1 /* Support for the generic parts of PE/PEI, for BFD.
2    Copyright (C) 1995-2014 Free Software Foundation, Inc.
3    Written by Cygnus Solutions.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 
23 /* Most of this hacked by  Steve Chamberlain,
24 			sac@cygnus.com
25 
26    PE/PEI rearrangement (and code added): Donn Terry
27                                        Softway Systems, Inc.  */
28 
29 /* Hey look, some documentation [and in a place you expect to find it]!
30 
31    The main reference for the pei format is "Microsoft Portable Executable
32    and Common Object File Format Specification 4.1".  Get it if you need to
33    do some serious hacking on this code.
34 
35    Another reference:
36    "Peering Inside the PE: A Tour of the Win32 Portable Executable
37    File Format", MSJ 1994, Volume 9.
38 
39    The *sole* difference between the pe format and the pei format is that the
40    latter has an MSDOS 2.0 .exe header on the front that prints the message
41    "This app must be run under Windows." (or some such).
42    (FIXME: Whether that statement is *really* true or not is unknown.
43    Are there more subtle differences between pe and pei formats?
44    For now assume there aren't.  If you find one, then for God sakes
45    document it here!)
46 
47    The Microsoft docs use the word "image" instead of "executable" because
48    the former can also refer to a DLL (shared library).  Confusion can arise
49    because the `i' in `pei' also refers to "image".  The `pe' format can
50    also create images (i.e. executables), it's just that to run on a win32
51    system you need to use the pei format.
52 
53    FIXME: Please add more docs here so the next poor fool that has to hack
54    on this code has a chance of getting something accomplished without
55    wasting too much time.  */
56 
57 #include "libpei.h"
58 
59 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61      NULL;
62 #else
63      coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66 
67 static bfd_boolean                      pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69 
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72      NULL;
73 #else
74      coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77 
78 static bfd_boolean                     pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80 
81 #define coff_mkobject      pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83 
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code.  */
86 typedef asection * asection_ptr;
87 
88 typedef struct
89 {
90   bfd *			abfd;
91   bfd_byte *		data;
92   struct bfd_in_memory * bim;
93   unsigned short        magic;
94 
95   arelent *		reltab;
96   unsigned int 		relcount;
97 
98   coff_symbol_type * 	sym_cache;
99   coff_symbol_type * 	sym_ptr;
100   unsigned int       	sym_index;
101 
102   unsigned int * 	sym_table;
103   unsigned int * 	table_ptr;
104 
105   combined_entry_type * native_syms;
106   combined_entry_type * native_ptr;
107 
108   coff_symbol_type **	sym_ptr_table;
109   coff_symbol_type **	sym_ptr_ptr;
110 
111   unsigned int		sec_index;
112 
113   char *                string_table;
114   char *                string_ptr;
115   char *		end_string_ptr;
116 
117   SYMENT *              esym_table;
118   SYMENT *              esym_ptr;
119 
120   struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124 
125 const bfd_target *coff_real_object_p
126   (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 
128 #ifndef NO_COFF_RELOCS
129 static void
coff_swap_reloc_in(bfd * abfd,void * src,void * dst)130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132   RELOC *reloc_src = (RELOC *) src;
133   struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134 
135   reloc_dst->r_vaddr  = H_GET_32 (abfd, reloc_src->r_vaddr);
136   reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137   reloc_dst->r_type   = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139   reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142 
143 static unsigned int
coff_swap_reloc_out(bfd * abfd,void * src,void * dst)144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146   struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147   struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148 
149   H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150   H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151   H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152 
153 #ifdef SWAP_OUT_RELOC_OFFSET
154   SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157   SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159   return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162 
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167 
168 static void
coff_swap_filehdr_in(bfd * abfd,void * src,void * dst)169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171   FILHDR *filehdr_src = (FILHDR *) src;
172   struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173 
174   filehdr_dst->f_magic  = H_GET_16 (abfd, filehdr_src->f_magic);
175   filehdr_dst->f_nscns  = H_GET_16 (abfd, filehdr_src->f_nscns);
176   filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177   filehdr_dst->f_nsyms  = H_GET_32 (abfd, filehdr_src->f_nsyms);
178   filehdr_dst->f_flags  = H_GET_16 (abfd, filehdr_src->f_flags);
179   filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180 
181   /* Other people's tools sometimes generate headers with an nsyms but
182      a zero symptr.  */
183   if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184     {
185       filehdr_dst->f_nsyms = 0;
186       filehdr_dst->f_flags |= F_LSYMS;
187     }
188 
189   filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191 
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
198 #else
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
200 #endif
201 
202 static void
coff_swap_scnhdr_in(bfd * abfd,void * ext,void * in)203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
204 {
205   SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206   struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
207 
208   memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
209 
210   scnhdr_int->s_vaddr   = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211   scnhdr_int->s_paddr   = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212   scnhdr_int->s_size    = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213   scnhdr_int->s_scnptr  = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214   scnhdr_int->s_relptr  = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215   scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216   scnhdr_int->s_flags   = H_GET_32 (abfd, scnhdr_ext->s_flags);
