1 /* tc-h8300.c -- Assemble code for the Renesas H8/300
2 Copyright (C) 1991-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Written By Steve Chamberlain <sac@cygnus.com>. */
22
23 #include "as.h"
24 #include "subsegs.h"
25 #include "dwarf2dbg.h"
26
27 #define DEFINE_TABLE
28 #define h8_opcodes ops
29 #include "opcode/h8300.h"
30 #include "safe-ctype.h"
31
32 #ifdef OBJ_ELF
33 #include "elf/h8.h"
34 #endif
35
36 const char comment_chars[] = ";";
37 const char line_comment_chars[] = "#";
38 const char line_separator_chars[] = "";
39
40 static void sbranch (int);
41 static void h8300hmode (int);
42 static void h8300smode (int);
43 static void h8300hnmode (int);
44 static void h8300snmode (int);
45 static void h8300sxmode (int);
46 static void h8300sxnmode (int);
47 static void pint (int);
48
49 int Hmode;
50 int Smode;
51 int Nmode;
52 int SXmode;
53
54 #define PSIZE (Hmode && !Nmode ? L_32 : L_16)
55
56 static int bsize = L_8; /* Default branch displacement. */
57
58 struct h8_instruction
59 {
60 int length;
61 int noperands;
62 int idx;
63 int size;
64 const struct h8_opcode *opcode;
65 };
66
67 static struct h8_instruction *h8_instructions;
68
69 static void
h8300hmode(int arg ATTRIBUTE_UNUSED)70 h8300hmode (int arg ATTRIBUTE_UNUSED)
71 {
72 Hmode = 1;
73 Smode = 0;
74 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300h))
75 as_warn (_("could not set architecture and machine"));
76 }
77
78 static void
h8300smode(int arg ATTRIBUTE_UNUSED)79 h8300smode (int arg ATTRIBUTE_UNUSED)
80 {
81 Smode = 1;
82 Hmode = 1;
83 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300s))
84 as_warn (_("could not set architecture and machine"));
85 }
86
87 static void
h8300hnmode(int arg ATTRIBUTE_UNUSED)88 h8300hnmode (int arg ATTRIBUTE_UNUSED)
89 {
90 Hmode = 1;
91 Smode = 0;
92 Nmode = 1;
93 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300hn))
94 as_warn (_("could not set architecture and machine"));
95 }
96
97 static void
h8300snmode(int arg ATTRIBUTE_UNUSED)98 h8300snmode (int arg ATTRIBUTE_UNUSED)
99 {
100 Smode = 1;
101 Hmode = 1;
102 Nmode = 1;
103 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sn))
104 as_warn (_("could not set architecture and machine"));
105 }
106
107 static void
h8300sxmode(int arg ATTRIBUTE_UNUSED)108 h8300sxmode (int arg ATTRIBUTE_UNUSED)
109 {
110 Smode = 1;
111 Hmode = 1;
112 SXmode = 1;
113 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sx))
114 as_warn (_("could not set architecture and machine"));
115 }
116
117 static void
h8300sxnmode(int arg ATTRIBUTE_UNUSED)118 h8300sxnmode (int arg ATTRIBUTE_UNUSED)
119 {
120 Smode = 1;
121 Hmode = 1;
122 SXmode = 1;
123 Nmode = 1;
124 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sxn))
125 as_warn (_("could not set architecture and machine"));
126 }
127
128 static void
sbranch(int size)129 sbranch (int size)
130 {
131 bsize = size;
132 }
133
134 static void
pint(int arg ATTRIBUTE_UNUSED)135 pint (int arg ATTRIBUTE_UNUSED)
136 {
137 cons (Hmode ? 4 : 2);
138 }
139
140 /* Like obj_elf_section, but issues a warning for new
141 sections which do not have an attribute specification. */
142
143 static void
h8300_elf_section(int push)144 h8300_elf_section (int push)
145 {
146 static const char * known_data_sections [] = { ".rodata", ".tdata", ".tbss" };
147 static const char * known_data_prefixes [] = { ".debug", ".zdebug", ".gnu.warning" };
148 char * saved_ilp = input_line_pointer;
149 char * name;
150
151 name = obj_elf_section_name ();
152 if (name == NULL)
153 return;
154
155 if (* input_line_pointer != ','
156 && bfd_get_section_by_name (stdoutput, name) == NULL)
157 {
158 signed int i;
159
160 /* Ignore this warning for well known data sections. */
161 for (i = ARRAY_SIZE (known_data_sections); i--;)
162 if (strcmp (name, known_data_sections[i]) == 0)
163 break;
164
165 if (i < 0)
166 for (i = ARRAY_SIZE (known_data_prefixes); i--;)
167 if (strncmp (name, known_data_prefixes[i],
168 strlen (known_data_prefixes[i])) == 0)
169 break;
170
171 if (i < 0)
172 as_warn (_("new section '%s' defined without attributes - this might cause problems"), name);
173 }
174
175 /* FIXME: We ought to free the memory allocated by obj_elf_section_name()
176 for 'name', but we do not know if it was taken from the obstack, via
177 demand_copy_C_string(), or xmalloc()ed. */
178 input_line_pointer = saved_ilp;
179 obj_elf_section (push);
180 }
181
182 /* This table describes all the machine specific pseudo-ops the assembler
183 has to support. The fields are:
184 pseudo-op name without dot
185 function to call to execute this pseudo-op
186 Integer arg to pass to the function. */
187
188 const pseudo_typeS md_pseudo_table[] =
189 {
190 {"h8300h", h8300hmode, 0},
191 {"h8300hn", h8300hnmode, 0},
192 {"h8300s", h8300smode, 0},
193 {"h8300sn", h8300snmode, 0},
194 {"h8300sx", h8300sxmode, 0},
195 {"h8300sxn", h8300sxnmode, 0},
196 {"sbranch", sbranch, L_8},
197 {"lbranch", sbranch, L_16},
198
199 {"int", pint, 0},
200 {"data.b", cons, 1},
201 {"data.w", cons, 2},
202 {"data.l", cons, 4},
203 {"form", listing_psize, 0},
204 {"heading", listing_title, 0},
205 {"import", s_ignore, 0},
206 {"page", listing_eject, 0},
207 {"program", s_ignore, 0},
208
209 #ifdef OBJ_ELF
210 {"section", h8300_elf_section, 0},
211 {"section.s", h8300_elf_section, 0},
212 {"sect", h8300_elf_section, 0},
213 {"sect.s", h8300_elf_section, 0},
214 #endif
215
216 {0, 0, 0}
217 };
218
219 const char EXP_CHARS[] = "eE";
220
221 /* Chars that mean this number is a floating point constant
222 As in 0f12.456
223 or 0d1.2345e12. */
224 const char FLT_CHARS[] = "rRsSfFdDxXpP";
225
226 static struct hash_control *opcode_hash_control; /* Opcode mnemonics. */
227
228 /* This function is called once, at assembler startup time. This
229 should set up all the tables, etc. that the MD part of the assembler
230 needs. */
231
232 void
md_begin(void)233 md_begin (void)
234 {
235 unsigned int nopcodes;
236 struct h8_opcode *p, *p1;
237 struct h8_instruction *pi;
238 char prev_buffer[100];
239 int idx = 0;
240
241 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300))
242 as_warn (_("could not set architecture and machine"));
243
244 opcode_hash_control = hash_new ();
245 prev_buffer[0] = 0;
246
247 nopcodes = sizeof (h8_opcodes) / sizeof (struct h8_opcode);
248
249 h8_instructions = (struct h8_instruction *)
250 xmalloc (nopcodes * sizeof (struct h8_instruction));
251
252 pi = h8_instructions;
253 p1 = h8_opcodes;
254 /* We do a minimum amount of sorting on the opcode table; this is to
255 make it easy to describe the mova instructions without unnecessary
256 code duplication.
257 Sorting only takes place inside blocks of instructions of the form
258 X/Y, so for example mova/b, mova/w and mova/l can be intermixed. */
259 while (p1)
260 {
261 struct h8_opcode *first_skipped = 0;
262 int len, cmplen = 0;
263 char *src = p1->name;
264 char *dst, *buffer;
265
266 if (p1->name == 0)
267 break;
268 /* Strip off any . part when inserting the opcode and only enter
269 unique codes into the hash table. */
270 dst = buffer = malloc (strlen (src) + 1);
271 while (*src)
272 {
273 if (*src == '.')
274 {
275 src++;
276 break;
277 }
278 if (*src == '/')
279 cmplen = src - p1->name + 1;
280 *dst++ = *src++;
281 }
282 *dst = 0;
283 len = dst - buffer;
284 if (cmplen == 0)
285 cmplen = len;
286 hash_insert (opcode_hash_control, buffer, (char *) pi);
287 strcpy (prev_buffer, buffer);
288 idx++;
289
290 for (p = p1; p->name; p++)
291 {
292 /* A negative TIME is used to indicate that we've added this opcode
293 already. */
294 if (p->time == -1)
295 continue;
296 if (strncmp (p->name, buffer, cmplen) != 0
297 || (p->name[cmplen] != '\0' && p->name[cmplen] != '.'
