1 /* tc-i860.c -- Assembler for the Intel i860 architecture.
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3
4 Brought back from the dead and completely reworked
5 by Jason Eckhardt <jle@cygnus.com>.
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with GAS; see the file COPYING. If not, write to the Free Software
21 Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 #include "as.h"
24 #include "safe-ctype.h"
25 #include "subsegs.h"
26 #include "opcode/i860.h"
27 #include "elf/i860.h"
28
29
30 /* The opcode hash table. */
31 static struct hash_control *op_hash = NULL;
32
33 /* These characters always start a comment. */
34 const char comment_chars[] = "#!/";
35
36 /* These characters start a comment at the beginning of a line. */
37 const char line_comment_chars[] = "#/";
38
39 const char line_separator_chars[] = ";";
40
41 /* Characters that can be used to separate the mantissa from the exponent
42 in floating point numbers. */
43 const char EXP_CHARS[] = "eE";
44
45 /* Characters that indicate this number is a floating point constant.
46 As in 0f12.456 or 0d1.2345e12. */
47 const char FLT_CHARS[] = "rRsSfFdDxXpP";
48
49 /* Register prefix (depends on syntax). */
50 static char reg_prefix;
51
52 #define MAX_FIXUPS 2
53
54 struct i860_it
55 {
56 char *error;
57 unsigned long opcode;
58 enum expand_type expand;
59 struct i860_fi
60 {
61 expressionS exp;
62 bfd_reloc_code_real_type reloc;
63 int pcrel;
64 valueT fup;
65 } fi[MAX_FIXUPS];
66 } the_insn;
67
68 /* The current fixup count. */
69 static int fc;
70
71 static char *expr_end;
72
73 /* Indicates error if a pseudo operation was expanded after a branch. */
74 static char last_expand;
75
76 /* If true, then warn if any pseudo operations were expanded. */
77 static int target_warn_expand = 0;
78
79 /* If true, then XP support is enabled. */
80 static int target_xp = 0;
81
82 /* If true, then Intel syntax is enabled (default to AT&T/SVR4 syntax). */
83 static int target_intel_syntax = 0;
84
85
86 /* Prototypes. */
87 static void i860_process_insn (char *);
88 static void s_dual (int);
89 static void s_enddual (int);
90 static void s_atmp (int);
91 static void s_align_wrapper (int);
92 static int i860_get_expression (char *);
93 static bfd_reloc_code_real_type obtain_reloc_for_imm16 (fixS *, long *);
94 #ifdef DEBUG_I860
95 static void print_insn (struct i860_it *);
96 #endif
97
98 const pseudo_typeS md_pseudo_table[] =
99 {
100 {"align", s_align_wrapper, 0},
101 {"dual", s_dual, 0},
102 {"enddual", s_enddual, 0},
103 {"atmp", s_atmp, 0},
104 {NULL, 0, 0},
105 };
106
107 /* Dual-instruction mode handling. */
108 enum dual
109 {
110 DUAL_OFF = 0, DUAL_ON, DUAL_DDOT, DUAL_ONDDOT,
111 };
112 static enum dual dual_mode = DUAL_OFF;
113
114 /* Handle ".dual" directive. */
115 static void
s_dual(int ignore ATTRIBUTE_UNUSED)116 s_dual (int ignore ATTRIBUTE_UNUSED)
117 {
118 if (target_intel_syntax)
119 dual_mode = DUAL_ON;
120 else
121 as_bad (_("Directive .dual available only with -mintel-syntax option"));
122 }
123
124 /* Handle ".enddual" directive. */
125 static void
s_enddual(int ignore ATTRIBUTE_UNUSED)126 s_enddual (int ignore ATTRIBUTE_UNUSED)
127 {
128 if (target_intel_syntax)
129 dual_mode = DUAL_OFF;
130 else
131 as_bad (_("Directive .enddual available only with -mintel-syntax option"));
132 }
133
134 /* Temporary register used when expanding assembler pseudo operations. */
135 static int atmp = 31;
136
137 static void
s_atmp(int ignore ATTRIBUTE_UNUSED)138 s_atmp (int ignore ATTRIBUTE_UNUSED)
139 {
140 int temp;
141
142 if (! target_intel_syntax)
143 {
144 as_bad (_("Directive .atmp available only with -mintel-syntax option"));
145 demand_empty_rest_of_line ();
146 return;
147 }
148
149 if (strncmp (input_line_pointer, "sp", 2) == 0)
150 {
151 input_line_pointer += 2;
152 atmp = 2;
153 }
154 else if (strncmp (input_line_pointer, "fp", 2) == 0)
155 {
156 input_line_pointer += 2;
157 atmp = 3;
158 }
159 else if (strncmp (input_line_pointer, "r", 1) == 0)
160 {
161 input_line_pointer += 1;
162 temp = get_absolute_expression ();
163 if (temp >= 0 && temp <= 31)
164 atmp = temp;
165 else
166 as_bad (_("Unknown temporary pseudo register"));
167 }
168 else
169 {
170 as_bad (_("Unknown temporary pseudo register"));
171 }
172 demand_empty_rest_of_line ();
173 }
174
175 /* Handle ".align" directive depending on syntax mode.
