1 /* Assemble Matsushita MN10200 instructions. 2 Copyright (C) 1996-2014 Free Software Foundation, Inc. 3 4 This file is part of the GNU opcodes library. 5 6 This library is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 It is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 14 License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "opcode/mn10200.h" 23 24 25 const struct mn10200_operand mn10200_operands[] = { 26 #define UNUSED 0 27 {0, 0, 0}, 28 29 /* dn register in the first register operand position. */ 30 #define DN0 (UNUSED+1) 31 {2, 0, MN10200_OPERAND_DREG}, 32 33 /* dn register in the second register operand position. */ 34 #define DN1 (DN0+1) 35 {2, 2, MN10200_OPERAND_DREG}, 36 37 /* dm register in the first register operand position. */ 38 #define DM0 (DN1+1) 39 {2, 0, MN10200_OPERAND_DREG}, 40 41 /* dm register in the second register operand position. */ 42 #define DM1 (DM0+1) 43 {2, 2, MN10200_OPERAND_DREG}, 44 45 /* an register in the first register operand position. */ 46 #define AN0 (DM1+1) 47 {2, 0, MN10200_OPERAND_AREG}, 48 49 /* an register in the second register operand position. */ 50 #define AN1 (AN0+1) 51 {2, 2, MN10200_OPERAND_AREG}, 52 53 /* am register in the first register operand position. */ 54 #define AM0 (AN1+1) 55 {2, 0, MN10200_OPERAND_AREG}, 56 57 /* am register in the second register operand position. */ 58 #define AM1 (AM0+1) 59 {2, 2, MN10200_OPERAND_AREG}, 60 61 /* 8 bit unsigned immediate which may promote to a 16bit 62 unsigned immediate. */ 63 #define IMM8 (AM1+1) 64 {8, 0, MN10200_OPERAND_PROMOTE}, 65 66 /* 16 bit unsigned immediate which may promote to a 32bit 67 unsigned immediate. */ 68 #define IMM16 (IMM8+1) 69 {16, 0, MN10200_OPERAND_PROMOTE}, 70 71 /* 16 bit pc-relative immediate which may promote to a 16bit 72 pc-relative immediate. */ 73 #define IMM16_PCREL (IMM16+1) 74 {16, 0, MN10200_OPERAND_PCREL | MN10200_OPERAND_RELAX | MN10200_OPERAND_SIGNED}, 75 76 /* 16bit unsigned dispacement in a memory operation which 77 may promote to a 32bit displacement. */ 78 #define IMM16_MEM (IMM16_PCREL+1) 79 {16, 0, MN10200_OPERAND_PROMOTE | MN10200_OPERAND_MEMADDR}, 80 81 /* 24 immediate, low 16 bits in the main instruction 82 word, 8 in the extension word. */ 83 84 #define IMM24 (IMM16_MEM+1) 85 {24, 0, MN10200_OPERAND_EXTENDED}, 86 87 /* 32bit pc-relative offset. */ 88 #define IMM24_PCREL (IMM24+1) 89 {24, 0, MN10200_OPERAND_EXTENDED | MN10200_OPERAND_PCREL | MN10200_OPERAND_SIGNED}, 90 91 /* 32bit memory offset. */ 92 #define IMM24_MEM (IMM24_PCREL+1) 93 {24, 0, MN10200_OPERAND_EXTENDED | MN10200_OPERAND_MEMADDR}, 94 95 /* Processor status word. */ 96 #define PSW (IMM24_MEM+1) 97 {0, 0, MN10200_OPERAND_PSW}, 98 99 /* MDR register. */ 100 #define MDR (PSW+1) 101 {0, 0, MN10200_OPERAND_MDR}, 102 103 /* Index register. */ 104 #define DI (MDR+1) 105 {2, 4, MN10200_OPERAND_DREG}, 106 107 /* 8 bit signed displacement, may promote to 16bit signed dispacement. */ 108 #define SD8 (DI+1) 109 {8, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 110 111 /* 16 bit signed displacement, may