298 && p->name[cmplen - 1] != '/'))
299 {
300 if (first_skipped == 0)
301 first_skipped = p;
302 break;
303 }
304 if (strncmp (p->name, buffer, len) != 0)
305 {
306 if (first_skipped == 0)
307 first_skipped = p;
308 continue;
309 }
310
311 p->time = -1;
312 pi->size = p->name[len] == '.' ? p->name[len + 1] : 0;
313 pi->idx = idx;
314
315 /* Find the number of operands. */
316 pi->noperands = 0;
317 while (pi->noperands < 3 && p->args.nib[pi->noperands] != (op_type) E)
318 pi->noperands++;
319
320 /* Find the length of the opcode in bytes. */
321 pi->length = 0;
322 while (p->data.nib[pi->length * 2] != (op_type) E)
323 pi->length++;
324
325 pi->opcode = p;
326 pi++;
327 }
328 p1 = first_skipped;
329 }
330
331 /* Add entry for the NULL vector terminator. */
332 pi->length = 0;
333 pi->noperands = 0;
334 pi->idx = 0;
335 pi->size = 0;
336 pi->opcode = 0;
337
338 linkrelax = 1;
339 }
340
341 struct h8_op
342 {
343 op_type mode;
344 unsigned reg;
345 expressionS exp;
346 };
347
348 static void clever_message (const struct h8_instruction *, struct h8_op *);
349 static void fix_operand_size (struct h8_op *, int);
350 static void build_bytes (const struct h8_instruction *, struct h8_op *);
351 static void do_a_fix_imm (int, int, struct h8_op *, int, const struct h8_instruction *);
352 static void check_operand (struct h8_op *, unsigned int, char *);
353 static const struct h8_instruction * get_specific (const struct h8_instruction *, struct h8_op *, int) ;
354 static char *get_operands (unsigned, char *, struct h8_op *);
355 static void get_operand (char **, struct h8_op *, int);
356 static int parse_reg (char *, op_type *, unsigned *, int);
357 static char *skip_colonthing (char *, int *);
358 static char *parse_exp (char *, struct h8_op *);
359
360 static int constant_fits_size_p (struct h8_op *, int, int);
361
362 /*
363 parse operands
364 WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp
365 r0l,r0h,..r7l,r7h
366 @WREG
367 @WREG+
368 @-WREG
369 #const
370 ccr
371 */
372
373 /* Try to parse a reg name. Return the number of chars consumed. */
374
375 static int
parse_reg(char * src,op_type * mode,unsigned int * reg,int direction)376 parse_reg (char *src, op_type *mode, unsigned int *reg, int direction)
377 {
378 char *end;
379 int len;
380
381 /* Cribbed from get_symbol_end. */
382 if (!is_name_beginner (*src) || *src == '\001')
383 return 0;
384 end = src + 1;
385 while ((is_part_of_name (*end) && *end != '.') || *end == '\001')
386 end++;
387 len = end - src;
388
389 if (len == 2 && TOLOWER (src[0]) == 's' && TOLOWER (src[1]) == 'p')
390 {
391 *mode = PSIZE | REG | direction;
392 *reg = 7;
393 return len;
394 }
395 if (len == 3 &&
396 TOLOWER (src[0]) == 'c' &&
397 TOLOWER (src[1]) == 'c' &&
398 TOLOWER (src[2]) == 'r')
399 {
400 *mode = CCR;
401 *reg = 0;
402 return len;
403 }
404 if (len == 3 &&
405 TOLOWER (src[0]) == 'e' &&
406 TOLOWER (src[1]) == 'x' &&
407 TOLOWER (src[2]) == 'r')
408 {
409 *mode = EXR;
410 *reg = 1;
411 return len;
412 }
413 if (len == 3 &&
414 TOLOWER (src[0]) == 'v' &&
415 TOLOWER (src[1]) == 'b' &&
416 TOLOWER (src[2]) == 'r')
417 {
418 *mode = VBR;
419 *reg = 6;
420 return len;
421 }
422 if (len == 3 &&
423 TOLOWER (src[0]) == 's' &&
424 TOLOWER (src[1]) == 'b' &&
425 TOLOWER (src[2]) == 'r')
426 {
427 *mode = SBR;
428 *reg = 7;
429 return len;
430 }
431 if (len == 2 && TOLOWER (src[0]) == 'f' && TOLOWER (src[1]) == 'p')
432 {
433 *mode = PSIZE | REG | direction;
434 *reg = 6;
435 return len;
436 }
437 if (len == 3 && TOLOWER (src[0]) == 'e' && TOLOWER (src[1]) == 'r' &&
438 src[2] >= '0' && src[2] <= '7')
439 {
440 *mode = L_32 | REG | direction;
441 *reg = src[2] - '0';
442 if (!Hmode)
443 as_warn (_("Reg not valid for H8/300"));
444 return len;
445 }
446 if (len == 2 && TOLOWER (src[0]) == 'e' && src[1] >= '0' && src[1] <= '7')
447 {
448 *mode = L_16 | REG | direction;
449 *reg = src[1] - '0' + 8;
450 if (!Hmode)
451 as_warn (_("Reg not valid for H8/300"));
452 return len;
453 }
454
455 if (TOLOWER (src[0]) == 'r')
456 {
457 if (src[1] >= '0' && src[1] <= '7')
458 {
459 if (len == 3 && TOLOWER (src[2]) == 'l')
460 {
461 *mode = L_8 | REG | direction;
462 *reg = (src[1] - '0') + 8;
463 return len;
464 }
465 if (len == 3 && TOLOWER (src[2]) == 'h')
466 {
467 *mode = L_8 | REG | direction;
468 *reg = (src[1] - '0');
469 return len;
470 }
471 if (len == 2)
472 {
473 *mode = L_16 | REG | direction;
474 *reg = (src[1] - '0');
475 return len;
476 }
477 }
478 }
479
480 return 0;
481 }
482
483
484 /* Parse an immediate or address-related constant and store it in OP.
485 If the user also specifies the operand's size, store that size
486 in OP->MODE, otherwise leave it for later code to decide. */
487
488 static char *
parse_exp(char * src,struct h8_op * op)489 parse_exp (char *src, struct h8_op *op)
490 {
491 char *save;
492
493 save = input_line_pointer;
494 input_line_pointer = src;
495 expression (&op->exp);
496 if (op->exp.X_op == O_absent)
497 as_bad (_("missing operand"));
498 src = input_line_pointer;
499 input_line_pointer = save;
500
501 return skip_colonthing (src, &op->mode);
502 }
503
504
505 /* If SRC starts with an explicit operand size, skip it and store the size
506 in *MODE. Leave *MODE unchanged otherwise. */
507
508 static char *
skip_colonthing(char * src,int * mode)509 skip_colonthing (char *src, int *mode)
510 {
511 if (*src == ':')
512 {
513 src++;
514 *mode &= ~SIZE;
515 if (src[0] == '8' && !ISDIGIT (src[1]))
516 *mode |= L_8;
517 else if (src[0] == '2' && !ISDIGIT (src[1]))
518 *mode |= L_2;
519 else if (src[0] == '3' && !ISDIGIT (src[1]))
520 *mode |= L_3;
521 else if (src[0] == '4' && !ISDIGIT (src[1]))
522 *mode |= L_4;
523 else if (src[0] == '5' && !ISDIGIT (src[1]))
524 *mode |= L_5;
525 else if (src[0] == '2' && src[1] == '4' && !ISDIGIT (src[2]))
526 *mode |= L_24;
527 else if (src[0] == '3' && src[1] == '2' && !ISDIGIT (src[2]))
528 *mode |= L_32;
529 else if (src[0] == '1' && src[1] == '6' && !ISDIGIT (src[2]))
530 *mode |= L_16;
531 else
532 as_bad (_("invalid operand size requested"));
533
534 while (ISDIGIT (*src))
535 src++;
536 }
537 return src;
538 }
539
540 /* The many forms of operand:
541
542 Rn Register direct
543 @Rn Register indirect
544 @(exp[:16], Rn) Register indirect with displacement
545 @Rn+
546 @-Rn
547 @aa:8 absolute 8 bit
548 @aa:16 absolute 16 bit
549 @aa absolute 16 bit
550
551 #xx[:size] immediate data
552 @(exp:[8], pc) pc rel
553 @@aa[:8] memory indirect. */
554
555 static int
constant_fits_width_p(struct h8_op * operand,offsetT width)556 constant_fits_width_p (struct h8_op *operand, offsetT width)
557 {
558 offsetT num;
559
560 num = ((operand->exp.X_add_number & 0xffffffff) ^ 0x80000000) - 0x80000000;
561 return (num & ~width) == 0 || (num | width) == ~0;
562 }
563
564 static int
constant_fits_size_p(struct h8_op * operand,int size,int no_symbols)565 constant_fits_size_p (struct h8_op *operand, int size, int no_symbols)
566 {
567 offsetT num;
568
569 if (no_symbols
570 && (operand->exp.X_add_symbol != 0 || operand->exp.X_op_symbol != 0))
571 return 0;
572 num = operand->exp.X_add_number & 0xffffffff;
573 switch (size)
574 {
575 case L_2:
576 return (num & ~3) == 0;
577 case L_3:
578 return (num & ~7) == 0;
579 case L_3NZ:
580 return num >= 1 && num < 8;
581 case L_4:
582 return (num & ~15) == 0;
583 case L_5:
584 return num >= 1 && num < 32;
585 case L_8:
586 num = (num ^ 0x80000000) - 0x80000000;
587 return (num & ~0xFF) == 0 || (num | 0x7F) == ~0;
588 case L_8U:
589 return (num & ~0xFF) == 0;
590 case L_16:
591 num = (num ^ 0x80000000) - 0x80000000;
592 return (num & ~0xFFFF) == 0 || (num | 0x7FFF) == ~0;
593 case L_16U:
594 return (num & ~0xFFFF) == 0;
595 case L_32:
596 return 1;
597 default:
598 abort ();
599 }
600 }
601
602 static void
get_operand(char ** ptr,struct h8_op * op,int direction)603 get_operand (char **ptr, struct h8_op *op, int direction)
604 {
605 char *src = *ptr;
606 op_type mode;
607 unsigned int num;
608 unsigned int len;
609
610 op->mode = 0;
611
612 /* Check for '(' and ')' for instructions ldm and stm. */
613 if (src[0] == '(' && src[8] == ')')
614 ++ src;
615
616 /* Gross. Gross. ldm and stm have a format not easily handled
617 by get_operand. We deal with it explicitly here. */
618 if (TOLOWER (src[0]) == 'e' && TOLOWER (src[1]) == 'r' &&
619 ISDIGIT (src[2]) && src[3] == '-' &&
620 TOLOWER (src[4]) == 'e' && TOLOWER (src[5]) == 'r' && ISDIGIT (src[6]))
621 {
622 int low, high;
623
624 low = src[2] - '0';
625 high = src[6] - '0';
626
627 /* Check register pair's validity as per tech note TN-H8*-193A/E
628 from Renesas for H8S and H8SX hardware manual. */
629 if ( !(low == 0 && (high == 1 || high == 2 || high == 3))
630 && !(low == 1 && (high == 2 || high == 3 || high == 4) && SXmode)
631 && !(low == 2 && (high == 3 || ((high == 4 || high == 5) && SXmode)))
632 && !(low == 3 && (high == 4 || high == 5 || high == 6) && SXmode)
633 && !(low == 4 && (high == 5 || high == 6))
634 && !(low == 4 && high == 7 && SXmode)
635 && !(low == 5 && (high == 6 || high == 7) && SXmode)
636 && !(low == 6 && high == 7 && SXmode))
637 as_bad (_("Invalid register list for ldm/stm\n"));
638
639 /* Even sicker. We encode two registers into op->reg. One
640 for the low register to save, the other for the high
641 register to save; we also set the high bit in op->reg
642 so we know this is "very special". */
643 op->reg = 0x80000000 | (high << 8) | low;
644 op->mode = REG;
645 if (src[7] == ')')
646 *ptr = src + 8;
647 else
648 *ptr = src + 7;
649 return;
650 }
651
652 len = parse_reg (src, &op->mode, &op->reg, direction);
653 if (len)
654 {
655 src += len;
656 if (*src == '.')