217 
218   /* MS handles overflow of line numbers by carrying into the reloc
219      field (it appears).  Since it's supposed to be zero for PE
220      *IMAGE* format, that's safe.  This is still a bit iffy.  */
221 #ifdef COFF_IMAGE_WITH_PE
222   scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 			 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224   scnhdr_int->s_nreloc = 0;
225 #else
226   scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227   scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
228 #endif
229 
230   if (scnhdr_int->s_vaddr != 0)
231     {
232       scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233       /* Do not cut upper 32-bits for 64-bit vma.  */
234 #ifndef COFF_WITH_pex64
235       scnhdr_int->s_vaddr &= 0xffffffff;
236 #endif
237     }
238 
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240   /* If this section holds uninitialized data and is from an object file
241      or from an executable image that has not initialized the field,
242      or if the image is an executable file and the physical size is padded,
243      use the virtual size (stored in s_paddr) instead.  */
244   if (scnhdr_int->s_paddr > 0
245       && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 	   && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247           || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248   /* This code used to set scnhdr_int->s_paddr to 0.  However,
249      coff_set_alignment_hook stores s_paddr in virt_size, which
250      only works if it correctly holds the virtual size of the
251      section.  */
252     scnhdr_int->s_size = scnhdr_int->s_paddr;
253 #endif
254 }
255 
256 static bfd_boolean
pe_mkobject(bfd * abfd)257 pe_mkobject (bfd * abfd)
258 {
259   pe_data_type *pe;
260   bfd_size_type amt = sizeof (pe_data_type);
261 
262   abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
263 
264   if (abfd->tdata.pe_obj_data == 0)
265     return FALSE;
266 
267   pe = pe_data (abfd);
268 
269   pe->coff.pe = 1;
270 
271   /* in_reloc_p is architecture dependent.  */
272   pe->in_reloc_p = in_reloc_p;
273 
274   memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
275   return TRUE;
276 }
277 
278 /* Create the COFF backend specific information.  */
279 
280 static void *
pe_mkobject_hook(bfd * abfd,void * filehdr,void * aouthdr ATTRIBUTE_UNUSED)281 pe_mkobject_hook (bfd * abfd,
282 		  void * filehdr,
283 		  void * aouthdr ATTRIBUTE_UNUSED)
284 {
285   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
286   pe_data_type *pe;
287 
288   if (! pe_mkobject (abfd))
289     return NULL;
290 
291   pe = pe_data (abfd);
292   pe->coff.sym_filepos = internal_f->f_symptr;
293   /* These members communicate important constants about the symbol
294      table to GDB's symbol-reading code.  These `constants'
295      unfortunately vary among coff implementations...  */
296   pe->coff.local_n_btmask = N_BTMASK;
297   pe->coff.local_n_btshft = N_BTSHFT;
298   pe->coff.local_n_tmask = N_TMASK;
299   pe->coff.local_n_tshift = N_TSHIFT;
300   pe->coff.local_symesz = SYMESZ;
301   pe->coff.local_auxesz = AUXESZ;
302   pe->coff.local_linesz = LINESZ;
303 
304   pe->coff.timestamp = internal_f->f_timdat;
305 
306   obj_raw_syment_count (abfd) =
307     obj_conv_table_size (abfd) =
308       internal_f->f_nsyms;
309 
310   pe->real_flags = internal_f->f_flags;
311 
312   if ((internal_f->f_flags & F_DLL) != 0)
313     pe->dll = 1;
314 
315   if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
316     abfd->flags |= HAS_DEBUG;
317 
318 #ifdef COFF_IMAGE_WITH_PE
319   if (aouthdr)
320     pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
321 #endif
322 
323 #ifdef ARM
324   if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
325     coff_data (abfd) ->flags = 0;
326 #endif
327 
328   return (void *) pe;
329 }
330 
331 static bfd_boolean
pe_print_private_bfd_data(bfd * abfd,void * vfile)332 pe_print_private_bfd_data (bfd *abfd, void * vfile)
333 {
334   FILE *file = (FILE *) vfile;
335 
336   if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
337     return FALSE;
338 
339   if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
340     return TRUE;
341 
342   fputc ('\n', file);
343 
344   return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
345 }
346 
347 /* Copy any private info we understand from the input bfd
348    to the output bfd.  */
349 
350 static bfd_boolean
pe_bfd_copy_private_bfd_data(bfd * ibfd,bfd * obfd)351 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
352 {
353   /* PR binutils/716: Copy the large address aware flag.
354      XXX: Should we be copying other flags or other fields in the pe_data()
355      structure ?  */
356   if (pe_data (obfd) != NULL
357       && pe_data (ibfd) != NULL
358       && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
359     pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
360 
361   if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
362     return FALSE;
363 
364   if (pe_saved_coff_bfd_copy_private_bfd_data)
365     return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
366 
367   return TRUE;
368 }
369 
370 #define coff_bfd_copy_private_section_data \
371   _bfd_XX_bfd_copy_private_section_data
372 
373 #define coff_get_symbol_info _bfd_XX_get_symbol_info
374 
375 #ifdef COFF_IMAGE_WITH_PE
376 
377 /* Code to handle Microsoft's Image Library Format.
378    Also known as LINK6 format.
379    Documentation about this format can be found at:
380 
381    http://msdn.microsoft.com/library/specs/pecoff_section8.htm  */
382 
383 /* The following constants specify the sizes of the various data
384    structures that we have to create in order to build a bfd describing
385    an ILF object file.  The final "+ 1" in the definitions of SIZEOF_IDATA6
386    and SIZEOF_IDATA7 below is to allow for the possibility that we might
387    need a padding byte in order to ensure 16 bit alignment for the section's
388    contents.
389 
390    The value for SIZEOF_ILF_STRINGS is computed as follows:
391 
392       There will be NUM_ILF_SECTIONS section symbols.  Allow 9 characters
393       per symbol for their names (longest section name is .idata$x).