promote to 32bit dispacement. */ 112 #define SD16 (SD8+1) 113 {16, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 114 115 /* 8 bit pc-relative displacement. */ 116 #define SD8N_PCREL (SD16+1) 117 {8, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PCREL | MN10200_OPERAND_RELAX}, 118 119 /* 8 bit signed immediate which may promote to 16bit signed immediate. */ 120 #define SIMM8 (SD8N_PCREL+1) 121 {8, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 122 123 /* 16 bit signed immediate which may promote to 32bit immediate. */ 124 #define SIMM16 (SIMM8+1) 125 {16, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 126 127 /* 16 bit signed immediate which may not promote. */ 128 #define SIMM16N (SIMM16+1) 129 {16, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_NOCHECK}, 130 131 /* Either an open paren or close paren. */ 132 #define PAREN (SIMM16N+1) 133 {0, 0, MN10200_OPERAND_PAREN}, 134 135 /* dn register that appears in the first and second register positions. */ 136 #define DN01 (PAREN+1) 137 {2, 0, MN10200_OPERAND_DREG | MN10200_OPERAND_REPEATED}, 138 139 /* an register that appears in the first and second register positions. */ 140 #define AN01 (DN01+1) 141 {2, 0, MN10200_OPERAND_AREG | MN10200_OPERAND_REPEATED}, 142 } ; 143 144 #define MEM(ADDR) PAREN, ADDR, PAREN 145 #define MEM2(ADDR1,ADDR2) PAREN, ADDR1, ADDR2, PAREN 146 147 /* The opcode table. 148 149 The format of the opcode table is: 150 151 NAME OPCODE MASK { OPERANDS } 152 153 NAME is the name of the instruction. 154 OPCODE is the instruction opcode. 155 MASK is the opcode mask; this is used to tell the disassembler 156 which bits in the actual opcode must match OPCODE. 157 OPERANDS is the list of operands. 158 159 The disassembler reads the table in order and prints the first 160 instruction which matches, so this table is sorted to put more 161 specific instructions before more general instructions. It is also 162 sorted by major opcode. */ 163 164 const struct mn10200_opcode mn10200_opcodes[] = { 165 { "mov", 0x8000, 0xf000, FMT_2, {SIMM8, DN01}}, 166 { "mov", 0x80, 0xf0, FMT_1, {DN1, DM0}}, 167 { "mov", 0xf230, 0xfff0, FMT_4, {DM1, AN0}}, 168 { "mov", 0xf2f0, 0xfff0, FMT_4, {AN1, DM0}}, 169 { "mov", 0xf270, 0xfff0, FMT_4, {AN1, AM0}}, 170 { "mov", 0xf3f0, 0xfffc, FMT_4, {PSW, DN0}}, 171 { "mov", 0xf3d0, 0xfff3, FMT_4, {DN1, PSW}}, 172 { "mov", 0xf3e0, 0xfffc, FMT_4, {MDR, DN0}}, 173 { "mov", 0xf3c0, 0xfff3, FMT_4, {DN1, MDR}}, 174 { "mov", 0x20, 0xf0, FMT_1, {MEM(AN1), DM0}}, 175 { "mov", 0x6000, 0xf000, FMT_2, {MEM2(SD8, AN1), DM0}}, 176 { "mov", 0xf7c00000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 177 { "mov", 0xf4800000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 178 { "mov", 0xf140, 0xffc0, FMT_4, {MEM2(DI, AN1), DM0}}, 179 { "mov", 0xc80000, 0xfc0000, FMT_3, {MEM(IMM16_MEM), DN0}}, 180 { "mov", 0xf4c00000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), DN0}}, 181 { "mov", 0x7000, 0xf000, FMT_2, {MEM2(SD8,AN1), AM0}}, 182 { "mov", 0x7000, 0xf000, FMT_2, {MEM(AN1), AM0}}, 183 { "mov", 