657 {
658 int size = op->mode & SIZE;
659 switch (src[1])
660 {
661 case 'l': case 'L':
662 if (size != L_32)
663 as_warn (_("mismatch between register and suffix"));
664 op->mode = (op->mode & ~MODE) | LOWREG;
665 break;
666 case 'w': case 'W':
667 if (size != L_32 && size != L_16)
668 as_warn (_("mismatch between register and suffix"));
669 op->mode = (op->mode & ~MODE) | LOWREG;
670 op->mode = (op->mode & ~SIZE) | L_16;
671 break;
672 case 'b': case 'B':
673 op->mode = (op->mode & ~MODE) | LOWREG;
674 if (size != L_32 && size != L_8)
675 as_warn (_("mismatch between register and suffix"));
676 op->mode = (op->mode & ~MODE) | LOWREG;
677 op->mode = (op->mode & ~SIZE) | L_8;
678 break;
679 default:
680 as_warn (_("invalid suffix after register."));
681 break;
682 }
683 src += 2;
684 }
685 *ptr = src;
686 return;
687 }
688
689 if (*src == '@')
690 {
691 src++;
692 if (*src == '@')
693 {
694 *ptr = parse_exp (src + 1, op);
695 if (op->exp.X_add_number >= 0x100)
696 {
697 int divisor = 1;
698
699 op->mode = VECIND;
700 /* FIXME : 2? or 4? */
701 if (op->exp.X_add_number >= 0x400)
702 as_bad (_("address too high for vector table jmp/jsr"));
703 else if (op->exp.X_add_number >= 0x200)
704 divisor = 4;
705 else
706 divisor = 2;
707
708 op->exp.X_add_number = op->exp.X_add_number / divisor - 0x80;
709 }
710 else
711 op->mode = MEMIND;
712 return;
713 }
714
715 if (*src == '-' || *src == '+')
716 {
717 len = parse_reg (src + 1, &mode, &num, direction);
718 if (len == 0)
719 {
720 /* Oops, not a reg after all, must be ordinary exp. */
721 op->mode = ABS | direction;
722 *ptr = parse_exp (src, op);
723 return;
724 }
725
726 if (((mode & SIZE) != PSIZE)
727 /* For Normal mode accept 16 bit and 32 bit pointer registers. */
728 && (!Nmode || ((mode & SIZE) != L_32)))
729 as_bad (_("Wrong size pointer register for architecture."));
730
731 op->mode = src[0] == '-' ? RDPREDEC : RDPREINC;
732 op->reg = num;
733 *ptr = src + 1 + len;
734 return;
735 }
736 if (*src == '(')
737 {
738 src++;
739
740 /* See if this is @(ERn.x, PC). */
741 len = parse_reg (src, &mode, &op->reg, direction);
742 if (len != 0 && (mode & MODE) == REG && src[len] == '.')
743 {
744 switch (TOLOWER (src[len + 1]))
745 {
746 case 'b':
747 mode = PCIDXB | direction;
748 break;
749 case 'w':
750 mode = PCIDXW | direction;
751 break;
752 case 'l':
753 mode = PCIDXL | direction;
754 break;
755 default:
756 mode = 0;
757 break;
758 }
759 if (mode
760 && src[len + 2] == ','
761 && TOLOWER (src[len + 3]) != 'p'
762 && TOLOWER (src[len + 4]) != 'c'
763 && src[len + 5] != ')')
764 {
765 *ptr = src + len + 6;
766 op->mode |= mode;
767 return;
768 }
769 /* Fall through into disp case - the grammar is somewhat
770 ambiguous, so we should try whether it's a DISP operand
771 after all ("ER3.L" might be a poorly named label...). */
772 }
773
774 /* Disp. */
775
776 /* Start off assuming a 16 bit offset. */
777
778 src = parse_exp (src, op);
779 if (*src == ')')
780 {
781 op->mode |= ABS | direction;
782 *ptr = src + 1;
783 return;
784 }
785
786 if (*src != ',')
787 {
788 as_bad (_("expected @(exp, reg16)"));
789 return;
790 }
791 src++;
792
793 len = parse_reg (src, &mode, &op->reg, direction);
794 if (len == 0 || (mode & MODE) != REG)
795 {
796 as_bad (_("expected @(exp, reg16)"));
797 return;
798 }
799 src += len;
800 if (src[0] == '.')
801 {
802 switch (TOLOWER (src[1]))
803 {
804 case 'b':
805 op->mode |= INDEXB | direction;
806 break;
807 case 'w':
808 op->mode |= INDEXW | direction;
809 break;
810 case 'l':
811 op->mode |= INDEXL | direction;
812 break;
813 default:
814 as_bad (_("expected .L, .W or .B for register in indexed addressing mode"));
815 }
816 src += 2;
817 op->reg &= 7;
818 }
819 else
820 op->mode |= DISP | direction;
821 src = skip_colonthing (src, &op->mode);
822
823 if (*src != ')' && '(')
824 {
825 as_bad (_("expected @(exp, reg16)"));
826 return;
827 }
828 *ptr = src + 1;
829 return;
830 }
831 len = parse_reg (src, &mode, &num, direction);
832
833 if (len)
834 {
835 src += len;
836 if (*src == '+' || *src == '-')
837 {
838 if (((mode & SIZE) != PSIZE)
839 /* For Normal mode accept 16 bit and 32 bit pointer registers. */
840 && (!Nmode || ((mode & SIZE) != L_32)))
841 as_bad (_("Wrong size pointer register for architecture."));
842 op->mode = *src == '+' ? RSPOSTINC : RSPOSTDEC;
843 op->reg = num;
844 src++;
845 *ptr = src;
846 return;
847 }
848 if (((mode & SIZE) != PSIZE)
849 /* For Normal mode accept 16 bit and 32 bit pointer registers. */
850 && (!Nmode || ((mode & SIZE) != L_32)))
851 as_bad (_("Wrong size pointer register for architecture."));
852
853 op->mode = direction | IND | PSIZE;
854 op->reg = num;
855 *ptr = src;
856
857 return;
858 }
859 else
860 {
861 /* must be a symbol */
862
863 op->mode = ABS | direction;
864 *ptr = parse_exp (src, op);
865 return;
866 }
867 }
868
869 if (*src == '#')
870 {
871 op->mode = IMM;
872 *ptr = parse_exp (src + 1, op);
873 return;
874 }
875 else if (strncmp (src, "mach", 4) == 0 ||
876 strncmp (src, "macl", 4) == 0 ||
877 strncmp (src, "MACH", 4) == 0 ||
878 strncmp (src, "MACL", 4) == 0)
879 {
880 op->reg = TOLOWER (src[3]) == 'l';
881 op->mode = MACREG;
882 *ptr = src + 4;
883 return;
884 }
885 else
886 {
887 op->mode = PCREL;
888 *ptr = parse_exp (src, op);
889 }
890 }
891
892 static char *
get_operands(unsigned int noperands,char * op_end,struct h8_op * operand)893 get_operands (unsigned int noperands, char *op_end, struct h8_op *operand)
894 {
895 char *ptr = op_end;
896
897 switch (noperands)
898 {
899 case 0:
900 break;
901
902 case 1:
903 ptr++;
904 get_operand (&ptr, operand + 0, SRC);
905 if (*ptr == ',')
906 {
907 ptr++;
908 get_operand (&ptr, operand + 1, DST);
909 }
910 break;
911
912 case 2:
913 ptr++;
914 get_operand (&ptr, operand + 0, SRC);
915 if (*ptr == ',')
916 ptr++;
917 get_operand (&ptr, operand + 1, DST);
918 break;
919
920 case 3:
921 ptr++;
922 get_operand (&ptr, operand + 0, SRC);
923 if (*ptr == ',')
924 ptr++;
925 get_operand (&ptr, operand + 1, DST);
926 if (*ptr == ',')
927 ptr++;
928 get_operand (&ptr, operand + 2, OP3);
929 break;
930
931 default:
932 abort ();
933 }
934
935 return ptr;
936 }
937
938 /* MOVA has special requirements. Rather than adding twice the amount of
939 addressing modes, we simply special case it a bit. */
940 static void
get_mova_operands(char * op_end,struct h8_op * operand)941 get_mova_operands (char *op_end, struct h8_op *operand)
942 {
943 char *ptr = op_end;
944
945 if (ptr[1] != '@' || ptr[2] != '(')
946 goto error;
947 ptr += 3;
948 operand[0].mode = 0;
949 ptr = parse_exp (ptr, &operand[0]);
950
951 if (*ptr !=',')
952 goto error;
953 ptr++;
954 get_operand (&ptr, operand + 1, DST);
955
956 if (*ptr =='.')