176 AT&T/SVR4 syntax uses the standard align directive. However,
177 the Intel syntax additionally allows keywords for the alignment
178 parameter: ".align type", where type is one of {.short, .long,
179 .quad, .single, .double} representing alignments of 2, 4,
180 16, 4, and 8, respectively. */
181 static void
s_align_wrapper(int arg)182 s_align_wrapper (int arg)
183 {
184 char *parm = input_line_pointer;
185
186 if (target_intel_syntax)
187 {
188 /* Replace a keyword with the equivalent integer so the
189 standard align routine can parse the directive. */
190 if (strncmp (parm, ".short", 6) == 0)
191 strncpy (parm, " 2", 6);
192 else if (strncmp (parm, ".long", 5) == 0)
193 strncpy (parm, " 4", 5);
194 else if (strncmp (parm, ".quad", 5) == 0)
195 strncpy (parm, " 16", 5);
196 else if (strncmp (parm, ".single", 7) == 0)
197 strncpy (parm, " 4", 7);
198 else if (strncmp (parm, ".double", 7) == 0)
199 strncpy (parm, " 8", 7);
200
201 while (*input_line_pointer == ' ')
202 ++input_line_pointer;
203 }
204
205 s_align_bytes (arg);
206 }
207
208 /* This function is called once, at assembler startup time. It should
209 set up all the tables and data structures that the MD part of the
210 assembler will need. */
211 void
md_begin(void)212 md_begin (void)
213 {
214 const char *retval = NULL;
215 int lose = 0;
216 unsigned int i = 0;
217
218 op_hash = hash_new ();
219
220 while (i860_opcodes[i].name != NULL)
221 {
222 const char *name = i860_opcodes[i].name;
223 retval = hash_insert (op_hash, name, (void *) &i860_opcodes[i]);
224 if (retval != NULL)
225 {
226 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
227 i860_opcodes[i].name, retval);
228 lose = 1;
229 }
230 do
231 {
232 if (i860_opcodes[i].match & i860_opcodes[i].lose)
233 {
234 fprintf (stderr,
235 _("internal error: losing opcode: `%s' \"%s\"\n"),
236 i860_opcodes[i].name, i860_opcodes[i].args);
237 lose = 1;
238 }
239 ++i;
240 }
241 while (i860_opcodes[i].name != NULL
242 && strcmp (i860_opcodes[i].name, name) == 0);
243 }
244
245 if (lose)
246 as_fatal (_("Defective assembler. No assembly attempted."));
247
248 /* Set the register prefix for either Intel or AT&T/SVR4 syntax. */
249 reg_prefix = target_intel_syntax ? 0 : '%';
250 }
251
252 /* This is the core of the machine-dependent assembler. STR points to a
253 machine dependent instruction. This function emits the frags/bytes
254 it assembles to. */
255 void
md_assemble(char * str)256 md_assemble (char *str)
257 {
258 char *destp;
259 int num_opcodes = 1;
260 int i;
261 struct i860_it pseudo[3];
262
263 gas_assert (str);
264 fc = 0;
265
266 /* Assemble the instruction. */
267 i860_process_insn (str);
268
269 /* Check for expandable flag to produce pseudo-instructions. This
270 is an undesirable feature that should be avoided. */
271 if (the_insn.expand != 0 && the_insn.expand != XP_ONLY
272 && ! (the_insn.fi[0].fup & (OP_SEL_HA | OP_SEL_H | OP_SEL_L | OP_SEL_GOT
273 | OP_SEL_GOTOFF | OP_SEL_PLT)))
274 {
275 for (i = 0; i < 3; i++)
276 pseudo[i] = the_insn;
277
278 fc = 1;
279 switch (the_insn.expand)
280 {
281
282 case E_DELAY:
283 num_opcodes = 1;
284 break;
285
286 case E_MOV:
287 if (the_insn.fi[0].exp.X_add_symbol == NULL
288 && the_insn.fi[0].exp.X_op_symbol == NULL
289 && (the_insn.fi[0].exp.X_add_number < (1 << 15)
290 && the_insn.fi[0].exp.X_add_number >= -(1 << 15)))
291 break;
292
293 /* Emit "or l%const,r0,ireg_dest". */
294 pseudo[0].opcode = (the_insn.opcode & 0x001f0000) | 0xe4000000;
295 pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
296
297 /* Emit "orh h%const,ireg_dest,ireg_dest". */
298 pseudo[1].opcode = (the_insn.opcode & 0x03ffffff) | 0xec000000
299 | ((the_insn.opcode & 0x001f0000) << 5);
300 pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
301
302 num_opcodes = 2;
303 break;
304
305 case E_ADDR:
306 if (the_insn.fi[0].exp.X_add_symbol == NULL
307 && the_insn.fi[0].exp.X_op_symbol == NULL
308 && (the_insn.fi[0].exp.X_add_number < (1 << 15)
309 && the_insn.fi[0].exp.X_add_number >= -(1 << 15)))
310 break;
311
312 /* Emit "orh ha%addr_expr,ireg_src2,r31". */
313 pseudo[0].opcode = 0xec000000 | (the_insn.opcode & 0x03e00000)
314 | (atmp << 16);
315 pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_HA);
316
317 /* Emit "l%addr_expr(r31),ireg_dest". We pick up the fixup
318 information from the original instruction. */
319 pseudo[1].opcode = (the_insn.opcode & ~0x03e00000) | (atmp << 21);
320 pseudo[1].fi[0].fup = the_insn.fi[0].fup | OP_SEL_L;
321
322 num_opcodes = 2;
323 break;
324
325 case E_U32:
326 if (the_insn.fi[0].exp.X_add_symbol == NULL
327 && the_insn.fi[0].exp.X_op_symbol == NULL
328 && (the_insn.fi[0].exp.X_add_number < (1 << 16)
329 && the_insn.fi[0].exp.X_add_number >= 0))
330 break;
331
332 /* Emit "$(opcode)h h%const,ireg_src2,r31". */
333 pseudo[0].opcode = (the_insn.opcode & 0xf3e0ffff) | 0x0c000000
334 | (atmp << 16);
335 pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
336
337 /* Emit "$(opcode) l%const,r31,ireg_dest". */
338 pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000
339 | (atmp << 21);