0xf7b00000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), AM0}}, 184 { "mov", 0xf4f00000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), AM0}}, 185 { "mov", 0xf100, 0xffc0, FMT_4, {MEM2(DI, AN1), AM0}}, 186 { "mov", 0xf7300000, 0xfffc0000, FMT_6, {MEM(IMM16_MEM), AN0}}, 187 { "mov", 0xf4d00000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), AN0}}, 188 { "mov", 0x00, 0xf0, FMT_1, {DM0, MEM(AN1)}}, 189 { "mov", 0x4000, 0xf000, FMT_2, {DM0, MEM2(SD8, AN1)}}, 190 { "mov", 0xf7800000, 0xfff00000, FMT_6, {DM0, MEM2(SD16, AN1)}}, 191 { "mov", 0xf4000000, 0xfff00000, FMT_7, {DM0, MEM2(IMM24, AN1)}}, 192 { "mov", 0xf1c0, 0xffc0, FMT_4, {DM0, MEM2(DI, AN1)}}, 193 { "mov", 0xc00000, 0xfc0000, FMT_3, {DN0, MEM(IMM16_MEM)}}, 194 { "mov", 0xf4400000, 0xfffc0000, FMT_7, {DN0, MEM(IMM24_MEM)}}, 195 { "mov", 0x5000, 0xf000, FMT_2, {AM0, MEM2(SD8, AN1)}}, 196 { "mov", 0x5000, 0xf000, FMT_2, {AM0, MEM(AN1)}}, 197 { "mov", 0xf7a00000, 0xfff00000, FMT_6, {AM0, MEM2(SD16, AN1)}}, 198 { "mov", 0xf4100000, 0xfff00000, FMT_7, {AM0, MEM2(IMM24,AN1)}}, 199 { "mov", 0xf180, 0xffc0, FMT_4, {AM0, MEM2(DI, AN1)}}, 200 { "mov", 0xf7200000, 0xfffc0000, FMT_6, {AN0, MEM(IMM16_MEM)}}, 201 { "mov", 0xf4500000, 0xfffc0000, FMT_7, {AN0, MEM(IMM24_MEM)}}, 202 { "mov", 0xf80000, 0xfc0000, FMT_3, {SIMM16, DN0}}, 203 { "mov", 0xf4700000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 204 { "mov", 0xdc0000, 0xfc0000, FMT_3, {IMM16, AN0}}, 205 { "mov", 0xf4740000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 206 207 { "movx", 0xf57000, 0xfff000, FMT_5, {MEM2(SD8, AN1), DM0}}, 208 { "movx", 0xf7700000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 209 { "movx", 0xf4b00000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 210 { "movx", 0xf55000, 0xfff000, FMT_5, {DM0, MEM2(SD8, AN1)}}, 211 { "movx", 0xf7600000, 0xfff00000, FMT_6, {DM0, MEM2(SD16, AN1)}}, 212 { "movx", 0xf4300000, 0xfff00000, FMT_7, {DM0, MEM2(IMM24, AN1)}}, 213 214 { "movb", 0xf52000, 0xfff000, FMT_5, {MEM2(SD8, AN1), DM0}}, 215 { "movb", 0xf7d00000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 216 { "movb", 0xf4a00000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 217 { "movb", 0xf040, 0xffc0, FMT_4, {MEM2(DI, AN1), DM0}}, 218 { "movb", 0xf4c40000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), DN0}}, 219 { "movb", 0x10, 0xf0, FMT_1, {DM0, MEM(AN1)}}, 220 { "movb", 0xf51000, 0xfff000, FMT_5, {DM0, MEM2(SD8, AN1)}}, 221 { "movb", 0xf7900000, 0xfff00000, FMT_6, {DM0, MEM2(SD16, AN1)}}, 222 { "movb", 0xf4200000, 0xfff00000, FMT_7, {DM0, MEM2(IMM24, AN1)}}, 223 { "movb", 0xf0c0, 0xffc0, FMT_4, {DM0, MEM2(DI, AN1)}}, 224 { "movb", 0xc40000, 0xfc0000, FMT_3, {DN0, MEM(IMM16_MEM)}}, 225 { "movb", 0xf4440000, 0xfffc0000, FMT_7, {DN0, MEM(IMM24_MEM)}}, 226 227 { "movbu", 0x30, 0xf0, FMT_1, {MEM(AN1), DM0}}, 228 { "movbu", 0xf53000, 0xfff000, FMT_5, {MEM2(SD8, AN1), DM0}}, 229 { "movbu", 0xf7500000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 230 { "movbu", 0xf4900000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 231 { "movbu", 0xf080, 0xffc0, FMT_4, {MEM2(DI, AN1), DM0}}, 