957 {
958 ptr++;
959 switch (*ptr++)
960 {
961 case 'b': case 'B':
962 operand[0].mode = (operand[0].mode & ~MODE) | INDEXB;
963 break;
964 case 'w': case 'W':
965 operand[0].mode = (operand[0].mode & ~MODE) | INDEXW;
966 break;
967 case 'l': case 'L':
968 operand[0].mode = (operand[0].mode & ~MODE) | INDEXL;
969 break;
970 default:
971 goto error;
972 }
973 }
974 else if ((operand[1].mode & MODE) == LOWREG)
975 {
976 switch (operand[1].mode & SIZE)
977 {
978 case L_8:
979 operand[0].mode = (operand[0].mode & ~MODE) | INDEXB;
980 break;
981 case L_16:
982 operand[0].mode = (operand[0].mode & ~MODE) | INDEXW;
983 break;
984 case L_32:
985 operand[0].mode = (operand[0].mode & ~MODE) | INDEXL;
986 break;
987 default:
988 goto error;
989 }
990 }
991 else
992 goto error;
993
994 if (*ptr++ != ')' || *ptr++ != ',')
995 goto error;
996 get_operand (&ptr, operand + 2, OP3);
997 /* See if we can use the short form of MOVA. */
998 if (((operand[1].mode & MODE) == REG || (operand[1].mode & MODE) == LOWREG)
999 && (operand[2].mode & MODE) == REG
1000 && (operand[1].reg & 7) == (operand[2].reg & 7))
1001 {
1002 operand[1].mode = operand[2].mode = 0;
1003 operand[0].reg = operand[2].reg & 7;
1004 }
1005 return;
1006
1007 error:
1008 as_bad (_("expected valid addressing mode for mova: \"@(disp, ea.sz),ERn\""));
1009 }
1010
1011 static void
get_rtsl_operands(char * ptr,struct h8_op * operand)1012 get_rtsl_operands (char *ptr, struct h8_op *operand)
1013 {
1014 int mode, len, type = 0;
1015 unsigned int num, num2;
1016
1017 ptr++;
1018 if (*ptr == '(')
1019 {
1020 ptr++;
1021 type = 1;
1022 }
1023 len = parse_reg (ptr, &mode, &num, SRC);
1024 if (len == 0 || (mode & MODE) != REG)
1025 {
1026 as_bad (_("expected register"));
1027 return;
1028 }
1029 ptr += len;
1030 if (*ptr == '-')
1031 {
1032 len = parse_reg (++ptr, &mode, &num2, SRC);
1033 if (len == 0 || (mode & MODE) != REG)
1034 {
1035 as_bad (_("expected register"));
1036 return;
1037 }
1038 ptr += len;
1039 /* CONST_xxx are used as placeholders in the opcode table. */
1040 num = num2 - num;
1041 if (num > 3)
1042 {
1043 as_bad (_("invalid register list"));
1044 return;
1045 }
1046 }
1047 else
1048 num2 = num, num = 0;
1049 if (type == 1 && *ptr++ != ')')
1050 {
1051 as_bad (_("expected closing paren"));
1052 return;
1053 }
1054 operand[0].mode = RS32;
1055 operand[1].mode = RD32;
1056 operand[0].reg = num;
1057 operand[1].reg = num2;
1058 }
1059
1060 /* Passed a pointer to a list of opcodes which use different
1061 addressing modes, return the opcode which matches the opcodes
1062 provided. */
1063
1064 static const struct h8_instruction *
get_specific(const struct h8_instruction * instruction,struct h8_op * operands,int size)1065 get_specific (const struct h8_instruction *instruction,
1066 struct h8_op *operands, int size)
1067 {
1068 const struct h8_instruction *this_try = instruction;
1069 const struct h8_instruction *found_other = 0, *found_mismatched = 0;
1070 int found = 0;
1071 int this_index = instruction->idx;
1072 int noperands = 0;
1073
1074 /* There's only one ldm/stm and it's easier to just
1075 get out quick for them. */
1076 if (OP_KIND (instruction->opcode->how) == O_LDM
1077 || OP_KIND (instruction->opcode->how) == O_STM)
1078 return this_try;
1079
1080 while (noperands < 3 && operands[noperands].mode != 0)
1081 noperands++;
1082
1083 while (this_index == instruction->idx && !found)
1084 {
1085 int this_size;
1086
1087 found = 1;
1088 this_try = instruction++;
1089 this_size = this_try->opcode->how & SN;
1090
1091 if (this_try->noperands != noperands)
1092 found = 0;
1093 else if (this_try->noperands > 0)
1094 {
1095 int i;
1096
1097 for (i = 0; i < this_try->noperands && found; i++)
1098 {
1099 op_type op = this_try->opcode->args.nib[i];
1100 int op_mode = op & MODE;
1101 int op_size = op & SIZE;
1102 int x = operands[i].mode;
1103 int x_mode = x & MODE;
1104 int x_size = x & SIZE;
1105
1106 if (op_mode == LOWREG && (x_mode == REG || x_mode == LOWREG))
1107 {
1108 if ((x_size == L_8 && (operands[i].reg & 8) == 0)
1109 || (x_size == L_16 && (operands[i].reg & 8) == 8))
1110 as_warn (_("can't use high part of register in operand %d"), i);
1111
1112 if (x_size != op_size)
1113 found = 0;
1114 }
1115 else if (op_mode == REG)
1116 {
1117 if (x_mode == LOWREG)
1118 x_mode = REG;
1119 if (x_mode != REG)
1120 found = 0;
1121
1122 if (x_size == L_P)
1123 x_size = (Hmode ? L_32 : L_16);
1124 if (op_size == L_P)
1125 op_size = (Hmode ? L_32 : L_16);
1126
1127 /* The size of the reg is v important. */
1128 if (op_size != x_size)
1129 found = 0;
1130 }
1131 else if (op_mode & CTRL) /* control register */
1132 {
1133 if (!(x_mode & CTRL))
1134 found = 0;
1135
1136 switch (x_mode)
1137 {
1138 case CCR:
1139 if (op_mode != CCR &&
1140 op_mode != CCR_EXR &&
1141 op_mode != CC_EX_VB_SB)
1142 found = 0;
1143 break;
1144 case EXR:
1145 if (op_mode != EXR &&
1146 op_mode != CCR_EXR &&
1147 op_mode != CC_EX_VB_SB)
1148 found = 0;
1149 break;
1150 case MACH:
1151 if (op_mode != MACH &&
1152 op_mode != MACREG)
1153 found = 0;
1154 break;
1155 case MACL:
1156 if (op_mode != MACL &&
1157 op_mode != MACREG)
1158 found = 0;
1159 break;
1160 case VBR:
1161 if (op_mode != VBR &&
1162 op_mode != VBR_SBR &&
1163 op_mode != CC_EX_VB_SB)
1164 found = 0;
1165 break;
1166 case SBR:
1167 if (op_mode != SBR &&
1168 op_mode != VBR_SBR &&
1169 op_mode != CC_EX_VB_SB)
1170 found = 0;
1171 break;
1172 }
1173 }
1174 else if ((op & ABSJMP) && (x_mode == ABS || x_mode == PCREL))
1175 {
1176 operands[i].mode &= ~MODE;
1177 operands[i].mode |= ABSJMP;
1178 /* But it may not be 24 bits long. */
1179 if (x_mode == ABS && !Hmode)
1180 {
1181 operands[i].mode &= ~SIZE;
1182 operands[i].mode |= L_16;
1183 }
1184 if ((operands[i].mode & SIZE) == L_32
1185 && (op_mode & SIZE) != L_32)
1186 found = 0;
1187 }
1188 else if (x_mode == IMM && op_mode != IMM)
1189 {
1190 offsetT num = operands[i].exp.X_add_number & 0xffffffff;
1191 if (op_mode == KBIT || op_mode == DBIT)
1192 /* This is ok if the immediate value is sensible. */;
1193 else if (op_mode == CONST_2)
1194 found = num == 2;
1195 else if (op_mode == CONST_4)
1196 found = num == 4;
1197 else if (op_mode == CONST_8)
1198 found = num == 8;
1199 else if (op_mode == CONST_16)
1200 found = num == 16;
1201 else
1202 found = 0;
1203 }
1204 else if (op_mode == PCREL && op_mode == x_mode)
1205 {
1206 /* movsd, bsr/bc and bsr/bs only come in PCREL16 flavour:
1207 If x_size is L_8, promote it. */
1208 if (OP_KIND (this_try->opcode->how) == O_MOVSD
1209 || OP_KIND (this_try->opcode->how) == O_BSRBC
1210 || OP_KIND (this_try->opcode->how) == O_BSRBS)
1211 if (x_size == L_8)