340 pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
341
342 num_opcodes = 2;
343 break;
344
345 case E_AND:
346 if (the_insn.fi[0].exp.X_add_symbol == NULL
347 && the_insn.fi[0].exp.X_op_symbol == NULL
348 && (the_insn.fi[0].exp.X_add_number < (1 << 16)
349 && the_insn.fi[0].exp.X_add_number >= 0))
350 break;
351
352 /* Emit "andnot h%const,ireg_src2,r31". */
353 pseudo[0].opcode = (the_insn.opcode & 0x03e0ffff) | 0xd4000000
354 | (atmp << 16);
355 pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
356 pseudo[0].fi[0].exp.X_add_number =
357 -1 - the_insn.fi[0].exp.X_add_number;
358
359 /* Emit "andnot l%const,r31,ireg_dest". */
360 pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000
361 | (atmp << 21);
362 pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
363 pseudo[1].fi[0].exp.X_add_number =
364 -1 - the_insn.fi[0].exp.X_add_number;
365
366 num_opcodes = 2;
367 break;
368
369 case E_S32:
370 if (the_insn.fi[0].exp.X_add_symbol == NULL
371 && the_insn.fi[0].exp.X_op_symbol == NULL
372 && (the_insn.fi[0].exp.X_add_number < (1 << 15)
373 && the_insn.fi[0].exp.X_add_number >= -(1 << 15)))
374 break;
375
376 /* Emit "orh h%const,r0,r31". */
377 pseudo[0].opcode = 0xec000000 | (atmp << 16);
378 pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
379
380 /* Emit "or l%const,r31,r31". */
381 pseudo[1].opcode = 0xe4000000 | (atmp << 21) | (atmp << 16);
382 pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
383
384 /* Emit "r31,ireg_src2,ireg_dest". */
385 pseudo[2].opcode = (the_insn.opcode & ~0x0400ffff) | (atmp << 11);
386 pseudo[2].fi[0].fup = OP_IMM_S16;
387
388 num_opcodes = 3;
389 break;
390
391 default:
392 as_fatal (_("failed sanity check."));
393 }
394
395 the_insn = pseudo[0];
396
397 /* Warn if an opcode is expanded after a delayed branch. */
398 if (num_opcodes > 1 && last_expand == 1)
399 as_warn (_("Expanded opcode after delayed branch: `%s'"), str);
400
401 /* Warn if an opcode is expanded in dual mode. */
402 if (num_opcodes > 1 && dual_mode != DUAL_OFF)
403 as_warn (_("Expanded opcode in dual mode: `%s'"), str);
404
405 /* Notify if any expansions happen. */
406 if (target_warn_expand && num_opcodes > 1)
407 as_warn (_("An instruction was expanded (%s)"), str);
408 }
409
410 dwarf2_emit_insn (0);
411 i = 0;
412 do
413 {
414 int tmp;
415
416 /* Output the opcode. Note that the i860 always reads instructions
417 as little-endian data. */
418 destp = frag_more (4);
419 number_to_chars_littleendian (destp, the_insn.opcode, 4);
420
421 /* Check for expanded opcode after branch or in dual mode. */
422 last_expand = the_insn.fi[0].pcrel;
423
424 /* Output the symbol-dependent stuff. Only btne and bte will ever
425 loop more than once here, since only they (possibly) have more
426 than one fixup. */
427 for (tmp = 0; tmp < fc; tmp++)
428 {
429 if (the_insn.fi[tmp].fup != OP_NONE)
430 {
431 fixS *fix;
432 fix = fix_new_exp (frag_now,
433 destp - frag_now->fr_literal,
434 4,
435 &the_insn.fi[tmp].exp,
436 the_insn.fi[tmp].pcrel,
437 the_insn.fi[tmp].reloc);
438
439 /* Despite the odd name, this is a scratch field. We use
440 it to encode operand type information. */
441 fix->fx_addnumber = the_insn.fi[tmp].fup;
442 }
443 }
444 the_insn = pseudo[++i];
445 }
446 while (--num_opcodes > 0);
447
448 }
449
450 /* Assemble the instruction pointed to by STR. */
451 static void
i860_process_insn(char * str)452 i860_process_insn (char *str)
453 {
454 char *s;
455 const char *args;
456 char c;
457 struct i860_opcode *insn;
458 char *args_start;
459 unsigned long opcode;
460 unsigned int mask;
461 int match = 0;
462 int comma = 0;
463
464 #if 1 /* For compiler warnings. */
465 args = 0;
466 insn = 0;
467 args_start = 0;
468 opcode = 0;
469 #endif
470
471 for (s = str; ISLOWER (*s) || *s == '.' || *s == '3'
472 || *s == '2' || *s == '1'; ++s)
473 ;
474
475 switch (*s)
476 {
477 case '\0':
478 break;
479
480 case ',':
481 comma = 1;
482
483 /*FALLTHROUGH*/
484
485 case ' ':
486 *s++ = '\0';
487 break;
488
489 default:
490 as_fatal (_("Unknown opcode: `%s'"), str);
491 }
492
493 /* Check for dual mode ("d.") opcode prefix. */
494 if (strncmp (str, "d.", 2) == 0)
495 {
496 if (dual_mode == DUAL_ON)
497 dual_mode = DUAL_ONDDOT;
498 else
499 dual_mode = DUAL_DDOT;
500 str += 2;
501 }
502
503 if ((insn = (struct i860_opcode *) hash_find (op_hash, str)) == NULL)
504 {
505 if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT)
506 str -= 2;
507 as_bad (_("Unknown opcode: `%s'"), str);
508 return;
509 }
510
511 if (comma)
512 *--s = ',';
513
514 args_start = s;
515 for (;;)
516 {
517 int t;
518 opcode = insn->match;
519 memset (&the_insn, '\0', sizeof (the_insn));
520 fc = 0;
521 for (t = 0; t < MAX_FIXUPS; t++)
522 {
523 the_insn.fi[t].reloc = BFD_RELOC_NONE;
524 the_insn.fi[t].pcrel = 0;
525 the_insn.fi[t].fup = OP_NONE;
526 }
527
528 /* Build the opcode, checking as we go that the operands match. */
529 for (args = insn->args; ; ++args)
530 {
531 if (fc > MAX_FIXUPS)
532 abort ();
533
534 switch (*args)
535 {
536
537 /* End of args. */
538 case '\0':
539 if (*s == '\0')
540 match = 1;
541 break;
542
543 /* These must match exactly. */