232 { "movbu", 0xcc0000, 0xfc0000, FMT_3, {MEM(IMM16_MEM), DN0}}, 233 { "movbu", 0xf4c80000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), DN0}}, 234 235 { "ext", 0xf3c1, 0xfff3, FMT_4, {DN1}}, 236 { "extx", 0xb0, 0xfc, FMT_1, {DN0}}, 237 { "extxu", 0xb4, 0xfc, FMT_1, {DN0}}, 238 { "extxb", 0xb8, 0xfc, FMT_1, {DN0}}, 239 { "extxbu", 0xbc, 0xfc, FMT_1, {DN0}}, 240 241 { "add", 0x90, 0xf0, FMT_1, {DN1, DM0}}, 242 { "add", 0xf200, 0xfff0, FMT_4, {DM1, AN0}}, 243 { "add", 0xf2c0, 0xfff0, FMT_4, {AN1, DM0}}, 244 { "add", 0xf240, 0xfff0, FMT_4, {AN1, AM0}}, 245 { "add", 0xd400, 0xfc00, FMT_2, {SIMM8, DN0}}, 246 { "add", 0xf7180000, 0xfffc0000, FMT_6, {SIMM16, DN0}}, 247 { "add", 0xf4600000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 248 { "add", 0xd000, 0xfc00, FMT_2, {SIMM8, AN0}}, 249 { "add", 0xf7080000, 0xfffc0000, FMT_6, {SIMM16, AN0}}, 250 { "add", 0xf4640000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 251 { "addc", 0xf280, 0xfff0, FMT_4, {DN1, DM0}}, 252 { "addnf", 0xf50c00, 0xfffc00, FMT_5, {SIMM8, AN0}}, 253 254 { "sub", 0xa0, 0xf0, FMT_1, {DN1, DM0}}, 255 { "sub", 0xf210, 0xfff0, FMT_4, {DN1, AN0}}, 256 { "sub", 0xf2d0, 0xfff0, FMT_4, {AN1, DM0}}, 257 { "sub", 0xf250, 0xfff0, FMT_4, {AN1, AM0}}, 258 { "sub", 0xf71c0000, 0xfffc0000, FMT_6, {IMM16, DN0}}, 259 { "sub", 0xf4680000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 260 { "sub", 0xf70c0000, 0xfffc0000, FMT_6, {IMM16, AN0}}, 261 { "sub", 0xf46c0000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 262 { "subc", 0xf290, 0xfff0, FMT_4, {DN1, DM0}}, 263 264 { "mul", 0xf340, 0xfff0, FMT_4, {DN1, DM0}}, 265 { "mulu", 0xf350, 0xfff0, FMT_4, {DN1, DM0}}, 266 267 { "divu", 0xf360, 0xfff0, FMT_4, {DN1, DM0}}, 268 269 { "cmp", 0xf390, 0xfff0, FMT_4, {DN1, DM0}}, 270 { "cmp", 0xf220, 0xfff0, FMT_4, {DM1, AN0}}, 271 { "cmp", 0xf2e0, 0xfff0, FMT_4, {AN1, DM0}}, 272 { "cmp", 0xf260, 0xfff0, FMT_4, {AN1, AM0}}, 273 { "cmp", 0xd800, 0xfc00, FMT_2, {SIMM8, DN0}}, 274 { "cmp", 0xf7480000, 0xfffc0000, FMT_6, {SIMM16, DN0}}, 275 { "cmp", 0xf4780000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 276 { "cmp", 0xec0000, 0xfc0000, FMT_3, {IMM16, AN0}}, 277 { "cmp", 0xf47c0000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 278 279 { "and", 0xf300, 0xfff0, FMT_4, {DN1, DM0}}, 280 { "and", 0xf50000, 0xfffc00, FMT_5, {IMM8, DN0}}, 281 { "and", 0xf7000000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 282 { "and", 0xf7100000, 0xffff0000, FMT_6, {SIMM16N, PSW}}, 283 { "or", 0xf310, 0xfff0, FMT_4, {DN1, DM0}}, 284 { "or", 0xf50800, 0xfffc00, FMT_5, {IMM8, DN0}}, 285 { "or", 0xf7400000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 286 { "or", 0xf7140000, 0xffff0000, FMT_6, {SIMM16N, PSW}}, 287 { "xor", 0xf320, 0xfff0, FMT_4, {DN1, DM0}}, 288 { "xor", 0xf74c0000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 289 { "not", 0xf3e4, 0xfffc, FMT_4, {DN0}}, 290 291 { "asr", 0xf338, 0xfffc, FMT_4, {DN0}}, 292 { "lsr", 0xf33c, 0xfffc, FMT_4, {DN0}}, 293 { "ror", 0xf334, 0xfffc, FMT_4, {DN0}}, 294 { "rol", 0xf330, 0xfffc, FMT_4, {DN0}}, 