1212 x_size = L_16;
1213
1214 /* The size of the displacement is important. */
1215 if (op_size != x_size)
1216 found = 0;
1217 }
1218 else if ((op_mode == DISP || op_mode == IMM || op_mode == ABS
1219 || op_mode == INDEXB || op_mode == INDEXW
1220 || op_mode == INDEXL)
1221 && op_mode == x_mode)
1222 {
1223 /* Promote a L_24 to L_32 if it makes us match. */
1224 if (x_size == L_24 && op_size == L_32)
1225 {
1226 x &= ~SIZE;
1227 x |= x_size = L_32;
1228 }
1229
1230 if (((x_size == L_16 && op_size == L_16U)
1231 || (x_size == L_8 && op_size == L_8U)
1232 || (x_size == L_3 && op_size == L_3NZ))
1233 /* We're deliberately more permissive for ABS modes. */
1234 && (op_mode == ABS
1235 || constant_fits_size_p (operands + i, op_size,
1236 op & NO_SYMBOLS)))
1237 x_size = op_size;
1238
1239 if (x_size != 0 && op_size != x_size)
1240 found = 0;
1241 else if (x_size == 0
1242 && ! constant_fits_size_p (operands + i, op_size,
1243 op & NO_SYMBOLS))
1244 found = 0;
1245 }
1246 else if (op_mode != x_mode)
1247 {
1248 found = 0;
1249 }
1250 }
1251 }
1252 if (found)
1253 {
1254 if ((this_try->opcode->available == AV_H8SX && ! SXmode)
1255 || (this_try->opcode->available == AV_H8S && ! Smode)
1256 || (this_try->opcode->available == AV_H8H && ! Hmode))
1257 found = 0, found_other = this_try;
1258 else if (this_size != size && (this_size != SN && size != SN))
1259 found_mismatched = this_try, found = 0;
1260
1261 }
1262 }
1263 if (found)
1264 return this_try;
1265 if (found_other)
1266 {
1267 as_warn (_("Opcode `%s' with these operand types not available in %s mode"),
1268 found_other->opcode->name,
1269 (! Hmode && ! Smode ? "H8/300"
1270 : SXmode ? "H8sx"
1271 : Smode ? "H8/300S"
1272 : "H8/300H"));
1273 }
1274 else if (found_mismatched)
1275 {
1276 as_warn (_("mismatch between opcode size and operand size"));
1277 return found_mismatched;
1278 }
1279 return 0;
1280 }
1281
1282 static void
check_operand(struct h8_op * operand,unsigned int width,char * string)1283 check_operand (struct h8_op *operand, unsigned int width, char *string)
1284 {
1285 if (operand->exp.X_add_symbol == 0
1286 && operand->exp.X_op_symbol == 0)
1287 {
1288 /* No symbol involved, let's look at offset, it's dangerous if
1289 any of the high bits are not 0 or ff's, find out by oring or
1290 anding with the width and seeing if the answer is 0 or all
1291 fs. */
1292
1293 if (! constant_fits_width_p (operand, width))
1294 {
1295 if (width == 255
1296 && (operand->exp.X_add_number & 0xff00) == 0xff00)
1297 {
1298 /* Just ignore this one - which happens when trying to
1299 fit a 16 bit address truncated into an 8 bit address
1300 of something like bset. */
1301 }
1302 else if (strcmp (string, "@") == 0
1303 && width == 0xffff
1304 && (operand->exp.X_add_number & 0xff8000) == 0xff8000)
1305 {
1306 /* Just ignore this one - which happens when trying to
1307 fit a 24 bit address truncated into a 16 bit address
1308 of something like mov.w. */
1309 }
1310 else
1311 {
1312 as_warn (_("operand %s0x%lx out of range."), string,
1313 (unsigned long) operand->exp.X_add_number);
1314 }
1315 }
1316 }
1317 }
1318
1319 /* RELAXMODE has one of 3 values:
1320
1321 0 Output a "normal" reloc, no relaxing possible for this insn/reloc
1322
1323 1 Output a relaxable 24bit absolute mov.w address relocation
1324 (may relax into a 16bit absolute address).
1325
1326 2 Output a relaxable 16/24 absolute mov.b address relocation
1327 (may relax into an 8bit absolute address). */
1328
1329 static void
do_a_fix_imm(int offset,int nibble,struct h8_op * operand,int relaxmode,const struct h8_instruction * this_try)1330 do_a_fix_imm (int offset, int nibble, struct h8_op *operand, int relaxmode, const struct h8_instruction *this_try)
1331 {
1332 int idx;
1333 int size;
1334 int where;
1335 char *bytes = frag_now->fr_literal + offset;
1336
1337 char *t = ((operand->mode & MODE) == IMM) ? "#" : "@";
1338
1339 if (operand->exp.X_add_symbol == 0)
1340 {
1341 switch (operand->mode & SIZE)
1342 {
1343 case L_2:
1344 check_operand (operand, 0x3, t);
1345 bytes[0] |= (operand->exp.X_add_number & 3) << (nibble ? 0 : 4);
1346 break;
1347 case L_3:
1348 case L_3NZ:
1349 check_operand (operand, 0x7, t);
1350 bytes[0] |= (operand->exp.X_add_number & 7) << (nibble ? 0 : 4);
1351 break;
1352 case L_4:
1353 check_operand (operand, 0xF, t);
1354 bytes[0] |= (operand->exp.X_add_number & 15) << (nibble ? 0 : 4);
1355 break;
1356 case L_5:
1357 check_operand (operand, 0x1F, t);
1358 bytes[0] |= operand->exp.X_add_number & 31;
1359 break;
1360 case L_8:
1361 case L_8U:
1362 check_operand (operand, 0xff, t);
1363 bytes[0] |= operand->exp.X_add_number;
1364 break;
1365 case L_16:
1366 case L_16U:
1367 check_operand (operand, 0xffff, t);
1368 bytes[0] |= operand->exp.X_add_number >> 8;
1369 bytes[1] |= operand->exp.X_add_number >> 0;
1370 #ifdef OBJ_ELF
1371 /* MOVA needs both relocs to relax the second operand properly. */
1372 if (relaxmode != 0
1373 && (OP_KIND(this_try->opcode->how) == O_MOVAB
1374 || OP_KIND(this_try->opcode->how) == O_MOVAW
1375 || OP_KIND(this_try->opcode->how) == O_MOVAL))
1376 {
1377 idx = BFD_RELOC_16;
1378 fix_new_exp (frag_now, offset, 2, &operand->exp, 0, idx);
1379 }
1380 #endif
1381 break;
1382 case L_24:
1383 check_operand (operand, 0xffffff, t);
1384 bytes[0] |= operand->exp.X_add_number >> 16;
1385 bytes[1] |= operand->exp.X_add_number >> 8;
1386 bytes[2] |= operand->exp.X_add_number >> 0;
1387 break;
1388
1389 case L_32:
1390 /* This should be done with bfd. */
1391 bytes[0] |= operand->exp.X_add_number >> 24;
1392 bytes[1] |= operand->exp.X_add_number >> 16;
1393 bytes[2] |= operand->exp.X_add_number >> 8;
1394 bytes[3] |= operand->exp.X_add_number >> 0;
1395 if (relaxmode != 0)
1396 {
1397 #ifdef OBJ_ELF
1398 if ((operand->mode & MODE) == DISP && relaxmode == 1)
1399 idx = BFD_RELOC_H8_DISP32A16;
1400 else
1401 #endif
1402 idx = (relaxmode == 2) ? R_MOV24B1 : R_MOVL1;
1403 fix_new_exp (frag_now, offset, 4, &operand->exp, 0, idx);
1404 }
1405 break;
1406 }
1407 }
1408 else
1409 {
1410 switch (operand->mode & SIZE)
1411 {
1412 case L_24:
1413 case L_32:
1414 size = 4;
1415 where = (operand->mode & SIZE) == L_24 ? -1 : 0;
1416 #ifdef OBJ_ELF
1417 if ((operand->mode & MODE) == DISP && relaxmode == 1)
1418 idx = BFD_RELOC_H8_DISP32A16;
1419 else
1420 #endif
1421 if (relaxmode == 2)
1422 idx = R_MOV24B1;
1423 else if (relaxmode == 1)
1424 idx = R_MOVL1;
1425 else
1426 idx = R_RELLONG;
1427 break;
1428 default:
1429 as_bad (_("Can't work out size of operand.\n"));
1430 case L_16:
1431 case L_16U:
1432 size = 2;
1433 where = 0;
1434 if (relaxmode == 2)
1435 idx = R_MOV16B1;
1436 else
1437 idx = R_RELWORD;