544 case '+':
545 case '(':
546 case ')':
547 case ',':
548 case ' ':
549 if (*s++ == *args)
550 continue;
551 break;
552
553 /* Must be at least one digit. */
554 case '#':
555 if (ISDIGIT (*s++))
556 {
557 while (ISDIGIT (*s))
558 ++s;
559 continue;
560 }
561 break;
562
563 /* Next operand must be a register. */
564 case '1':
565 case '2':
566 case 'd':
567 /* Check for register prefix if necessary. */
568 if (reg_prefix && *s != reg_prefix)
569 goto error;
570 else if (reg_prefix)
571 s++;
572
573 switch (*s)
574 {
575 /* Frame pointer. */
576 case 'f':
577 s++;
578 if (*s++ == 'p')
579 {
580 mask = 0x3;
581 break;
582 }
583 goto error;
584
585 /* Stack pointer. */
586 case 's':
587 s++;
588 if (*s++ == 'p')
589 {
590 mask = 0x2;
591 break;
592 }
593 goto error;
594
595 /* Any register r0..r31. */
596 case 'r':
597 s++;
598 if (!ISDIGIT (c = *s++))
599 {
600 goto error;
601 }
602 if (ISDIGIT (*s))
603 {
604 if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
605 goto error;
606 }
607 else
608 c -= '0';
609 mask = c;
610 break;
611
612 /* Not this opcode. */
613 default:
614 goto error;
615 }
616
617 /* Obtained the register, now place it in the opcode. */
618 switch (*args)
619 {
620 case '1':
621 opcode |= mask << 11;
622 continue;
623
624 case '2':
625 opcode |= mask << 21;
626 continue;
627
628 case 'd':
629 opcode |= mask << 16;
630 continue;
631
632 }
633 break;
634
635 /* Next operand is a floating point register. */
636 case 'e':
637 case 'f':
638 case 'g':
639 /* Check for register prefix if necessary. */
640 if (reg_prefix && *s != reg_prefix)
641 goto error;
642 else if (reg_prefix)
643 s++;
644
645 if (*s++ == 'f' && ISDIGIT (*s))
646 {
647 mask = *s++;
648 if (ISDIGIT (*s))
649 {
650 mask = 10 * (mask - '0') + (*s++ - '0');
651 if (mask >= 32)
652 {
653 break;
654 }
655 }
656 else
657 mask -= '0';
658
659 switch (*args)
660 {
661
662 case 'e':
663 opcode |= mask << 11;
664 continue;
665
666 case 'f':
667 opcode |= mask << 21;
668 continue;
669
670 case 'g':
671 opcode |= mask << 16;
672 if ((opcode & (1 << 10)) && mask != 0
673 && (mask == ((opcode >> 11) & 0x1f)))
674 as_warn (_("Pipelined instruction: fsrc1 = fdest"));
675 continue;
676 }
677 }
678 break;
679
680 /* Next operand must be a control register. */
681 case 'c':
682 /* Check for register prefix if necessary. */
683 if (reg_prefix && *s != reg_prefix)
684 goto error;
685 else if (reg_prefix)
686 s++;
687
688 if (strncmp (s, "fir", 3) == 0)
689 {
690 opcode |= 0x0 << 21;
691 s += 3;
692 continue;
693 }
694 if (strncmp (s, "psr", 3) == 0)
695 {
696 opcode |= 0x1 << 21;
697 s += 3;
698 continue;
699 }
700 if (strncmp (s, "dirbase", 7) == 0)
701 {
702 opcode |= 0x2 << 21;
703 s += 7;
704 continue;
705 }
706 if (strncmp (s, "db", 2) == 0)
707 {
708 opcode |= 0x3 << 21;
709 s += 2;
710 continue;
711 }
712 if (strncmp (s, "fsr", 3) == 0)
713 {
714 opcode |= 0x4 << 21;
715 s += 3;
716 continue;
717 }
718 if (strncmp (s, "epsr", 4) == 0)
719 {
720 opcode |= 0x5 << 21;
721 s += 4;
722 continue;
723 }
724 /* The remaining control registers are XP only. */
725 if (target_xp && strncmp (s, "bear", 4) == 0)
726 {
727 opcode |= 0x6 << 21;
728 s += 4;
729 continue;
730 }
731 if (target_xp && strncmp (s, "ccr", 3) == 0)
732 {
733 opcode |= 0x7 << 21;
734 s += 3;
735 continue;
736 }
737 if (target_xp && strncmp (s, "p0", 2) == 0)
738 {
739 opcode |= 0x8 << 21;
740 s += 2;
741 continue;
742 }
743 if (target_xp && strncmp (s, "p1", 2) == 0)
744 {
745 opcode |= 0x9 << 21;
746 s += 2;
747 continue;
748 }
749 if (target_xp && strncmp (s, "p2", 2) == 0)
750 {
751 opcode |= 0xa << 21;
752 s += 2;
753 continue;
754 }
755 if (target_xp && strncmp (s, "p3", 2) == 0)
756 {
757 opcode |= 0xb << 21;
758 s += 2;
759 continue;
760 }
761 break;
762
763 /* 5-bit immediate in src1. */
764 case '5':
765 if (! i860_get_expression (s))
766 {
767 s = expr_end;
768 the_insn.fi[fc].fup |= OP_IMM_U5;
769 fc++;
770 continue;
771 }
772 break;
773
774 /* 26-bit immediate, relative branch (lbroff). */
775 case 'l':
776 the_insn.fi[fc].pcrel = 1;
777 the_insn.fi[fc].fup |= OP_IMM_BR26;
778 goto immediate;
779
780 /* 16-bit split immediate, relative branch (sbroff). */
781 case 'r':
782 the_insn.fi[fc].pcrel = 1;
783 the_insn.fi[fc].fup |= OP_IMM_BR16;
784 goto immediate;
785
786 /* 16-bit split immediate. */
787 case 's':
788 the_insn.fi[fc].fup |= OP_IMM_SPLIT16;
789 goto immediate;
790
791 /* 16-bit split immediate, byte aligned (st.b). */
792 case 'S':
793 the_insn.fi[fc].fup |= OP_IMM_SPLIT16;
794 goto immediate;
795
796 /* 16-bit split immediate, half-word aligned (st.s). */
797 case 'T':
798 the_insn.fi[fc].fup |= (OP_IMM_SPLIT16 | OP_ENCODE1 | OP_ALIGN2);
799 goto immediate;
800
801 /* 16-bit split immediate, word aligned (st.l). */
802 case 'U':
803 the_insn.fi[fc].fup |= (OP_IMM_SPLIT16 | OP_ENCODE1 | OP_ALIGN4);
804 goto immediate;
805
806 /* 16-bit immediate. */
807 case 'i':
808 the_insn.fi[fc].fup |= OP_IMM_S16;
809 goto immediate;
810
811 /* 16-bit immediate, byte aligned (ld.b). */
812 case 'I':
813 the_insn.fi[fc].fup |= OP_IMM_S16;