295 296 { "btst", 0xf50400, 0xfffc00, FMT_5, {IMM8, DN0}}, 297 { "btst", 0xf7040000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 298 { "bset", 0xf020, 0xfff0, FMT_4, {DM0, MEM(AN1)}}, 299 { "bclr", 0xf030, 0xfff0, FMT_4, {DM0, MEM(AN1)}}, 300 301 { "beq", 0xe800, 0xff00, FMT_2, {SD8N_PCREL}}, 302 { "bne", 0xe900, 0xff00, FMT_2, {SD8N_PCREL}}, 303 { "blt", 0xe000, 0xff00, FMT_2, {SD8N_PCREL}}, 304 { "ble", 0xe300, 0xff00, FMT_2, {SD8N_PCREL}}, 305 { "bge", 0xe200, 0xff00, FMT_2, {SD8N_PCREL}}, 306 { "bgt", 0xe100, 0xff00, FMT_2, {SD8N_PCREL}}, 307 { "bcs", 0xe400, 0xff00, FMT_2, {SD8N_PCREL}}, 308 { "bls", 0xe700, 0xff00, FMT_2, {SD8N_PCREL}}, 309 { "bcc", 0xe600, 0xff00, FMT_2, {SD8N_PCREL}}, 310 { "bhi", 0xe500, 0xff00, FMT_2, {SD8N_PCREL}}, 311 { "bvc", 0xf5fc00, 0xffff00, FMT_5, {SD8N_PCREL}}, 312 { "bvs", 0xf5fd00, 0xffff00, FMT_5, {SD8N_PCREL}}, 313 { "bnc", 0xf5fe00, 0xffff00, FMT_5, {SD8N_PCREL}}, 314 { "bns", 0xf5ff00, 0xffff00, FMT_5, {SD8N_PCREL}}, 315 { "bra", 0xea00, 0xff00, FMT_2, {SD8N_PCREL}}, 316 317 { "beqx", 0xf5e800, 0xffff00, FMT_5, {SD8N_PCREL}}, 318 { "bnex", 0xf5e900, 0xffff00, FMT_5, {SD8N_PCREL}}, 319 { "bltx", 0xf5e000, 0xffff00, FMT_5, {SD8N_PCREL}}, 320 { "blex", 0xf5e300, 0xffff00, FMT_5, {SD8N_PCREL}}, 321 { "bgex", 0xf5e200, 0xffff00, FMT_5, {SD8N_PCREL}}, 322 { "bgtx", 0xf5e100, 0xffff00, FMT_5, {SD8N_PCREL}}, 323 { "bcsx", 0xf5e400, 0xffff00, FMT_5, {SD8N_PCREL}}, 324 { "blsx", 0xf5e700, 0xffff00, FMT_5, {SD8N_PCREL}}, 325 { "bccx", 0xf5e600, 0xffff00, FMT_5, {SD8N_PCREL}}, 326 { "bhix", 0xf5e500, 0xffff00, FMT_5, {SD8N_PCREL}}, 327 { "bvcx", 0xf5ec00, 0xffff00, FMT_5, {SD8N_PCREL}}, 328 { "bvsx", 0xf5ed00, 0xffff00, FMT_5, {SD8N_PCREL}}, 329 { "bncx", 0xf5ee00, 0xffff00, FMT_5, {SD8N_PCREL}}, 330 { "bnsx", 0xf5ef00, 0xffff00, FMT_5, {SD8N_PCREL}}, 331 332 { "jmp", 0xfc0000, 0xff0000, FMT_3, {IMM16_PCREL}}, 333 { "jmp", 0xf4e00000, 0xffff0000, FMT_7, {IMM24_PCREL}}, 334 { "jmp", 0xf000, 0xfff3, FMT_4, {PAREN,AN1,PAREN}}, 335 { "jsr", 0xfd0000, 0xff0000, FMT_3, {IMM16_PCREL}}, 336 { "jsr", 0xf4e10000, 0xffff0000, FMT_7, {IMM24_PCREL}}, 337 { "jsr", 0xf001, 0xfff3, FMT_4, {PAREN,AN1,PAREN}}, 338 339 { "nop", 0xf6, 0xff, FMT_1, {UNUSED}}, 340 341 { "rts", 0xfe, 0xff, FMT_1, {UNUSED}}, 342 { "rti", 0xeb, 0xff, FMT_1, {UNUSED}}, 343 344 /* Extension. We need some instruction to trigger "emulated syscalls" 345 for our simulator. */ 346 { "syscall", 0xf010, 0xffff, FMT_4, {UNUSED}}, 347 348 /* Extension. When talking to the simulator, gdb requires some instruction 349 that will trigger a "breakpoint" (really just an instruction that isn't 350 otherwise used by the tools. This instruction must be the same size 351 as the smallest instruction on the target machine. In the case of the 352 mn10x00 the "break" instruction must be one byte. 0xff is available on 353 both mn10x00 architectures. */ 354 { "break", 0xff, 0xff, FMT_1, {UNUSED}}, 355 356 { 0, 0, 0, 0, {0}}, 357 358 } ; 359 360 const int mn10200_num_opcodes = 361 sizeof (mn10200_opcodes) / sizeof (mn10200_opcodes[0]); 362 363 364