394 
395       There will be two symbols for the imported value, one the symbol name
396       and one with _imp__ prefixed.  Allowing for the terminating nul's this
397       is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
398 
399       The strings in the string table must start STRING__SIZE_SIZE bytes into
400       the table in order to for the string lookup code in coffgen/coffcode to
401       work.  */
402 #define NUM_ILF_RELOCS		8
403 #define NUM_ILF_SECTIONS        6
404 #define NUM_ILF_SYMS 		(2 + NUM_ILF_SECTIONS)
405 
406 #define SIZEOF_ILF_SYMS		 (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
407 #define SIZEOF_ILF_SYM_TABLE	 (NUM_ILF_SYMS * sizeof (* vars.sym_table))
408 #define SIZEOF_ILF_NATIVE_SYMS	 (NUM_ILF_SYMS * sizeof (* vars.native_syms))
409 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
410 #define SIZEOF_ILF_EXT_SYMS	 (NUM_ILF_SYMS * sizeof (* vars.esym_table))
411 #define SIZEOF_ILF_RELOCS	 (NUM_ILF_RELOCS * sizeof (* vars.reltab))
412 #define SIZEOF_ILF_INT_RELOCS	 (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
413 #define SIZEOF_ILF_STRINGS	 (strlen (symbol_name) * 2 + 8 \
414 					+ 21 + strlen (source_dll) \
415 					+ NUM_ILF_SECTIONS * 9 \
416 					+ STRING_SIZE_SIZE)
417 #define SIZEOF_IDATA2		(5 * 4)
418 
419 /* For PEx64 idata4 & 5 have thumb size of 8 bytes.  */
420 #ifdef COFF_WITH_pex64
421 #define SIZEOF_IDATA4		(2 * 4)
422 #define SIZEOF_IDATA5		(2 * 4)
423 #else
424 #define SIZEOF_IDATA4		(1 * 4)
425 #define SIZEOF_IDATA5		(1 * 4)
426 #endif
427 
428 #define SIZEOF_IDATA6		(2 + strlen (symbol_name) + 1 + 1)
429 #define SIZEOF_IDATA7		(strlen (source_dll) + 1 + 1)
430 #define SIZEOF_ILF_SECTIONS     (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
431 
432 #define ILF_DATA_SIZE				\
433     + SIZEOF_ILF_SYMS				\
434     + SIZEOF_ILF_SYM_TABLE			\
435     + SIZEOF_ILF_NATIVE_SYMS			\
436     + SIZEOF_ILF_SYM_PTR_TABLE			\
437     + SIZEOF_ILF_EXT_SYMS			\
438     + SIZEOF_ILF_RELOCS				\
439     + SIZEOF_ILF_INT_RELOCS			\
440     + SIZEOF_ILF_STRINGS			\
441     + SIZEOF_IDATA2				\
442     + SIZEOF_IDATA4				\
443     + SIZEOF_IDATA5				\
444     + SIZEOF_IDATA6				\
445     + SIZEOF_IDATA7				\
446     + SIZEOF_ILF_SECTIONS			\
447     + MAX_TEXT_SECTION_SIZE
448 
449 /* Create an empty relocation against the given symbol.  */
450 
451 static void
pe_ILF_make_a_symbol_reloc(pe_ILF_vars * vars,bfd_vma address,bfd_reloc_code_real_type reloc,struct bfd_symbol ** sym,unsigned int sym_index)452 pe_ILF_make_a_symbol_reloc (pe_ILF_vars *               vars,
453 			    bfd_vma                     address,
454 			    bfd_reloc_code_real_type    reloc,
455 			    struct bfd_symbol **  	sym,
456 			    unsigned int                sym_index)
457 {
458   arelent * entry;
459   struct internal_reloc * internal;
460 
461   entry = vars->reltab + vars->relcount;
462   internal = vars->int_reltab + vars->relcount;
463 
464   entry->address     = address;
465   entry->addend      = 0;
466   entry->howto       = bfd_reloc_type_lookup (vars->abfd, reloc);
467   entry->sym_ptr_ptr = sym;
468 
469   internal->r_vaddr  = address;
470   internal->r_symndx = sym_index;
471   internal->r_type   = entry->howto->type;
472 
473   vars->relcount ++;
474 
475   BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
476 }
477 
478 /* Create an empty relocation against the given section.  */
479 
480 static void
pe_ILF_make_a_reloc(pe_ILF_vars * vars,bfd_vma address,bfd_reloc_code_real_type reloc,asection_ptr sec)481 pe_ILF_make_a_reloc (pe_ILF_vars *             vars,
482 		     bfd_vma                   address,
483 		     bfd_reloc_code_real_type  reloc,
484 		     asection_ptr              sec)
485 {
486   pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
487 			      coff_section_data (vars->abfd, sec)->i);
488 }
489 
490 /* Move the queued relocs into the given section.  */
491 
492 static void
pe_ILF_save_relocs(pe_ILF_vars * vars,asection_ptr sec)493 pe_ILF_save_relocs (pe_ILF_vars * vars,
494 		    asection_ptr  sec)
495 {
496   /* Make sure that there is somewhere to store the internal relocs.  */
497   if (coff_section_data (vars->abfd, sec) == NULL)
498     /* We should probably return an error indication here.  */
499     abort ();
500 
501   coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
502   coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
503 
504   sec->relocation  = vars->reltab;
505   sec->reloc_count = vars->relcount;
506   sec->flags      |= SEC_RELOC;
507 
508   vars->reltab     += vars->relcount;
509   vars->int_reltab += vars->relcount;
510   vars->relcount   = 0;
511 
512   BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
513 }
514 
515 /* Create a global symbol and add it to the relevant tables.  */
516 
517 static void
pe_ILF_make_a_symbol(pe_ILF_vars * vars,const char * prefix,const char * symbol_name,asection_ptr section,flagword extra_flags)518 pe_ILF_make_a_symbol (pe_ILF_vars *  vars,
519 		      const char *   prefix,
520 		      const char *   symbol_name,
521 		      asection_ptr   section,
522 		      flagword       extra_flags)
523 {
524   coff_symbol_type * sym;
525   combined_entry_type * ent;
526   SYMENT * esym;
527   unsigned short sclass;
528 
529   if (extra_flags & BSF_LOCAL)
530     sclass = C_STAT;
531   else
532     sclass = C_EXT;
533 
534 #ifdef THUMBPEMAGIC
535   if (vars->magic == THUMBPEMAGIC)
536     {
537       if (extra_flags & BSF_FUNCTION)
538 	sclass = C_THUMBEXTFUNC;
539       else if (extra_flags & BSF_LOCAL)
540 	sclass = C_THUMBSTAT;
541       else
542 	sclass = C_THUMBEXT;
543     }
544 #endif
545 
546   BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
547 
548   sym = vars->sym_ptr;
549   ent = vars->native_ptr;
550   esym = vars->esym_ptr;
551 
552   /* Copy the symbol's name into the string table.  */