814 goto immediate;
815
816 /* 16-bit immediate, half-word aligned (ld.s). */
817 case 'J':
818 the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE1 | OP_ALIGN2);
819 goto immediate;
820
821 /* 16-bit immediate, word aligned (ld.l, {p}fld.l, fst.l). */
822 case 'K':
823 if (insn->name[0] == 'l')
824 the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE1 | OP_ALIGN4);
825 else
826 the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE2 | OP_ALIGN4);
827 goto immediate;
828
829 /* 16-bit immediate, double-word aligned ({p}fld.d, fst.d). */
830 case 'L':
831 the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE3 | OP_ALIGN8);
832 goto immediate;
833
834 /* 16-bit immediate, quad-word aligned (fld.q, fst.q). */
835 case 'M':
836 the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE3 | OP_ALIGN16);
837
838 /*FALLTHROUGH*/
839
840 /* Handle the immediate for either the Intel syntax or
841 SVR4 syntax. The Intel syntax is "ha%immediate"
842 whereas SVR4 syntax is "[immediate]@ha". */
843 immediate:
844 if (target_intel_syntax == 0)
845 {
846 /* AT&T/SVR4 syntax. */
847 if (*s == ' ')
848 s++;
849
850 /* Note that if i860_get_expression() fails, we will still
851 have created U entries in the symbol table for the
852 'symbols' in the input string. Try not to create U
853 symbols for registers, etc. */
854 if (! i860_get_expression (s))
855 s = expr_end;
856 else
857 goto error;
858
859 if (strncmp (s, "@ha", 3) == 0)
860 {
861 the_insn.fi[fc].fup |= OP_SEL_HA;
862 s += 3;
863 }
864 else if (strncmp (s, "@h", 2) == 0)
865 {
866 the_insn.fi[fc].fup |= OP_SEL_H;
867 s += 2;
868 }
869 else if (strncmp (s, "@l", 2) == 0)
870 {
871 the_insn.fi[fc].fup |= OP_SEL_L;
872 s += 2;
873 }
874 else if (strncmp (s, "@gotoff", 7) == 0
875 || strncmp (s, "@GOTOFF", 7) == 0)
876 {
877 as_bad (_("Assembler does not yet support PIC"));
878 the_insn.fi[fc].fup |= OP_SEL_GOTOFF;
879 s += 7;
880 }
881 else if (strncmp (s, "@got", 4) == 0
882 || strncmp (s, "@GOT", 4) == 0)
883 {
884 as_bad (_("Assembler does not yet support PIC"));
885 the_insn.fi[fc].fup |= OP_SEL_GOT;
886 s += 4;
887 }
888 else if (strncmp (s, "@plt", 4) == 0
889 || strncmp (s, "@PLT", 4) == 0)
890 {
891 as_bad (_("Assembler does not yet support PIC"));
892 the_insn.fi[fc].fup |= OP_SEL_PLT;
893 s += 4;
894 }
895
896 the_insn.expand = insn->expand;
897 fc++;
898
899 continue;
900 }
901 else
902 {
903 /* Intel syntax. */
904 if (*s == ' ')
905 s++;
906 if (strncmp (s, "ha%", 3) == 0)
907 {
908 the_insn.fi[fc].fup |= OP_SEL_HA;
909 s += 3;
910 }
911 else if (strncmp (s, "h%", 2) == 0)
912 {
913 the_insn.fi[fc].fup |= OP_SEL_H;
914 s += 2;
915 }
916 else if (strncmp (s, "l%", 2) == 0)
917 {
918 the_insn.fi[fc].fup |= OP_SEL_L;
919 s += 2;
920 }
921 the_insn.expand = insn->expand;
922
923 /* Note that if i860_get_expression() fails, we will still
924 have created U entries in the symbol table for the
925 'symbols' in the input string. Try not to create U
926 symbols for registers, etc. */
927 if (! i860_get_expression (s))
928 s = expr_end;
929 else
930 goto error;
931
932 fc++;
933 continue;
934 }
935 break;
936
937 default:
938 as_fatal (_("failed sanity check."));
939 }
940 break;
941 }
942 error:
943 if (match == 0)
944 {
945 /* Args don't match. */
946 if (insn[1].name != NULL
947 && ! strcmp (insn->name, insn[1].name))
948 {
949 ++insn;
950 s = args_start;
951 continue;
952 }
953 else
954 {
955 as_bad (_("Illegal operands for %s"), insn->name);
956 return;
957 }
958 }
959 break;
960 }
961
962 /* Set the dual bit on this instruction if necessary. */
963 if (dual_mode != DUAL_OFF)
964 {
965 if ((opcode & 0xfc000000) == 0x48000000 || opcode == 0xb0000000)
966 {
967 /* The instruction is a flop or a fnop, so set its dual bit
968 (but check that it is 8-byte aligned). */
969 if (((frag_now->fr_address + frag_now_fix_octets ()) & 7) == 0)
970 opcode |= (1 << 9);
971 else
972 as_bad (_("'d.%s' must be 8-byte aligned"), insn->name);
973
974 if (dual_mode == DUAL_DDOT)
975 dual_mode = DUAL_OFF;
976 else if (dual_mode == DUAL_ONDDOT)
977 dual_mode = DUAL_ON;
978 }
979 else if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT)
980 as_bad (_("Prefix 'd.' invalid for instruction `%s'"), insn->name);
981 }
982
983 the_insn.opcode = opcode;
984
985 /* Only recognize XP instructions when the user has requested it. */
986 if (insn->expand == XP_ONLY && ! target_xp)
987 as_bad (_("Unknown opcode: `%s'"), insn->name);
988 }
989
990 static int
i860_get_expression(char * str)991 i860_get_expression (char *str)
992 {
993 char *save_in;
994 segT seg;
995
996 save_in = input_line_pointer;
997 input_line_pointer = str;
998 seg = expression (&the_insn.fi[fc].exp);
999 if (seg != absolute_section
1000 && seg != undefined_section
1001 && ! SEG_NORMAL (seg))
1002 {
1003 the_insn.error = _("bad segment");
1004 expr_end = input_line_pointer;
1005 input_line_pointer = save_in;
1006 return 1;
1007 }
1008 expr_end = input_line_pointer;
1009 input_line_pointer = save_in;
1010 return 0;
1011 }
1012
1013 char *
md_atof(int type,char * litP,int * sizeP)1014 md_atof (int type, char *litP, int *sizeP)
