link_info *link_info,
2556 			bfd_boolean *again)
2557 {
2558   Elf_Internal_Shdr *symtab_hdr;
2559   Elf_Internal_Rela *internal_relocs;
2560   Elf_Internal_Rela *irel, *irelend;
2561   asection *bpo_gregs_section = NULL;
2562   struct bpo_greg_section_info *gregdata;
2563   struct bpo_reloc_section_info *bpodata
2564     = mmix_elf_section_data (sec)->bpo.reloc;
2565   /* The initialization is to quiet compiler warnings.  The value is to
2566      spot a missing actual initialization.  */
2567   size_t bpono = (size_t) -1;
2568   size_t pjsno = 0;
2569   Elf_Internal_Sym *isymbuf = NULL;
2570   bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2571 
2572   mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2573 
2574   /* Assume nothing changes.  */
2575   *again = FALSE;
2576 
2577   /* We don't have to do anything if this section does not have relocs, or
2578      if this is not a code section.  */
2579   if ((sec->flags & SEC_RELOC) == 0
2580       || sec->reloc_count == 0
2581       || (sec->flags & SEC_CODE) == 0
2582       || (sec->flags & SEC_LINKER_CREATED) != 0
2583       /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2584          then nothing to do.  */
2585       || (bpodata == NULL
2586 	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2587     return TRUE;
2588 
2589   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2590 
2591   if (bpodata != NULL)
2592     {
2593       bpo_gregs_section = bpodata->bpo_greg_section;
2594       gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2595       bpono = bpodata->first_base_plus_offset_reloc;
2596     }
2597   else
2598     gregdata = NULL;
2599 
2600   /* Get a copy of the native relocations.  */
2601   internal_relocs
2602     = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2603 				 (Elf_Internal_Rela *) NULL,
2604 				 link_info->keep_memory);
2605   if (internal_relocs == NULL)
2606     goto error_return;
2607 
2608   /* Walk through them looking for relaxing opportunities.  */
2609   irelend = internal_relocs + sec->reloc_count;
2610   for (irel = internal_relocs; irel < irelend; irel++)
2611     {
2612       bfd_vma symval;
2613       struct elf_link_hash_entry *h = NULL;
2614 
2615       /* We only process two relocs.  */
2616       if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2617 	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2618 	continue;
2619 
2620       /* We process relocs in a distinctly different way when this is a
2621 	 relocatable link (for one, we don't look at symbols), so we avoid
2622 	 mixing its code with that for the "normal" relaxation.  */
2623       if (link_info->relocatable)
2624 	{
2625 	  /* The only transformation in a relocatable link is to generate
2626 	     a full stub at the location of the stub calculated for the
2627 	     input section, if the relocated stub location, the end of the
2628 	     output section plus earlier stubs, cannot be reached.  Thus
2629 	     relocatable linking can only lead to worse code, but it still
2630 	     works.  */
2631 	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2632 	    {
2633 	      /* If we can reach the end of the output-section and beyond
2634 		 any current stubs, then we don't need a stub for this
2635 		 reloc.  The relaxed order of output stub allocation may
2636 		 not exactly match the straightforward order, so we always
2637 		 assume presence of output stubs, which will allow
2638 		 relaxation only on relocations indifferent to the
2639 		 presence of output stub allocations for other relocations
2640 		 and thus the order of output stub allocation.  */
2641 	      if (bfd_check_overflow (complain_overflow_signed,
2642 				      19,
2643 				      0,
2644 				      bfd_arch_bits_per_address (abfd),
2645 				      /* Output-stub location.  */
2646 				      sec->output_section->rawsize
2647 				      + (mmix_elf_section_data (sec
2648 							       ->output_section)
2649 					 ->pjs.stubs_size_sum)
2650 				      /* Location of this PUSHJ reloc.  */
2651 				      - (sec->output_offset + irel->r_offset)
2652 				      /* Don't count *this* stub twice.  */
2653 				      - (mmix_elf_section_data (sec)
2654 					 ->pjs.stub_size[pjsno]
2655 					 + MAX_PUSHJ_STUB_SIZE))
2656 		  == bfd_reloc_ok)
2657 		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2658 
2659 	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2660 		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2661 
2662 	      pjsno++;
2663 	    }
2664 
2665 	  continue;
2666 	}
2667 
2668       /* Get the value of the symbol referred to by the reloc.  */
2669       if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2670 	{
2671 	  /* A local symbol.  */
2672 	  Elf_Internal_Sym *isym;
2673 	  asection *sym_sec;
2674 
2675 	  /* Read this BFD's local symbols if we haven't already.  */
2676 	  if (isymbuf == NULL)
2677 	    {
2678 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2679 	      if (isymbuf == NULL)
2680 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2681 						symtab_hdr->sh_info, 0,
2682 						NULL, NULL, NULL);
2683 	      if (isymbuf == 0)
2684 		goto error_return;
2685 	    }
2686 
2687 	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2688 	  if (isym->st_shndx == SHN_UNDEF)
2689 	    sym_sec = bfd_und_section_ptr;
2690 	  else if (isym->st_shndx == SHN_ABS)
2691 	    sym_sec = bfd_abs_section_ptr;
2692 	  else if (isym->st_shndx == SHN_COMMON)
2693 	    sym_sec = bfd_com_section_ptr;
2694 	  else
2695 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2696 	  symval = (isym->st_value
2697 		    + sym_sec->output_section->vma
2698 		    + sym_sec->output_offset);
2699 	}
2700       else
2701 	{
2702 	  unsigned long indx;
2703 
2704 	  /* An external symbol.  */
2705 	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2706 	  h = elf_sym_hashes (abfd)[indx];
2707 	  BFD_ASSERT (h != NULL);
2708 	  if (h->root.type != bfd_link_hash_defined
2709 	      && h->root.type != bfd_link_hash_defweak)
2710 	    {
2711 	      /* This appears to be a reference to an undefined symbol.  Just
2712 		 ignore it--it will be caught by the regular reloc processing.