1438 operand->exp.X_add_number =
1439 ((operand->exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
1440 operand->exp.X_add_number |= (bytes[0] << 8) | bytes[1];
1441 break;
1442 case L_8:
1443 size = 1;
1444 where = 0;
1445 idx = R_RELBYTE;
1446 operand->exp.X_add_number =
1447 ((operand->exp.X_add_number & 0xff) ^ 0x80) - 0x80;
1448 operand->exp.X_add_number |= bytes[0];
1449 }
1450
1451 fix_new_exp (frag_now,
1452 offset + where,
1453 size,
1454 &operand->exp,
1455 0,
1456 idx);
1457 }
1458 }
1459
1460 /* Now we know what sort of opcodes it is, let's build the bytes. */
1461
1462 static void
build_bytes(const struct h8_instruction * this_try,struct h8_op * operand)1463 build_bytes (const struct h8_instruction *this_try, struct h8_op *operand)
1464 {
1465 int i;
1466 char *output = frag_more (this_try->length);
1467 const op_type *nibble_ptr = this_try->opcode->data.nib;
1468 op_type c;
1469 unsigned int nibble_count = 0;
1470 int op_at[3];
1471 int nib = 0;
1472 int movb = 0;
1473 char asnibbles[100];
1474 char *p = asnibbles;
1475 int high, low;
1476
1477 if (!Hmode && this_try->opcode->available != AV_H8)
1478 as_warn (_("Opcode `%s' with these operand types not available in H8/300 mode"),
1479 this_try->opcode->name);
1480 else if (!Smode
1481 && this_try->opcode->available != AV_H8
1482 && this_try->opcode->available != AV_H8H)
1483 as_warn (_("Opcode `%s' with these operand types not available in H8/300H mode"),
1484 this_try->opcode->name);
1485 else if (!SXmode
1486 && this_try->opcode->available != AV_H8
1487 && this_try->opcode->available != AV_H8H
1488 && this_try->opcode->available != AV_H8S)
1489 as_warn (_("Opcode `%s' with these operand types not available in H8/300S mode"),
1490 this_try->opcode->name);
1491
1492 while (*nibble_ptr != (op_type) E)
1493 {
1494 int d;
1495
1496 nib = 0;
1497 c = *nibble_ptr++;
1498
1499 d = (c & OP3) == OP3 ? 2 : (c & DST) == DST ? 1 : 0;
1500
1501 if (c < 16)
1502 nib = c;
1503 else
1504 {
1505 int c2 = c & MODE;
1506
1507 if (c2 == REG || c2 == LOWREG
1508 || c2 == IND || c2 == PREINC || c2 == PREDEC
1509 || c2 == POSTINC || c2 == POSTDEC)
1510 {
1511 nib = operand[d].reg;
1512 if (c2 == LOWREG)
1513 nib &= 7;
1514 }
1515
1516 else if (c & CTRL) /* Control reg operand. */
1517 nib = operand[d].reg;
1518
1519 else if ((c & DISPREG) == (DISPREG))
1520 {
1521 nib = operand[d].reg;
1522 }
1523 else if (c2 == ABS)
1524 {
1525 operand[d].mode = c;
1526 op_at[d] = nibble_count;
1527 nib = 0;
1528 }
1529 else if (c2 == IMM || c2 == PCREL || c2 == ABS
1530 || (c & ABSJMP) || c2 == DISP)
1531 {
1532 operand[d].mode = c;
1533 op_at[d] = nibble_count;
1534 nib = 0;
1535 }
1536 else if ((c & IGNORE) || (c & DATA))
1537 nib = 0;
1538
1539 else if (c2 == DBIT)
1540 {
1541 switch (operand[0].exp.X_add_number)
1542 {
1543 case 1:
1544 nib = c;
1545 break;
1546 case 2:
1547 nib = 0x8 | c;
1548 break;
1549 default:
1550 as_bad (_("Need #1 or #2 here"));
1551 }
1552 }
1553 else if (c2 == KBIT)
1554 {
1555 switch (operand[0].exp.X_add_number)
1556 {
1557 case 1:
1558 nib = 0;
1559 break;
1560 case 2:
1561 nib = 8;
1562 break;
1563 case 4:
1564 if (!Hmode)
1565 as_warn (_("#4 not valid on H8/300."));
1566 nib = 9;
1567 break;
1568
1569 default:
1570 as_bad (_("Need #1 or #2 here"));
1571 break;
1572 }
1573 /* Stop it making a fix. */
1574 operand[0].mode = 0;
1575 }
1576
1577 if (c & MEMRELAX)
1578 operand[d].mode |= MEMRELAX;
1579
1580 if (c & B31)
1581 nib |= 0x8;
1582
1583 if (c & B21)
1584 nib |= 0x4;
1585
1586 if (c & B11)
1587 nib |= 0x2;
1588
1589 if (c & B01)
1590 nib |= 0x1;
1591
1592 if (c2 == MACREG)
1593 {
1594 if (operand[0].mode == MACREG)
1595 /* stmac has mac[hl] as the first operand. */
1596 nib = 2 + operand[0].reg;
1597 else
1598 /* ldmac has mac[hl] as the second operand. */
1599 nib = 2 + operand[1].reg;
1600 }
1601 }
1602 nibble_count++;
1603
1604 *p++ = nib;
1605 }
1606
1607 /* Disgusting. Why, oh why didn't someone ask us for advice
1608 on the assembler format. */
1609 if (OP_KIND (this_try->opcode->how) == O_LDM)
1610 {
1611 high = (operand[1].reg >> 8) & 0xf;
1612 low = (operand[1].reg) & 0xf;
1613 asnibbles[2] = high - low;
1614 asnibbles[7] = high;
1615 }
1616 else if (OP_KIND (this_try->opcode->how) == O_STM)
1617 {
1618 high = (operand[0].reg >> 8) & 0xf;
1619 low = (operand[0].reg) & 0xf;
1620 asnibbles[2] = high - low;
1621 asnibbles[7] = low;
1622 }
1623
1624 for (i = 0; i < this_try->length; i++)
1625 output[i] = (asnibbles[i * 2] << 4) | asnibbles[i * 2 + 1];
1626
1627 /* Note if this is a mov.b or a bit manipulation instruction
1628 there is a special relaxation which only applies. */
1629 if ( this_try->opcode->how == O (O_MOV, SB)
1630 || this_try->opcode->how == O (O_BCLR, SB)
1631 || this_try->opcode->how == O (O_BAND, SB)
1632 || this_try->opcode->how == O (O_BIAND, SB)
1633 || this_try->opcode->how == O (O_BILD, SB)
1634 || this_try->opcode->how == O (O_BIOR, SB)
1635 || this_try->opcode->how == O (O_BIST, SB)
1636 || this_try->opcode->how == O (O_BIXOR, SB)
1637 || this_try->opcode->how == O (O_BLD, SB)
1638 || this_try->opcode->how == O (O_BNOT, SB)
1639 || this_try->opcode->how == O (O_BOR, SB)
1640 || this_try->opcode->how == O (O_BSET, SB)
1641 || this_try->opcode->how == O (O_BST, SB)
1642 || this_try->opcode->how == O (O_BTST, SB)
1643 || this_try->opcode->how == O (O_BXOR, SB))
1644 movb = 1;
1645
1646 /* Output any fixes. */
1647 for (i = 0; i < this_try->noperands; i++)
1648 {
1649 int x = operand[i].mode;
1650 int x_mode = x & MODE;
1651
1652 if (x_mode == IMM || x_mode == DISP)
1653 {
1654 #ifndef OBJ_ELF
1655 /* Remove MEMRELAX flag added in h8300.h on mov with
1656 addressing mode "register indirect with displacement". */
1657 if (x_mode == DISP)
1658 x &= ~MEMRELAX;
1659 #endif
1660 do_a_fix_imm (output - frag_now->fr_literal + op_at[i] / 2,
1661 op_at[i] & 1, operand + i, (x & MEMRELAX) != 0,
1662 this_try);
1663 }
1664 else if (x_mode == ABS)
1665 do_a_fix_imm (output - frag_now->fr_literal + op_at[i] / 2,
1666 op_at[i] & 1, operand + i,
1667 (x & MEMRELAX) ? movb + 1 : 0,
1668 this_try);
1669
1670 else if (x_mode == PCREL)
1671 {
1672 int size16 = (x & SIZE) == L_16;
1673 int size = size16 ? 2 : 1;
1674 int type = size16 ? R_PCRWORD : R_PCRBYTE;
1675 fixS *fixP;
1676
1677 check_operand (operand + i, size16 ? 0x7fff : 0x7f, "@");
1678
1679 if (operand[i].exp.X_add_number & 1)
1680 as_warn (_("branch operand has odd offset (%lx)\n"),
1681 (unsigned long) operand->exp.X_add_number);
1682 #ifndef OBJ_ELF
1683 /* The COFF port has always been off by one, changing it
1684 now would be an incompatible change, so we leave it as-is.