1015 {
1016 return ieee_md_atof (type, litP, sizeP, TRUE);
1017 }
1018
1019 /* Write out in current endian mode. */
1020 void
md_number_to_chars(char * buf,valueT val,int n)1021 md_number_to_chars (char *buf, valueT val, int n)
1022 {
1023 if (target_big_endian)
1024 number_to_chars_bigendian (buf, val, n);
1025 else
1026 number_to_chars_littleendian (buf, val, n);
1027 }
1028
1029 /* This should never be called for i860. */
1030 int
md_estimate_size_before_relax(fragS * fragP ATTRIBUTE_UNUSED,segT segtype ATTRIBUTE_UNUSED)1031 md_estimate_size_before_relax (fragS *fragP ATTRIBUTE_UNUSED,
1032 segT segtype ATTRIBUTE_UNUSED)
1033 {
1034 as_fatal (_("relaxation not supported\n"));
1035 }
1036
1037 #ifdef DEBUG_I860
1038 static void
print_insn(struct i860_it * insn)1039 print_insn (struct i860_it *insn)
1040 {
1041 if (insn->error)
1042 fprintf (stderr, "ERROR: %s\n", insn->error);
1043
1044 fprintf (stderr, "opcode = 0x%08lx\t", insn->opcode);
1045 fprintf (stderr, "expand = 0x%x\t", insn->expand);
1046 fprintf (stderr, "reloc = %s\t\n",
1047 bfd_get_reloc_code_name (insn->reloc));
1048 fprintf (stderr, "exp = {\n");
1049 fprintf (stderr, "\t\tX_add_symbol = %s\n",
1050 insn->exp.X_add_symbol ?
1051 (S_GET_NAME (insn->exp.X_add_symbol) ?
1052 S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0");
1053 fprintf (stderr, "\t\tX_op_symbol = %s\n",
1054 insn->exp.X_op_symbol ?
1055 (S_GET_NAME (insn->exp.X_op_symbol) ?
1056 S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0");
1057 fprintf (stderr, "\t\tX_add_number = %lx\n",
1058 insn->exp.X_add_number);
1059 fprintf (stderr, "}\n");
1060 }
1061 #endif /* DEBUG_I860 */
1062
1063
1064 #ifdef OBJ_ELF
1065 const char *md_shortopts = "VQ:";
1066 #else
1067 const char *md_shortopts = "";
1068 #endif
1069
1070 #define OPTION_EB (OPTION_MD_BASE + 0)
1071 #define OPTION_EL (OPTION_MD_BASE + 1)
1072 #define OPTION_WARN_EXPAND (OPTION_MD_BASE + 2)
1073 #define OPTION_XP (OPTION_MD_BASE + 3)
1074 #define OPTION_INTEL_SYNTAX (OPTION_MD_BASE + 4)
1075
1076 struct option md_longopts[] = {
1077 { "EB", no_argument, NULL, OPTION_EB },
1078 { "EL", no_argument, NULL, OPTION_EL },
1079 { "mwarn-expand", no_argument, NULL, OPTION_WARN_EXPAND },
1080 { "mxp", no_argument, NULL, OPTION_XP },
1081 { "mintel-syntax",no_argument, NULL, OPTION_INTEL_SYNTAX },
1082 { NULL, no_argument, NULL, 0 }
1083 };
1084 size_t md_longopts_size = sizeof (md_longopts);
1085
1086 int
md_parse_option(int c,char * arg ATTRIBUTE_UNUSED)1087 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
1088 {
1089 switch (c)
1090 {
1091 case OPTION_EB:
1092 target_big_endian = 1;
1093 break;
1094
1095 case OPTION_EL:
1096 target_big_endian = 0;
1097 break;
1098
1099 case OPTION_WARN_EXPAND:
1100 target_warn_expand = 1;
1101 break;
1102
1103 case OPTION_XP:
1104 target_xp = 1;
1105 break;
1106
1107 case OPTION_INTEL_SYNTAX:
1108 target_intel_syntax = 1;
1109 break;
1110
1111 #ifdef OBJ_ELF
1112 /* SVR4 argument compatibility (-V): print version ID. */
1113 case 'V':
1114 print_version_id ();
1115 break;
1116
1117 /* SVR4 argument compatibility (-Qy, -Qn): controls whether
1118 a .comment section should be emitted or not (ignored). */
1119 case 'Q':
1120 break;
1121 #endif
1122
1123 default:
1124 return 0;
1125 }
1126
1127 return 1;
1128 }
1129
1130 void
md_show_usage(FILE * stream)1131 md_show_usage (FILE *stream)
1132 {
1133 fprintf (stream, _("\
1134 -EL generate code for little endian mode (default)\n\
1135 -EB generate code for big endian mode\n\
1136 -mwarn-expand warn if pseudo operations are expanded\n\
1137 -mxp enable i860XP support (disabled by default)\n\
1138 -mintel-syntax enable Intel syntax (default to AT&T/SVR4)\n"));
1139 #ifdef OBJ_ELF
1140 /* SVR4 compatibility flags. */
1141 fprintf (stream, _("\
1142 -V print assembler version number\n\
1143 -Qy, -Qn ignored\n"));
1144 #endif
1145 }
1146
1147
1148 /* We have no need to default values of symbols. */
1149 symbolS *
md_undefined_symbol(char * name ATTRIBUTE_UNUSED)1150 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
1151 {
1152 return 0;
1153 }
1154
1155 /* The i860 denotes auto-increment with '++'. */
1156 void
md_operand(expressionS * exp)1157 md_operand (expressionS *exp)
1158 {
1159 char *s;
1160
1161 for (s = input_line_pointer; *s; s++)
1162 {
1163 if (s[0] == '+' && s[1] == '+')
1164 {
1165 input_line_pointer += 2;
1166 exp->X_op = O_register;
1167 break;
1168 }
1169 }
1170 }
1171
1172 /* Round up a section size to the appropriate boundary. */
1173 valueT
md_section_align(segT segment ATTRIBUTE_UNUSED,valueT size ATTRIBUTE_UNUSED)1174 md_section_align (segT segment ATTRIBUTE_UNUSED,
1175 valueT size ATTRIBUTE_UNUSED)
1176 {
1177 /* Byte alignment is fine. */
1178 return size;
1179 }
1180
1181 /* On the i860, a PC-relative offset is relative to the address of the
1182 offset plus its size. */
1183 long
md_pcrel_from(fixS * fixP)1184 md_pcrel_from (fixS *fixP)
1185 {
1186 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
1187 }
1188
1189 /* Determine the relocation needed for non PC-relative 16-bit immediates.