553   sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
554 
555   if (section == NULL)
556     section = bfd_und_section_ptr;
557 
558   /* Initialise the external symbol.  */
559   H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
560 	    esym->e.e.e_offset);
561   H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
562   esym->e_sclass[0] = sclass;
563 
564   /* The following initialisations are unnecessary - the memory is
565      zero initialised.  They are just kept here as reminders.  */
566 
567   /* Initialise the internal symbol structure.  */
568   ent->u.syment.n_sclass          = sclass;
569   ent->u.syment.n_scnum           = section->target_index;
570   ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym;
571   ent->is_sym = TRUE;
572 
573   sym->symbol.the_bfd = vars->abfd;
574   sym->symbol.name    = vars->string_ptr;
575   sym->symbol.flags   = BSF_EXPORT | BSF_GLOBAL | extra_flags;
576   sym->symbol.section = section;
577   sym->native         = ent;
578 
579   * vars->table_ptr = vars->sym_index;
580   * vars->sym_ptr_ptr = sym;
581 
582   /* Adjust pointers for the next symbol.  */
583   vars->sym_index ++;
584   vars->sym_ptr ++;
585   vars->sym_ptr_ptr ++;
586   vars->table_ptr ++;
587   vars->native_ptr ++;
588   vars->esym_ptr ++;
589   vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
590 
591   BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
592 }
593 
594 /* Create a section.  */
595 
596 static asection_ptr
pe_ILF_make_a_section(pe_ILF_vars * vars,const char * name,unsigned int size,flagword extra_flags)597 pe_ILF_make_a_section (pe_ILF_vars * vars,
598 		       const char *  name,
599 		       unsigned int  size,
600 		       flagword      extra_flags)
601 {
602   asection_ptr sec;
603   flagword     flags;
604 
605   sec = bfd_make_section_old_way (vars->abfd, name);
606   if (sec == NULL)
607     return NULL;
608 
609   flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
610 
611   bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
612 
613   (void) bfd_set_section_alignment (vars->abfd, sec, 2);
614 
615   /* Check that we will not run out of space.  */
616   BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
617 
618   /* Set the section size and contents.  The actual
619      contents are filled in by our parent.  */
620   bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
621   sec->contents = vars->data;
622   sec->target_index = vars->sec_index ++;
623 
624   /* Advance data pointer in the vars structure.  */
625   vars->data += size;
626 
627   /* Skip the padding byte if it was not needed.
628      The logic here is that if the string length is odd,
629      then the entire string length, including the null byte,
630      is even and so the extra, padding byte, is not needed.  */
631   if (size & 1)
632     vars->data --;
633 
634   /* Create a coff_section_tdata structure for our use.  */
635   sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
636   vars->data += sizeof (struct coff_section_tdata);
637 
638   BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
639 
640   /* Create a symbol to refer to this section.  */
641   pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
642 
643   /* Cache the index to the symbol in the coff_section_data structure.  */
644   coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
645 
646   return sec;
647 }
648 
649 /* This structure contains the code that goes into the .text section
650    in order to perform a jump into the DLL lookup table.  The entries
651    in the table are index by the magic number used to represent the
652    machine type in the PE file.  The contents of the data[] arrays in
653    these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
654    The SIZE field says how many bytes in the DATA array are actually
655    used.  The OFFSET field says where in the data array the address
656    of the .idata$5 section should be placed.  */
657 #define MAX_TEXT_SECTION_SIZE 32
658 
659 typedef struct
660 {
661   unsigned short magic;
662   unsigned char  data[MAX_TEXT_SECTION_SIZE];
663   unsigned int   size;
664   unsigned int   offset;
665 }
666 jump_table;
667 
668 static jump_table jtab[] =
669 {
670 #ifdef I386MAGIC
671   { I386MAGIC,
672     { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
673     8, 2
674   },
675 #endif
676 
677 #ifdef AMD64MAGIC
678   { AMD64MAGIC,
679     { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
680     8, 2
681   },
682 #endif
683 
684 #ifdef  MC68MAGIC
685   { MC68MAGIC,
686     { /* XXX fill me in */ },
687     0, 0
688   },
689 #endif
690 
691 #ifdef  MIPS_ARCH_MAGIC_WINCE
692   { MIPS_ARCH_MAGIC_WINCE,
693     { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
694       0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
695     16, 0
696   },
697 #endif
698 
699 #ifdef  SH_ARCH_MAGIC_WINCE
700   { SH_ARCH_MAGIC_WINCE,
701     { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
702       0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
703     12, 8
704   },
705 #endif
706 
707 #ifdef  ARMPEMAGIC
708   { ARMPEMAGIC,
709     { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
710       0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
711     12, 8
712   },
713 #endif
714 
715 #ifdef  THUMBPEMAGIC
716   { THUMBPEMAGIC,
717     { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
718       0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
719     16, 12
720   },
721 #endif
722   { 0, { 0 }, 0, 0 }
723 };
724 
725 #ifndef NUM_ENTRIES
726 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
727 #endif
728 
729 /* Build a full BFD from the information supplied in a ILF object.  */
730 
731 static bfd_boolean