1685
1686 We don't want to do this for ELF as we want to be
1687 compatible with the proposed ELF format from Hitachi. */
1688 operand[i].exp.X_add_number -= 1;
1689 #endif
1690 if (size16)
1691 {
1692 operand[i].exp.X_add_number =
1693 ((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
1694 }
1695 else
1696 {
1697 operand[i].exp.X_add_number =
1698 ((operand[i].exp.X_add_number & 0xff) ^ 0x80) - 0x80;
1699 }
1700
1701 /* For BRA/S. */
1702 if (! size16)
1703 operand[i].exp.X_add_number |= output[op_at[i] / 2];
1704
1705 fixP = fix_new_exp (frag_now,
1706 output - frag_now->fr_literal + op_at[i] / 2,
1707 size,
1708 &operand[i].exp,
1709 1,
1710 type);
1711 fixP->fx_signed = 1;
1712 }
1713 else if (x_mode == MEMIND)
1714 {
1715 check_operand (operand + i, 0xff, "@@");
1716 fix_new_exp (frag_now,
1717 output - frag_now->fr_literal + 1,
1718 1,
1719 &operand[i].exp,
1720 0,
1721 R_MEM_INDIRECT);
1722 }
1723 else if (x_mode == VECIND)
1724 {
1725 check_operand (operand + i, 0x7f, "@@");
1726 /* FIXME: approximating the effect of "B31" here...
1727 This is very hackish, and ought to be done a better way. */
1728 operand[i].exp.X_add_number |= 0x80;
1729 fix_new_exp (frag_now,
1730 output - frag_now->fr_literal + 1,
1731 1,
1732 &operand[i].exp,
1733 0,
1734 R_MEM_INDIRECT);
1735 }
1736 else if (x & ABSJMP)
1737 {
1738 int where = 0;
1739 bfd_reloc_code_real_type reloc_type = R_JMPL1;
1740
1741 #ifdef OBJ_ELF
1742 /* To be compatible with the proposed H8 ELF format, we
1743 want the relocation's offset to point to the first byte
1744 that will be modified, not to the start of the instruction. */
1745
1746 if ((operand->mode & SIZE) == L_32)
1747 {
1748 where = 2;
1749 reloc_type = R_RELLONG;
1750 }
1751 else
1752 where = 1;
1753 #endif
1754
1755 /* This jmp may be a jump or a branch. */
1756
1757 check_operand (operand + i,
1758 SXmode ? 0xffffffff : Hmode ? 0xffffff : 0xffff,
1759 "@");
1760
1761 if (operand[i].exp.X_add_number & 1)
1762 as_warn (_("branch operand has odd offset (%lx)\n"),
1763 (unsigned long) operand->exp.X_add_number);
1764
1765 if (!Hmode)
1766 operand[i].exp.X_add_number =
1767 ((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
1768 fix_new_exp (frag_now,
1769 output - frag_now->fr_literal + where,
1770 4,
1771 &operand[i].exp,
1772 0,
1773 reloc_type);
1774 }
1775 }
1776 }
1777
1778 /* Try to give an intelligent error message for common and simple to
1779 detect errors. */
1780
1781 static void
clever_message(const struct h8_instruction * instruction,struct h8_op * operand)1782 clever_message (const struct h8_instruction *instruction,
1783 struct h8_op *operand)
1784 {
1785 /* Find out if there was more than one possible opcode. */
1786
1787 if ((instruction + 1)->idx != instruction->idx)
1788 {
1789 int argn;
1790
1791 /* Only one opcode of this flavour, try to guess which operand
1792 didn't match. */
1793 for (argn = 0; argn < instruction->noperands; argn++)
1794 {
1795 switch (instruction->opcode->args.nib[argn])
1796 {
1797 case RD16:
1798 if (operand[argn].mode != RD16)
1799 {
1800 as_bad (_("destination operand must be 16 bit register"));
1801 return;
1802
1803 }
1804 break;
1805
1806 case RS8:
1807 if (operand[argn].mode != RS8)
1808 {
1809 as_bad (_("source operand must be 8 bit register"));
1810 return;
1811 }
1812 break;
1813
1814 case ABS16DST:
1815 if (operand[argn].mode != ABS16DST)
1816 {
1817 as_bad (_("destination operand must be 16bit absolute address"));
1818 return;
1819 }
1820 break;
1821 case RD8:
1822 if (operand[argn].mode != RD8)
1823 {
1824 as_bad (_("destination operand must be 8 bit register"));
1825 return;
1826 }
1827 break;
1828
1829 case ABS16SRC:
1830 if (operand[argn].mode != ABS16SRC)
1831 {
1832 as_bad (_("source operand must be 16bit absolute address"));
1833 return;
1834 }
1835 break;
1836
1837 }
1838 }
1839 }
1840 as_bad (_("invalid operands"));
1841 }
1842
1843
1844 /* If OPERAND is part of an address, adjust its size and value given
1845 that it addresses SIZE bytes.
1846
1847 This function decides how big non-immediate constants are when no
1848 size was explicitly given. It also scales down the assembly-level
1849 displacement in an @(d:2,ERn) operand. */
1850
1851 static void
fix_operand_size(struct h8_op * operand,int size)1852 fix_operand_size (struct h8_op *operand, int size)
1853 {
1854 if (SXmode && (operand->mode & MODE) == DISP)
1855 {
1856 /* If the user didn't specify an operand width, see if we
1857 can use @(d:2,ERn). */
1858 if ((operand->mode & SIZE) == 0
1859 && operand->exp.X_add_symbol == 0
1860 && operand->exp.X_op_symbol == 0
1861 && (operand->exp.X_add_number == size
1862 || operand->exp.X_add_number == size * 2
1863 || operand->exp.X_add_number == size * 3))
1864 operand->mode |= L_2;
1865
1866 /* Scale down the displacement in an @(d:2,ERn) operand.
1867 X_add_number then contains the desired field value. */
1868 if ((operand->mode & SIZE) == L_2)
1869 {
1870 if (operand->exp.X_add_number % size != 0)
1871 as_warn (_("operand/size mis-match"));
1872 operand->exp.X_add_number /= size;
1873 }
1874 }
1875
1876 if ((operand->mode & SIZE) == 0)
1877 switch (operand->mode & MODE)
1878 {
1879 case DISP:
1880 case INDEXB:
1881 case INDEXW:
1882 case INDEXL:
1883 case ABS:
1884 /* Pick a 24-bit address unless we know that a 16-bit address
1885 is safe. get_specific() will relax L_24 into L_32 where
1886 necessary. */
1887 if (Hmode
1888 && !Nmode
1889 && ((((addressT) operand->exp.X_add_number + 0x8000)
1890 & 0xffffffff) > 0xffff
1891 || operand->exp.X_add_symbol != 0
1892 || operand->exp.X_op_symbol != 0))
1893 operand->mode |= L_24;
1894 else
1895 operand->mode |= L_16;
1896 break;
1897
1898 case PCREL:
1899 if ((((addressT) operand->exp.X_add_number + 0x80)
1900 & 0xffffffff) <= 0xff)
1901 {
1902 if (operand->exp.X_add_symbol != NULL)
1903 operand->mode |= bsize;
1904 else
1905 operand->mode |= L_8;
1906 }
1907 else
1908 operand->mode |= L_16;
1909 break;
1910 }
1911 }
1912
1913
1914 /* This is the guts of the machine-dependent assembler. STR points to
1915 a machine dependent instruction. This function is supposed to emit
1916 the frags/bytes it assembles. */
1917
1918 void
md_assemble(char * str)1919 md_assemble (char *str)
1920 {
1921 char *op_start;
1922 char *op_end;
1923 struct h8_op operand[3];
1924 const struct h8_instruction *instruction;
1925 const struct h8_instruction *prev_instruction;
1926
1927 char *dot = 0;
1928 char *slash = 0;
1929 char c;
1930 int size, i;
1931
1932 /* Drop leading whitespace. */
1933 while (*str == ' ')
1934 str++;
1935
1936 /* Find the op code end. */
1937 for (op_start = op_end = str;
1938 *op_end != 0 && *op_end != ' ';
1939 op_end++)
1940 {
1941 if (*op_end == '.')
1942 {
1943 dot = op_end + 1;
1944 *op_end = 0;
1945 op_end += 2;
1946 break;
1947 }
1948 else if (*op_end == '/' && ! slash)
1949 slash = op_end;
1950 }
1951
1952 if (op_end == op_start)
1953 {
1954 as_bad (_("can't find opcode "));
1955 }
1956 c = *op_end;
1957
1958 *op_end = 0;
1959
1960 /* The assembler stops scanning the opcode at slashes, so it fails
1961 to make characters following them lower case. Fix them. */
1962 if (slash)
1963 while (*++slash)
1964 *slash = TOLOWER (*slash);
1965
1966 instruction = (const struct h8_instruction *)
1967 hash_find (opcode_hash_control, op_start);
1968
1969 if (instruction == NULL)
1970 {
1971 as_bad (_("unknown opcode"));
1972 return;
1973 }
1974
1975 /* We used to set input_line_pointer to the result of get_operands,
1976 but that is wrong. Our caller assumes we don't change it. */
1977
1978 operand[0].mode = 0;
1979 operand[1].mode = 0;
1980 operand[2].mode = 0;
1981
1982 if (OP_KIND (instruction->opcode->how) == O_MOVAB
1983 || OP_KIND (instruction->opcode->how) == O_MOVAW
1984 || OP_KIND (instruction->opcode->how) == O_MOVAL)
1985 get_mova_operands (op_end, operand);
1986 else if (OP_KIND (instruction->opcode->how) == O_RTEL
1987 || OP_KIND (instruction->opcode->how) == O_RTSL)
1988 get_rtsl_operands (op_end, operand);
1989 else
1990 get_operands (instruction->noperands, op_end, operand);
1991
1992 *op_end = c;
1993 prev_instruction = instruction;
1994
1995 /* Now we have operands from instruction.