1190 Also adjust the given immediate as necessary. Finally, check that
1191 all constraints (such as alignment) are satisfied. */
1192 static bfd_reloc_code_real_type
obtain_reloc_for_imm16(fixS * fix,long * val)1193 obtain_reloc_for_imm16 (fixS *fix, long *val)
1194 {
1195 valueT fup = fix->fx_addnumber;
1196 bfd_reloc_code_real_type reloc;
1197
1198 if (fix->fx_pcrel)
1199 abort ();
1200
1201 /* Check alignment restrictions. */
1202 if ((fup & OP_ALIGN2) && (*val & 0x1))
1203 as_bad_where (fix->fx_file, fix->fx_line,
1204 _("This immediate requires 0 MOD 2 alignment"));
1205 else if ((fup & OP_ALIGN4) && (*val & 0x3))
1206 as_bad_where (fix->fx_file, fix->fx_line,
1207 _("This immediate requires 0 MOD 4 alignment"));
1208 else if ((fup & OP_ALIGN8) && (*val & 0x7))
1209 as_bad_where (fix->fx_file, fix->fx_line,
1210 _("This immediate requires 0 MOD 8 alignment"));
1211 else if ((fup & OP_ALIGN16) && (*val & 0xf))
1212 as_bad_where (fix->fx_file, fix->fx_line,
1213 _("This immediate requires 0 MOD 16 alignment"));
1214
1215 if (fup & OP_SEL_HA)
1216 {
1217 *val = (*val >> 16) + (*val & 0x8000 ? 1 : 0);
1218 reloc = BFD_RELOC_860_HIGHADJ;
1219 }
1220 else if (fup & OP_SEL_H)
1221 {
1222 *val >>= 16;
1223 reloc = BFD_RELOC_860_HIGH;
1224 }
1225 else if (fup & OP_SEL_L)
1226 {
1227 int num_encode;
1228 if (fup & OP_IMM_SPLIT16)
1229 {
1230 if (fup & OP_ENCODE1)
1231 {
1232 num_encode = 1;
1233 reloc = BFD_RELOC_860_SPLIT1;
1234 }
1235 else if (fup & OP_ENCODE2)
1236 {
1237 num_encode = 2;
1238 reloc = BFD_RELOC_860_SPLIT2;
1239 }
1240 else
1241 {
1242 num_encode = 0;
1243 reloc = BFD_RELOC_860_SPLIT0;
1244 }
1245 }
1246 else
1247 {
1248 if (fup & OP_ENCODE1)
1249 {
1250 num_encode = 1;
1251 reloc = BFD_RELOC_860_LOW1;
1252 }
1253 else if (fup & OP_ENCODE2)
1254 {
1255 num_encode = 2;
1256 reloc = BFD_RELOC_860_LOW2;
1257 }
1258 else if (fup & OP_ENCODE3)
1259 {
1260 num_encode = 3;
1261 reloc = BFD_RELOC_860_LOW3;
1262 }
1263 else
1264 {
1265 num_encode = 0;
1266 reloc = BFD_RELOC_860_LOW0;
1267 }
1268 }
1269
1270 /* Preserve size encode bits. */
1271 *val &= ~((1 << num_encode) - 1);
1272 }
1273 else
1274 {
1275 /* No selector. What reloc do we generate (???)? */
1276 reloc = BFD_RELOC_32;
1277 }
1278
1279 return reloc;
1280 }
1281
1282 /* Attempt to simplify or eliminate a fixup. To indicate that a fixup
1283 has been eliminated, set fix->fx_done. If fix->fx_addsy is non-NULL,
1284 we will have to generate a reloc entry. */
1285
1286 void
md_apply_fix(fixS * fix,valueT * valP,segT seg ATTRIBUTE_UNUSED)1287 md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
1288 {
1289 char *buf;
1290 long val = *valP;
1291 unsigned long insn;
1292 valueT fup;
1293
1294 buf = fix->fx_frag->fr_literal + fix->fx_where;
1295
1296 /* Recall that earlier we stored the opcode little-endian. */
1297 insn = bfd_getl32 (buf);
1298
1299 /* We stored a fix-up in this oddly-named scratch field. */
1300 fup = fix->fx_addnumber;
1301
1302 /* Determine the necessary relocations as well as inserting an
1303 immediate into the instruction. */
1304 if (fup & OP_IMM_U5)
1305 {
1306 if (val & ~0x1f)
1307 as_bad_where (fix->fx_file, fix->fx_line,
1308 _("5-bit immediate too large"));
1309 if (fix->fx_addsy)
1310 as_bad_where (fix->fx_file, fix->fx_line,
1311 _("5-bit field must be absolute"));
1312
1313 insn |= (val & 0x1f) << 11;
1314 bfd_putl32 (insn, buf);
1315 fix->fx_r_type = BFD_RELOC_NONE;
1316 fix->fx_done = 1;
1317 }
1318 else if (fup & OP_IMM_S16)
1319 {
1320 fix->fx_r_type = obtain_reloc_for_imm16 (fix, &val);
1321
1322 /* Insert the immediate. */
1323 if (fix->fx_addsy)
1324 fix->fx_done = 0;
1325 else
1326 {
1327 insn |= val & 0xffff;
1328 bfd_putl32 (insn, buf);
1329 fix->fx_r_type = BFD_RELOC_NONE;
1330 fix->fx_done = 1;
1331 }
1332 }
1333 else if (fup & OP_IMM_U16)
1334 abort ();
1335
1336 else if (fup & OP_IMM_SPLIT16)
1337 {
1338 fix->fx_r_type = obtain_reloc_for_imm16 (fix, &val);
1339
1340 /* Insert the immediate. */