pe_ILF_build_a_bfd(bfd * abfd,unsigned int magic,char * symbol_name,char * source_dll,unsigned int ordinal,unsigned int types)732 pe_ILF_build_a_bfd (bfd *           abfd,
733 		    unsigned int    magic,
734 		    char *          symbol_name,
735 		    char *          source_dll,
736 		    unsigned int    ordinal,
737 		    unsigned int    types)
738 {
739   bfd_byte *               ptr;
740   pe_ILF_vars              vars;
741   struct internal_filehdr  internal_f;
742   unsigned int             import_type;
743   unsigned int             import_name_type;
744   asection_ptr             id4, id5, id6 = NULL, text = NULL;
745   coff_symbol_type **      imp_sym;
746   unsigned int             imp_index;
747 
748   /* Decode and verify the types field of the ILF structure.  */
749   import_type = types & 0x3;
750   import_name_type = (types & 0x1c) >> 2;
751 
752   switch (import_type)
753     {
754     case IMPORT_CODE:
755     case IMPORT_DATA:
756       break;
757 
758     case IMPORT_CONST:
759       /* XXX code yet to be written.  */
760       _bfd_error_handler (_("%B: Unhandled import type; %x"),
761 			  abfd, import_type);
762       return FALSE;
763 
764     default:
765       _bfd_error_handler (_("%B: Unrecognised import type; %x"),
766 			  abfd, import_type);
767       return FALSE;
768     }
769 
770   switch (import_name_type)
771     {
772     case IMPORT_ORDINAL:
773     case IMPORT_NAME:
774     case IMPORT_NAME_NOPREFIX:
775     case IMPORT_NAME_UNDECORATE:
776       break;
777 
778     default:
779       _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
780 			  abfd, import_name_type);
781       return FALSE;
782     }
783 
784   /* Initialise local variables.
785 
786      Note these are kept in a structure rather than being
787      declared as statics since bfd frowns on global variables.
788 
789      We are going to construct the contents of the BFD in memory,
790      so allocate all the space that we will need right now.  */
791   vars.bim
792     = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
793   if (vars.bim == NULL)
794     return FALSE;
795 
796   ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
797   vars.bim->buffer = ptr;
798   vars.bim->size   = ILF_DATA_SIZE;
799   if (ptr == NULL)
800     goto error_return;
801 
802   /* Initialise the pointers to regions of the memory and the
803      other contents of the pe_ILF_vars structure as well.  */
804   vars.sym_cache = (coff_symbol_type *) ptr;
805   vars.sym_ptr   = (coff_symbol_type *) ptr;
806   vars.sym_index = 0;
807   ptr += SIZEOF_ILF_SYMS;
808 
809   vars.sym_table = (unsigned int *) ptr;
810   vars.table_ptr = (unsigned int *) ptr;
811   ptr += SIZEOF_ILF_SYM_TABLE;
812 
813   vars.native_syms = (combined_entry_type *) ptr;
814   vars.native_ptr  = (combined_entry_type *) ptr;
815   ptr += SIZEOF_ILF_NATIVE_SYMS;
816 
817   vars.sym_ptr_table = (coff_symbol_type **) ptr;
818   vars.sym_ptr_ptr   = (coff_symbol_type **) ptr;
819   ptr += SIZEOF_ILF_SYM_PTR_TABLE;
820 
821   vars.esym_table = (SYMENT *) ptr;
822   vars.esym_ptr   = (SYMENT *) ptr;
823   ptr += SIZEOF_ILF_EXT_SYMS;
824 
825   vars.reltab   = (arelent *) ptr;
826   vars.relcount = 0;
827   ptr += SIZEOF_ILF_RELOCS;
828 
829   vars.int_reltab  = (struct internal_reloc *) ptr;
830   ptr += SIZEOF_ILF_INT_RELOCS;
831 
832   vars.string_table = (char *) ptr;
833   vars.string_ptr   = (char *) ptr + STRING_SIZE_SIZE;
834   ptr += SIZEOF_ILF_STRINGS;
835   vars.end_string_ptr = (char *) ptr;
836 
837   /* The remaining space in bim->buffer is used
838      by the pe_ILF_make_a_section() function.  */
839   vars.data = ptr;
840   vars.abfd = abfd;
841   vars.sec_index = 0;
842   vars.magic = magic;
843 
844   /* Create the initial .idata$<n> sections:
845      [.idata$2:  Import Directory Table -- not needed]
846      .idata$4:  Import Lookup Table
847      .idata$5:  Import Address Table
848 
849      Note we do not create a .idata$3 section as this is
850      created for us by the linker script.  */
851   id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
852   id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
853   if (id4 == NULL || id5 == NULL)
854     goto error_return;
855 
856   /* Fill in the contents of these sections.  */
857   if (import_name_type == IMPORT_ORDINAL)
858     {
859       if (ordinal == 0)
860 	/* XXX - treat as IMPORT_NAME ??? */
861 	abort ();
862 
863 #ifdef COFF_WITH_pex64
864       ((unsigned int *) id4->contents)[0] = ordinal;
865       ((unsigned int *) id4->contents)[1] = 0x80000000;
866       ((unsigned int *) id5->contents)[0] = ordinal;
867       ((unsigned int *) id5->contents)[1] = 0x80000000;
868 #else
869       * (unsigned int *) id4->contents = ordinal | 0x80000000;
870       * (unsigned int *) id5->contents = ordinal | 0x80000000;
871 #endif
872     }
873   else
874     {
875       char * symbol;
876       unsigned int len;
877 
878       /* Create .idata$6 - the Hint Name Table.  */
879       id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
880       if (id6 == NULL)
881 	goto error_return;
882 
883       /* If necessary, trim the import symbol name.  */
884       symbol = symbol_name;
885 
886       /* As used by MS compiler, '_', '@', and '?' are alternative
887 	 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
888 	 '@' used for fastcall (in C),  '_' everywhere else.  Only one
889 	 of these is used for a symbol.  We strip this leading char for
890 	 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
891 	 PE COFF 6.0 spec (section 8.3, Import Name Type).  */
892 
893       if (import_name_type != IMPORT_NAME)
894 	{
895 	  char c = symbol[0];
896 
897 	  /* Check that we don't remove for targets with empty
898 	     USER_LABEL_PREFIX the leading underscore.  */
899 	  if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
900 	      || c == '@' || c == '?')