1996 Let's check them out for ldm and stm. */
1997 if (OP_KIND (instruction->opcode->how) == O_LDM)
1998 {
1999 /* The first operand must be @er7+, and the
2000 second operand must be a register pair. */
2001 if ((operand[0].mode != RSINC)
2002 || (operand[0].reg != 7)
2003 || ((operand[1].reg & 0x80000000) == 0))
2004 as_bad (_("invalid operand in ldm"));
2005 }
2006 else if (OP_KIND (instruction->opcode->how) == O_STM)
2007 {
2008 /* The first operand must be a register pair,
2009 and the second operand must be @-er7. */
2010 if (((operand[0].reg & 0x80000000) == 0)
2011 || (operand[1].mode != RDDEC)
2012 || (operand[1].reg != 7))
2013 as_bad (_("invalid operand in stm"));
2014 }
2015
2016 size = SN;
2017 if (dot)
2018 {
2019 switch (TOLOWER (*dot))
2020 {
2021 case 'b':
2022 size = SB;
2023 break;
2024
2025 case 'w':
2026 size = SW;
2027 break;
2028
2029 case 'l':
2030 size = SL;
2031 break;
2032 }
2033 }
2034 if (OP_KIND (instruction->opcode->how) == O_MOVAB ||
2035 OP_KIND (instruction->opcode->how) == O_MOVAW ||
2036 OP_KIND (instruction->opcode->how) == O_MOVAL)
2037 {
2038 switch (operand[0].mode & MODE)
2039 {
2040 case INDEXB:
2041 default:
2042 fix_operand_size (&operand[1], 1);
2043 break;
2044 case INDEXW:
2045 fix_operand_size (&operand[1], 2);
2046 break;
2047 case INDEXL:
2048 fix_operand_size (&operand[1], 4);
2049 break;
2050 }
2051 }
2052 else
2053 {
2054 for (i = 0; i < 3 && operand[i].mode != 0; i++)
2055 switch (size)
2056 {
2057 case SN:
2058 case SB:
2059 default:
2060 fix_operand_size (&operand[i], 1);
2061 break;
2062 case SW:
2063 fix_operand_size (&operand[i], 2);
2064 break;
2065 case SL:
2066 fix_operand_size (&operand[i], 4);
2067 break;
2068 }
2069 }
2070
2071 instruction = get_specific (instruction, operand, size);
2072
2073 if (instruction == 0)
2074 {
2075 /* Couldn't find an opcode which matched the operands. */
2076 char *where = frag_more (2);
2077
2078 where[0] = 0x0;
2079 where[1] = 0x0;
2080 clever_message (prev_instruction, operand);
2081
2082 return;
2083 }
2084
2085 build_bytes (instruction, operand);
2086
2087 dwarf2_emit_insn (instruction->length);
2088 }
2089
2090 symbolS *
md_undefined_symbol(char * name ATTRIBUTE_UNUSED)2091 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2092 {
2093 return 0;
2094 }
2095
2096 /* Various routines to kill one day. */
2097
2098 char *
md_atof(int type,char * litP,int * sizeP)2099 md_atof (int type, char *litP, int *sizeP)
2100 {
2101 return ieee_md_atof (type, litP, sizeP, TRUE);
2102 }
2103
2104 #define OPTION_H_TICK_HEX (OPTION_MD_BASE)
2105
2106 const char *md_shortopts = "";
2107 struct option md_longopts[] = {
2108 { "h-tick-hex", no_argument, NULL, OPTION_H_TICK_HEX },
2109 {NULL, no_argument, NULL, 0}
2110 };
2111
2112 size_t md_longopts_size = sizeof (md_longopts);
2113
2114 int
md_parse_option(int c ATTRIBUTE_UNUSED,char * arg ATTRIBUTE_UNUSED)2115 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
2116 {
2117 switch (c)
2118 {
2119 case OPTION_H_TICK_HEX:
2120 enable_h_tick_hex = 1;
2121 break;
2122
2123 default:
2124 return 0;
2125 }
2126 return 1;
2127 }
2128
2129 void
md_show_usage(FILE * stream ATTRIBUTE_UNUSED)2130 md_show_usage (FILE *stream ATTRIBUTE_UNUSED)
2131 {
2132 }
2133
2134 void tc_aout_fix_to_chars (void);
2135
2136 void
tc_aout_fix_to_chars(void)2137 tc_aout_fix_to_chars (void)
2138 {
2139 printf (_("call to tc_aout_fix_to_chars \n"));
2140 abort ();
2141 }
2142
2143 void
md_convert_frag(bfd * headers ATTRIBUTE_UNUSED,segT seg ATTRIBUTE_UNUSED,fragS * fragP ATTRIBUTE_UNUSED)2144 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED,
2145 segT seg ATTRIBUTE_UNUSED,
2146 fragS *fragP ATTRIBUTE_UNUSED)
2147 {
2148 printf (_("call to md_convert_frag \n"));
2149 abort ();
2150 }
2151
2152 valueT
md_section_align(segT segment,valueT size)2153 md_section_align (segT segment, valueT size)
2154 {
2155 int align = bfd_get_section_alignment (stdoutput, segment);
2156 return ((size + (1 << align) - 1) & (-1 << align));
2157 }
2158
2159 void
md_apply_fix(fixS * fixP,valueT * valP,segT seg ATTRIBUTE_UNUSED)2160 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
2161 {
2162 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2163 long val = *valP;
2164
2165 switch (fixP->fx_size)
2166 {
2167 case 1:
2168 *buf++ = val;
2169 break;
2170 case 2:
2171 *buf++ = (val >> 8);
2172 *buf++ = val;
2173 break;
2174 case 4:
2175 *buf++ = (val >> 24);
2176 *buf++ = (val >> 16);
2177 *buf++ = (val >> 8);
2178 *buf++ = val;
2179 break;
2180 case 8:
2181 /* This can arise when the .quad or .8byte pseudo-ops are used.
2182 Returning here (without setting fx_done) will cause the code
2183 to attempt to generate a reloc which will then fail with the
2184 slightly more helpful error message: "Cannot represent
2185 relocation type BFD_RELOC_64". */
2186 return;
2187 default:
2188 abort ();
2189 }
2190
2191 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
2192 fixP->fx_done = 1;
2193 }
2194
2195 int
md_estimate_size_before_relax(fragS * fragP ATTRIBUTE_UNUSED,segT segment_type ATTRIBUTE_UNUSED)2196 md_estimate_size_before_relax (fragS *fragP ATTRIBUTE_UNUSED,
2197 segT segment_type ATTRIBUTE_UNUSED)
2198 {
2199 printf (_("call to md_estimate_size_before_relax \n"));
2200 abort ();
2201 }
2202
2203 /* Put number into target byte order. */
2204 void
md_number_to_chars(char * ptr,valueT use,int nbytes)2205 md_number_to_chars (char *ptr, valueT use, int nbytes)
2206 {
2207 number_to_chars_bigendian (ptr, use, nbytes);
2208 }
2209
2210 long
md_pcrel_from(fixS * fixp)2211 md_pcrel_from (fixS *fixp)
2212 {
2213 as_bad_where (fixp->fx_file, fixp->fx_line,
2214 _("Unexpected reference to a symbol in a non-code section"));
2215 return 0;
2216 }
2217
2218 arelent *
tc_gen_reloc(asection * section ATTRIBUTE_UNUSED,fixS * fixp)2219 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2220 {
2221 arelent *rel;
2222 bfd_reloc_code_real_type r_type;
2223
2224 if (fixp->fx_addsy && fixp->fx_subsy)
2225 {
2226 if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
2227 || S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
2228 {
2229 as_bad_where (fixp->fx_file, fixp->fx_line,
2230 _("Difference of symbols in different sections is not supported"));
2231 return NULL;
2232 }
2233 }
2234
2235 rel = xmalloc (sizeof (arelent));
2236 rel->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2237 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2238 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2239 rel->addend = fixp->fx_offset;
2240
2241 r_type = fixp->fx_r_type;
2242
2243 #define DEBUG 0
2244 #if DEBUG
2245 fprintf (stderr, "%s\n", bfd_get_reloc_code_name (r_type));
2246 fflush (stderr);
2247 #endif
2248 rel->howto = bfd_reloc_type_lookup (stdoutput, r_type);
2249 if (rel->howto == NULL)
2250 {
2251 as_bad_where (fixp->fx_file, fixp->fx_line,
2252 _("Cannot represent relocation type %s"),
2253 bfd_get_reloc_code_name (r_type));
2254 return NULL;
2255 }
2256
2257 return rel;
2258 }
2259