1341 if (fix->fx_addsy)
1342 fix->fx_done = 0;
1343 else
1344 {
1345 insn |= val & 0x7ff;
1346 insn |= (val & 0xf800) << 5;
1347 bfd_putl32 (insn, buf);
1348 fix->fx_r_type = BFD_RELOC_NONE;
1349 fix->fx_done = 1;
1350 }
1351 }
1352 else if (fup & OP_IMM_BR16)
1353 {
1354 if (val & 0x3)
1355 as_bad_where (fix->fx_file, fix->fx_line,
1356 _("A branch offset requires 0 MOD 4 alignment"));
1357
1358 val = val >> 2;
1359
1360 /* Insert the immediate. */
1361 if (fix->fx_addsy)
1362 {
1363 fix->fx_done = 0;
1364 fix->fx_r_type = BFD_RELOC_860_PC16;
1365 }
1366 else
1367 {
1368 insn |= (val & 0x7ff);
1369 insn |= ((val & 0xf800) << 5);
1370 bfd_putl32 (insn, buf);
1371 fix->fx_r_type = BFD_RELOC_NONE;
1372 fix->fx_done = 1;
1373 }
1374 }
1375 else if (fup & OP_IMM_BR26)
1376 {
1377 if (val & 0x3)
1378 as_bad_where (fix->fx_file, fix->fx_line,
1379 _("A branch offset requires 0 MOD 4 alignment"));
1380
1381 val >>= 2;
1382
1383 /* Insert the immediate. */
1384 if (fix->fx_addsy)
1385 {
1386 fix->fx_r_type = BFD_RELOC_860_PC26;
1387 fix->fx_done = 0;
1388 }
1389 else
1390 {
1391 insn |= (val & 0x3ffffff);
1392 bfd_putl32 (insn, buf);
1393 fix->fx_r_type = BFD_RELOC_NONE;
1394 fix->fx_done = 1;
1395 }
1396 }
1397 else if (fup != OP_NONE)
1398 {
1399 as_bad_where (fix->fx_file, fix->fx_line,
1400 _("Unrecognized fix-up (0x%08lx)"), (unsigned long) fup);
1401 abort ();
1402 }
1403 else
1404 {
1405 /* I believe only fix-ups such as ".long .ep.main-main+0xc8000000"
1406 reach here (???). */
1407 if (fix->fx_addsy)
1408 {
1409 fix->fx_r_type = BFD_RELOC_32;
1410 fix->fx_done = 0;
1411 }
1412 else
1413 {
1414 insn |= (val & 0xffffffff);
1415 bfd_putl32 (insn, buf);
1416 fix->fx_r_type = BFD_RELOC_NONE;
1417 fix->fx_done = 1;
1418 }
1419 }
1420 }
1421
1422 /* Generate a machine dependent reloc from a fixup. */
1423 arelent*
tc_gen_reloc(asection * section ATTRIBUTE_UNUSED,fixS * fixp)1424 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED,
1425 fixS *fixp)
1426 {
1427 arelent *reloc;
1428
1429 reloc = xmalloc (sizeof (*reloc));
1430 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
1431 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1432 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1433 reloc->addend = fixp->fx_offset;
1434 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1435
1436 if (! reloc->howto)
1437 {
1438 as_bad_where (fixp->fx_file, fixp->fx_line,
1439 "Cannot represent %s relocation in object file",
1440 bfd_get_reloc_code_name (fixp->fx_r_type));
1441 }
1442 return reloc;
1443 }
1444
1445 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
1446 of an rs_align_code fragment. */
1447
1448 void
i860_handle_align(fragS * fragp)1449 i860_handle_align (fragS *fragp)
1450 {
1451 /* Instructions are always stored little-endian on the i860. */
1452 static const unsigned char le_nop[] = { 0x00, 0x00, 0x00, 0xA0 };
1453
1454 int bytes;
1455 char *p;
1456
1457 if (fragp->fr_type != rs_align_code)
1458 return;
1459
1460 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
1461 p = fragp->fr_literal + fragp->fr_fix;
1462
1463 /* Make sure we are on a 4-byte boundary, in case someone has been
1464 putting data into a text section. */
1465 if (bytes & 3)
1466 {
1467 int fix = bytes & 3;
1468 memset (p, 0, fix);
1469 p += fix;
1470 fragp->fr_fix += fix;
1471 }
1472
1473 memcpy (p, le_nop, 4);
1474 fragp->fr_var = 4;
1475 }
1476
1477 /* This is called after a user-defined label is seen. We check
1478 if the label has a double colon (valid in Intel syntax mode only),
1479 in which case it should be externalized. */
1480
1481 void
i860_check_label(symbolS * labelsym)1482 i860_check_label (symbolS *labelsym)
1483 {
1484 /* At this point, the current line pointer is sitting on the character
1485 just after the first colon on the label. */
1486 if (target_intel_syntax && *input_line_pointer == ':')
1487 {
1488 S_SET_EXTERNAL (labelsym);
1489 input_line_pointer++;
1490 }
1491 }
1492