901 	    symbol++;
902 	}
903 
904       len = strlen (symbol);
905       if (import_name_type == IMPORT_NAME_UNDECORATE)
906 	{
907 	  /* Truncate at the first '@'.  */
908 	  char *at = strchr (symbol, '@');
909 
910 	  if (at != NULL)
911 	    len = at - symbol;
912 	}
913 
914       id6->contents[0] = ordinal & 0xff;
915       id6->contents[1] = ordinal >> 8;
916 
917       memcpy ((char *) id6->contents + 2, symbol, len);
918       id6->contents[len + 2] = '\0';
919     }
920 
921   if (import_name_type != IMPORT_ORDINAL)
922     {
923       pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
924       pe_ILF_save_relocs (&vars, id4);
925 
926       pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
927       pe_ILF_save_relocs (&vars, id5);
928     }
929 
930   /* Create extra sections depending upon the type of import we are dealing with.  */
931   switch (import_type)
932     {
933       int i;
934 
935     case IMPORT_CODE:
936       /* Create a .text section.
937 	 First we need to look up its contents in the jump table.  */
938       for (i = NUM_ENTRIES (jtab); i--;)
939 	{
940 	  if (jtab[i].size == 0)
941 	    continue;
942 	  if (jtab[i].magic == magic)
943 	    break;
944 	}
945       /* If we did not find a matching entry something is wrong.  */
946       if (i < 0)
947 	abort ();
948 
949       /* Create the .text section.  */
950       text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
951       if (text == NULL)
952 	goto error_return;
953 
954       /* Copy in the jump code.  */
955       memcpy (text->contents, jtab[i].data, jtab[i].size);
956 
957       /* Create an import symbol.  */
958       pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
959       imp_sym   = vars.sym_ptr_ptr - 1;
960       imp_index = vars.sym_index - 1;
961 
962       /* Create a reloc for the data in the text section.  */
963 #ifdef MIPS_ARCH_MAGIC_WINCE
964       if (magic == MIPS_ARCH_MAGIC_WINCE)
965 	{
966 	  pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
967 				      (struct bfd_symbol **) imp_sym,
968 				      imp_index);
969 	  pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
970 	  pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
971 				      (struct bfd_symbol **) imp_sym,
972 				      imp_index);
973 	}
974       else
975 #endif
976 	pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
977 				    BFD_RELOC_32, (asymbol **) imp_sym,
978 				    imp_index);
979 
980       pe_ILF_save_relocs (& vars, text);
981       break;
982 
983     case IMPORT_DATA:
984       break;
985 
986     default:
987       /* XXX code not yet written.  */
988       abort ();
989     }
990 
991   /* Initialise the bfd.  */
992   memset (& internal_f, 0, sizeof (internal_f));
993 
994   internal_f.f_magic  = magic;
995   internal_f.f_symptr = 0;
996   internal_f.f_nsyms  = 0;
997   internal_f.f_flags  = F_AR32WR | F_LNNO; /* XXX is this correct ?  */
998 
999   if (   ! bfd_set_start_address (abfd, (bfd_vma) 0)
1000       || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1001     goto error_return;
1002 
1003   if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1004     goto error_return;
1005 
1006   coff_data (abfd)->pe = 1;
1007 #ifdef THUMBPEMAGIC
1008   if (vars.magic == THUMBPEMAGIC)
1009     /* Stop some linker warnings about thumb code not supporting interworking.  */
1010     coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1011 #endif
1012 
1013   /* Switch from file contents to memory contents.  */
1014   bfd_cache_close (abfd);
1015 
1016   abfd->iostream = (void *) vars.bim;
1017   abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1018   abfd->iovec = &_bfd_memory_iovec;
1019   abfd->where = 0;
1020   abfd->origin = 0;
1021   obj_sym_filepos (abfd) = 0;
1022 
1023   /* Now create a symbol describing the imported value.  */
1024   switch (import_type)
1025     {
1026     case IMPORT_CODE:
1027       pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1028 			    BSF_NOT_AT_END | BSF_FUNCTION);
1029 
1030       /* Create an import symbol for the DLL, without the
1031        .dll suffix.  */
1032       ptr = (bfd_byte *) strrchr (source_dll, '.');
1033       if (ptr)
1034 	* ptr = 0;
1035       pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1036       if (ptr)
1037 	* ptr = '.';
1038       break;
1039 
1040     case IMPORT_DATA:
1041       /* Nothing to do here.  */
1042       break;
1043 
1044     default:
1045       /* XXX code not yet written.  */
1046       abort ();
1047     }
1048 
1049   /* Point the bfd at the symbol table.  */
1050   obj_symbols (abfd) = vars.sym_cache;
1051   bfd_get_symcount (abfd) = vars.sym_index;
1052 
1053   obj_raw_syments (abfd) = vars.native_syms;
1054   obj_raw_syment_count (abfd) = vars.sym_index;
1055 
1056   obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1057   obj_coff_keep_syms (abfd) = TRUE;
1058 
1059   obj_convert (abfd) = vars.sym_table;
1060   obj_conv_table_size (abfd) = vars.sym_index;
1061 
1062   obj_coff_strings (abfd) = vars.string_table;
1063   obj_coff_keep_strings (abfd) = TRUE;
1064 
1065   abfd->flags |= HAS_SYMS;
1066 
1067   return TRUE;
1068 
1069  error_return:
1070   if (vars.bim->buffer != NULL)
1071     free (vars.bim->buffer);
1072   free (vars.bim);
1073   return FALSE;
1074 }
1075 
1076 /* We have detected a Image Library Format archive element.