2713 		 We need to keep BPO reloc accounting consistent, though
2714 		 else we'll abort instead of emitting an error message.  */
2715 	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2716 		  && gregdata != NULL)
2717 		{
2718 		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2719 		  bpono++;
2720 		}
2721 	      continue;
2722 	    }
2723 
2724 	  symval = (h->root.u.def.value
2725 		    + h->root.u.def.section->output_section->vma
2726 		    + h->root.u.def.section->output_offset);
2727 	}
2728 
2729       if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2730 	{
2731 	  bfd_vma value = symval + irel->r_addend;
2732 	  bfd_vma dot
2733 	    = (sec->output_section->vma
2734 	       + sec->output_offset
2735 	       + irel->r_offset);
2736 	  bfd_vma stubaddr
2737 	    = (sec->output_section->vma
2738 	       + sec->output_offset
2739 	       + size
2740 	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2741 
2742 	  if ((value & 3) == 0
2743 	      && bfd_check_overflow (complain_overflow_signed,
2744 				     19,
2745 				     0,
2746 				     bfd_arch_bits_per_address (abfd),
2747 				     value - dot
2748 				     - (value > dot
2749 					? mmix_elf_section_data (sec)
2750 					->pjs.stub_size[pjsno]
2751 					: 0))
2752 	      == bfd_reloc_ok)
2753 	    /* If the reloc fits, no stub is needed.  */
2754 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2755 	  else
2756 	    /* Maybe we can get away with just a JMP insn?  */
2757 	    if ((value & 3) == 0
2758 		&& bfd_check_overflow (complain_overflow_signed,
2759 				       27,
2760 				       0,
2761 				       bfd_arch_bits_per_address (abfd),
2762 				       value - stubaddr
2763 				       - (value > dot
2764 					  ? mmix_elf_section_data (sec)
2765 					  ->pjs.stub_size[pjsno] - 4
2766 					  : 0))
2767 		== bfd_reloc_ok)
2768 	      /* Yep, account for a stub consisting of a single JMP insn.  */
2769 	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2770 	  else
2771 	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2772 	       emit the intermediate sizes; those will only be useful for
2773 	       a >64M program assuming contiguous code.  */
2774 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2775 	      = MAX_PUSHJ_STUB_SIZE;
2776 
2777 	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2778 	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2779 	  pjsno++;
2780 	  continue;
2781 	}
2782 
2783       /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2784 
2785       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2786 	= symval + irel->r_addend;
2787       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2788       gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2789     }
2790 
2791   /* Check if that was the last BPO-reloc.  If so, sort the values and
2792      calculate how many registers we need to cover them.  Set the size of
2793      the linker gregs, and if the number of registers changed, indicate
2794      that we need to relax some more because we have more work to do.  */
2795   if (gregdata != NULL
2796       && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2797     {
2798       size_t i;
2799       bfd_vma prev_base;
2800       size_t regindex;
2801 
2802       /* First, reset the remaining relocs for the next round.  */
2803       gregdata->n_remaining_bpo_relocs_this_relaxation_round
2804 	= gregdata->n_bpo_relocs;
2805 
2806       qsort (gregdata->reloc_request,
2807 	     gregdata->n_max_bpo_relocs,
2808 	     sizeof (struct bpo_reloc_request),
2809 	     bpo_reloc_request_sort_fn);
2810 
2811       /* Recalculate indexes.  When we find a change (however unlikely
2812 	 after the initial iteration), we know we need to relax again,
2813 	 since items in the GREG-array are sorted by increasing value and
2814 	 stored in the relaxation phase.  */
2815       for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2816 	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2817 	    != i)
2818 	  {
2819 	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2820 	      = i;
2821 	    *again = TRUE;
2822 	  }
2823 
2824       /* Allocate register numbers (indexing from 0).  Stop at the first
2825 	 non-valid reloc.  */