1077    Decode the element and return the appropriate target.  */
1078 
1079 static const bfd_target *
pe_ILF_object_p(bfd * abfd)1080 pe_ILF_object_p (bfd * abfd)
1081 {
1082   bfd_byte        buffer[14];
1083   bfd_byte *      ptr;
1084   char *          symbol_name;
1085   char *          source_dll;
1086   unsigned int    machine;
1087   bfd_size_type   size;
1088   unsigned int    ordinal;
1089   unsigned int    types;
1090   unsigned int    magic;
1091 
1092   /* Upon entry the first six bytes of the ILF header have
1093       already been read.  Now read the rest of the header.  */
1094   if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1095     return NULL;
1096 
1097   ptr = buffer;
1098 
1099   machine = H_GET_16 (abfd, ptr);
1100   ptr += 2;
1101 
1102   /* Check that the machine type is recognised.  */
1103   magic = 0;
1104 
1105   switch (machine)
1106     {
1107     case IMAGE_FILE_MACHINE_UNKNOWN:
1108     case IMAGE_FILE_MACHINE_ALPHA:
1109     case IMAGE_FILE_MACHINE_ALPHA64:
1110     case IMAGE_FILE_MACHINE_IA64:
1111       break;
1112 
1113     case IMAGE_FILE_MACHINE_I386:
1114 #ifdef I386MAGIC
1115       magic = I386MAGIC;
1116 #endif
1117       break;
1118 
1119     case IMAGE_FILE_MACHINE_AMD64:
1120 #ifdef AMD64MAGIC
1121       magic = AMD64MAGIC;
1122 #endif
1123       break;
1124 
1125     case IMAGE_FILE_MACHINE_M68K:
1126 #ifdef MC68AGIC
1127       magic = MC68MAGIC;
1128 #endif
1129       break;
1130 
1131     case IMAGE_FILE_MACHINE_R3000:
1132     case IMAGE_FILE_MACHINE_R4000:
1133     case IMAGE_FILE_MACHINE_R10000:
1134 
1135     case IMAGE_FILE_MACHINE_MIPS16:
1136     case IMAGE_FILE_MACHINE_MIPSFPU:
1137     case IMAGE_FILE_MACHINE_MIPSFPU16:
1138 #ifdef MIPS_ARCH_MAGIC_WINCE
1139       magic = MIPS_ARCH_MAGIC_WINCE;
1140 #endif
1141       break;
1142 
1143     case IMAGE_FILE_MACHINE_SH3:
1144     case IMAGE_FILE_MACHINE_SH4:
1145 #ifdef SH_ARCH_MAGIC_WINCE
1146       magic = SH_ARCH_MAGIC_WINCE;
1147 #endif
1148       break;
1149 
1150     case IMAGE_FILE_MACHINE_ARM:
1151 #ifdef ARMPEMAGIC
1152       magic = ARMPEMAGIC;
1153 #endif
1154       break;
1155 
1156     case IMAGE_FILE_MACHINE_THUMB:
1157 #ifdef THUMBPEMAGIC
1158       {
1159 	extern const bfd_target TARGET_LITTLE_SYM;
1160 
1161 	if (abfd->xvec == & TARGET_LITTLE_SYM)
1162 	  magic = THUMBPEMAGIC;
1163       }
1164 #endif
1165       break;
1166 
1167     case IMAGE_FILE_MACHINE_POWERPC:
1168       /* We no longer support PowerPC.  */
1169     default:
1170       _bfd_error_handler
1171 	(_("%B: Unrecognised machine type (0x%x)"
1172 	   " in Import Library Format archive"),
1173 	 abfd, machine);
1174       bfd_set_error (bfd_error_malformed_archive);
1175 
1176       return NULL;
1177       break;
1178     }
1179 
1180   if (magic == 0)
1181     {
1182       _bfd_error_handler
1183 	(_("%B: Recognised but unhandled machine type (0x%x)"
1184 	   " in Import Library Format archive"),
1185 	 abfd, machine);
1186       bfd_set_error (bfd_error_wrong_format);
1187 
1188       return NULL;
1189     }
1190 
1191   /* We do not bother to check the date.