2826       for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2827 	   i < gregdata->n_bpo_relocs;
2828 	   i++)
2829 	{
2830 	  if (gregdata->reloc_request[i].value > prev_base + 255)
2831 	    {
2832 	      regindex++;
2833 	      prev_base = gregdata->reloc_request[i].value;
2834 	    }
2835 	  gregdata->reloc_request[i].regindex = regindex;
2836 	  gregdata->reloc_request[i].offset
2837 	    = gregdata->reloc_request[i].value - prev_base;
2838 	}
2839 
2840       /* If it's not the same as the last time, we need to relax again,
2841 	 because the size of the section has changed.  I'm not sure we
2842 	 actually need to do any adjustments since the shrinking happens
2843 	 at the start of this section, but better safe than sorry.  */
2844       if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2845 	{
2846 	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2847 	  *again = TRUE;
2848 	}
2849 
2850       bpo_gregs_section->size = (regindex + 1) * 8;
2851     }
2852 
2853   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2854     {
2855       if (! link_info->keep_memory)
2856 	free (isymbuf);
2857       else
2858 	{
2859 	  /* Cache the symbols for elf_link_input_bfd.  */
2860 	  symtab_hdr->contents = (unsigned char *) isymbuf;
2861 	}
2862     }
2863 
2864   if (internal_relocs != NULL
2865       && elf_section_data (sec)->relocs != internal_relocs)
2866     free (internal_relocs);
2867 
2868   if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2869     abort ();
2870 
2871   if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2872     {
2873       sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2874       *again = TRUE;
2875     }
2876 
2877   return TRUE;
2878 
2879  error_return:
2880   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2881     free (isymbuf);
2882   if (internal_relocs != NULL
2883       && elf_section_data (sec)->relocs != internal_relocs)
2884     free (internal_relocs);
2885   return FALSE;
2886 }
2887 
2888 #define ELF_ARCH		bfd_arch_mmix
2889 #define ELF_MACHINE_CODE 	EM_MMIX
2890 
2891 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2892    However, that's too much for something somewhere in the linker part of
2893    BFD; perhaps the start-address has to be a non-zero multiple of this
2894    number, or larger than this number.  The symptom is that the linker
2895    complains: "warning: allocated section `.text' not in segment".  We
2896    settle for 64k; the page-size used in examples is 8k.
2897    #define ELF_MAXPAGESIZE 0x10000
2898 
2899    Unfortunately, this causes excessive padding in the supposedly small
2900    for-education programs that are the expected usage (where people would
2901    inspect output).  We stick to 256 bytes just to have *some* default
2902    alignment.  */
2903 #define ELF_MAXPAGESIZE 0x100
2904 
2905 #define TARGET_BIG_SYM		mmix_elf64_vec
2906 #define TARGET_BIG_NAME		"elf64-mmix"
2907 
2908 #define elf_info_to_howto_rel		NULL
2909 #define elf_info_to_howto		mmix_info_to_howto_rela
2910 #define elf_backend_relocate_section	mmix_elf_relocate_section
2911 #define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
2912 #define elf_backend_gc_sweep_hook	mmix_elf_gc_sweep_hook
2913 
2914 #define elf_backend_link_output_symbol_hook \
2915 	mmix_elf_link_output_symbol_hook
2916 #define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
2917 
2918 #define elf_backend_check_relocs	mmix_elf_check_relocs
2919 #define elf_backend_symbol_processing	mmix_elf_symbol_processing
2920 #define elf_backend_omit_section_dynsym \
2921   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2922 
2923 #define bfd_elf64_bfd_is_local_label_name \
2924 	mmix_elf_is_local_label_name
2925 
2926 #define elf_backend_may_use_rel_p	0
2927 #define elf_backend_may_use_rela_p	1
2928 #define elf_backend_default_use_rela_p	1
2929 
2930 #define elf_backend_can_gc_sections	1
2931 #define elf_backend_section_from_bfd_section \
2932 	mmix_elf_section_from_bfd_section
2933 
2934 #define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
2935 #define bfd_elf64_bfd_final_link	mmix_elf_final_link
2936 #define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
2937 
2938 #include "elf64-target.h"
2939