1192      date = H_GET_32 (abfd, ptr);  */
1193   ptr += 4;
1194 
1195   size = H_GET_32 (abfd, ptr);
1196   ptr += 4;
1197 
1198   if (size == 0)
1199     {
1200       _bfd_error_handler
1201 	(_("%B: size field is zero in Import Library Format header"), abfd);
1202       bfd_set_error (bfd_error_malformed_archive);
1203 
1204       return NULL;
1205     }
1206 
1207   ordinal = H_GET_16 (abfd, ptr);
1208   ptr += 2;
1209 
1210   types = H_GET_16 (abfd, ptr);
1211   /* ptr += 2; */
1212 
1213   /* Now read in the two strings that follow.  */
1214   ptr = (bfd_byte *) bfd_alloc (abfd, size);
1215   if (ptr == NULL)
1216     return NULL;
1217 
1218   if (bfd_bread (ptr, size, abfd) != size)
1219     {
1220       bfd_release (abfd, ptr);
1221       return NULL;
1222     }
1223 
1224   symbol_name = (char *) ptr;
1225   source_dll  = symbol_name + strlen (symbol_name) + 1;
1226 
1227   /* Verify that the strings are null terminated.  */
1228   if (ptr[size - 1] != 0
1229       || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1230     {
1231       _bfd_error_handler
1232 	(_("%B: string not null terminated in ILF object file."), abfd);
1233       bfd_set_error (bfd_error_malformed_archive);
1234       bfd_release (abfd, ptr);
1235       return NULL;
1236     }
1237 
1238   /* Now construct the bfd.  */
1239   if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1240 			    source_dll, ordinal, types))
1241     {
1242       bfd_release (abfd, ptr);
1243       return NULL;
1244     }
1245 
1246   return abfd->xvec;
1247 }
1248 
1249 static const bfd_target *
pe_bfd_object_p(bfd * abfd)1250 pe_bfd_object_p (bfd * abfd)
1251 {
1252   bfd_byte buffer[6];
1253   struct external_PEI_DOS_hdr dos_hdr;
1254   struct external_PEI_IMAGE_hdr image_hdr;
1255   struct internal_filehdr internal_f;
1256   struct internal_aouthdr internal_a;
1257   file_ptr opt_hdr_size;
1258   file_ptr offset;
1259 
1260   /* Detect if this a Microsoft Import Library Format element.  */
1261   /* First read the beginning of the header.  */
1262   if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1263       || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1264     {
1265       if (bfd_get_error () != bfd_error_system_call)
1266 	bfd_set_error (bfd_error_wrong_format);
1267       return NULL;
1268     }
1269 
1270   /* Then check the magic and the version (only 0 is supported).  */
1271   if (H_GET_32 (abfd, buffer) == 0xffff0000
1272       && H_GET_16 (abfd, buffer + 4) == 0)
1273     return pe_ILF_object_p (abfd);
1274 
1275   if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1276       || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1277 	 != sizeof (dos_hdr))
1278     {
1279       if (bfd_get_error () != bfd_error_system_call)
1280 	bfd_set_error (bfd_error_wrong_format);
1281       return NULL;
1282     }
1283 
1284   /* There are really two magic numbers involved; the magic number
1285      that says this is a NT executable (PEI) and the magic number that
1286      determines the architecture.  The former is DOSMAGIC, stored in
1287      the e_magic field.  The latter is stored in the f_magic field.
1288      If the NT magic number isn't valid, the architecture magic number
1289      could be mimicked by some other field (specifically, the number
1290      of relocs in section 3).  Since this routine can only be called
1291      correctly for a PEI file, check the e_magic number here, and, if
1292      it doesn't match, clobber the f_magic number so that we don't get
1293      a false match.  */
1294   if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1295     {
1296       bfd_set_error (bfd_error_wrong_format);
1297       return NULL;
1298     }
1299 
1300   offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1301   if (bfd_seek (abfd, offset, SEEK_SET) != 0
1302       || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1303 	  != sizeof (image_hdr)))
1304     {
1305       if (bfd_get_error () != bfd_error_system_call)
1306 	bfd_set_error (bfd_error_wrong_format);
1307       return NULL;
1308     }
1309 
1310   if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1311     {
1312       bfd_set_error (bfd_error_wrong_format);
1313       return NULL;
1314     }
1315 
1316   /* Swap file header, so that we get the location for calling
1317      real_object_p.  */
1318   bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1319 
1320   if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1321       || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1322     {
1323       bfd_set_error (bfd_error_wrong_format);
1324       return NULL;
1325     }
1326 
1327   /* Read the optional header, which has variable size.  */
1328   opt_hdr_size = internal_f.f_opthdr;
1329 
1330   if (opt_hdr_size != 0)
1331     {
1332       bfd_size_type amt = opt_hdr_size;
1333       void * opthdr;
1334 
1335       /* PR 17521 file: 230-131433-0.004.  */
1336       if (amt < sizeof (PEAOUTHDR))
1337 	amt = sizeof (PEAOUTHDR);
1338 
1339       opthdr = bfd_zalloc (abfd, amt);
1340       if (opthdr == NULL)
1341 	return NULL;
1342       if (bfd_bread (opthdr, opt_hdr_size, abfd)
1343 	  != (bfd_size_type) opt_hdr_size)
1344 	return NULL;
1345 
1346       bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1347     }
1348 
1349   return coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1350                             (opt_hdr_size != 0
1351                              ? &internal_a
1352                              : (struct internal_aouthdr *) NULL));
1353 }
1354 
1355 #define coff_object_p pe_bfd_object_p
1356 #endif /* COFF_IMAGE_WITH_PE */
1357