1 /* Print VAX instructions.
2    Copyright (C) 1995-2014 Free Software Foundation, Inc.
3    Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
4 
5    This file is part of the GNU opcodes library.
6 
7    This library is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    It is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include <setjmp.h>
24 #include <string.h>
25 #include "opcode/vax.h"
26 #include "dis-asm.h"
27 
28 static char *reg_names[] =
29 {
30   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
31   "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
32 };
33 
34 /* Definitions for the function entry mask bits.  */
35 static char *entry_mask_bit[] =
36 {
37   /* Registers 0 and 1 shall not be saved, since they're used to pass back
38      a function's result to its caller...  */
39   "~r0~", "~r1~",
40   /* Registers 2 .. 11 are normal registers.  */
41   "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
42   /* Registers 12 and 13 are argument and frame pointer and must not
43      be saved by using the entry mask.  */
44   "~ap~", "~fp~",
45   /* Bits 14 and 15 control integer and decimal overflow.  */
46   "IntOvfl", "DecOvfl",
47 };
48 
49 /* Sign-extend an (unsigned char). */
50 #define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
51 
52 /* Get a 1 byte signed integer.  */
53 #define NEXTBYTE(p)  \
54   (p += 1, FETCH_DATA (info, p), \
55   COERCE_SIGNED_CHAR(p[-1]))
56 
57 /* Get a 2 byte signed integer.  */
58 #define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
59 #define NEXTWORD(p)  \
60   (p += 2, FETCH_DATA (info, p), \
61    COERCE16 ((p[-1] << 8) + p[-2]))
62 
63 /* Get a 4 byte signed integer.  */
64 #define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
65 #define NEXTLONG(p)  \
66   (p += 4, FETCH_DATA (info, p), \
67    (COERCE32 ((((((p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
68 
69 /* Maximum length of an instruction.  */
70 #define MAXLEN 25
71 
72 struct private
73 {
74   /* Points to first byte not fetched.  */
75   bfd_byte * max_fetched;
76   bfd_byte   the_buffer[MAXLEN];
77   bfd_vma    insn_start;
78   OPCODES_SIGJMP_BUF    bailout;
79 };
80 
81 /* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
82    to ADDR (exclusive) are valid.  Returns 1 for success, longjmps
83    on error.  */
84 #define FETCH_DATA(info, addr) \
85   ((addr) <= ((struct private *)(info->private_data))->max_fetched \
86    ? 1 : fetch_data ((info), (addr)))
87 
88 static int
fetch_data(struct disassemble_info * info,bfd_byte * addr)89 fetch_data (struct disassemble_info *info, bfd_byte *addr)
90 {
91   int status;
92   struct private *priv = (struct private *) info->private_data;
93   bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
94 
95   status = (*info->read_memory_func) (start,
96 				      priv->max_fetched,
97 				      addr - priv->max_fetched,
98 				      info);
99   if (status != 0)
100     {
101       (*info->memory_error_func) (status, start, info);
102       OPCODES_SIGLONGJMP (priv->bailout, 1);
103     }
104   else
105     priv->max_fetched = addr;
106 
107   return 1;
108 }
109 
110 /* Entry mask handling.  */
111 static unsigned int  entry_addr_occupied_slots = 0;
112 static unsigned int  entry_addr_total_slots = 0;
113 static bfd_vma *     entry_addr = NULL;
114 
115 /* Parse the VAX specific disassembler options.  These contain function
116    entry addresses, which can be useful to disassemble ROM images, since
117    there's no symbol table.  Returns TRUE upon success, FALSE otherwise.  */
118 
119 static bfd_boolean
parse_disassembler_options(char * options)120 parse_disassembler_options (char * options)
121 {
122   const char * entry_switch = "entry:";
123 
124   while ((options = strstr (options, entry_switch)))
125     {
126       options += strlen (entry_switch);
127 
128       /* The greater-than part of the test below is paranoia.  */
129       if (entry_addr_occupied_slots >= entry_addr_total_slots)
130 	{
131 	  /* A guesstimate of the number of entries we will have to create.  */
132 	  entry_addr_total_slots +=
133 	    strlen (options) / (strlen (entry_switch) + 5);
134 
135 	  entry_addr = realloc (entry_addr, sizeof (bfd_vma)
136 				* entry_addr_total_slots);
137 	}
138 
139       if (entry_addr == NULL)
140 	return FALSE;
141 
142       entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
143       entry_addr_occupied_slots ++;
144     }
145 
146   return TRUE;
147 }
148 
149 #if 0 /* FIXME:  Ideally the disassembler should have target specific
150 	 initialisation and termination function pointers.  Then
151 	 parse_disassembler_options could be the init function and
152 	 free_entry_array (below) could be the termination routine.
153 	 Until then there is no way for the disassembler to tell us
154 	 that it has finished and that we no longer need the entry
155 	 array, so this routine is suppressed for now.  It does mean
156 	 that we leak memory, but only to the extent that we do not
157 	 free it just before the disassembler is about to terminate
158 	 anyway.  */
159 
160 /* Free memory allocated to our entry array.  */
161 
162 static void
163 free_entry_array (void)
164 {
165   if (entry_addr)
166     {
167       free (entry_addr);
168       entry_addr = NULL;
169       entry_addr_occupied_slots = entry_addr_total_slots = 0;
170     }
171 }
172 #endif
173 /* Check if the given address is a known function entry point.  This is
174    the case if there is a symbol of the function type at this address.
175    We also check for synthetic symbols as these are used for PLT entries
176    (weak undefined symbols may not have the function type set).  Finally
177    the address may have been forced to be treated as an entry point.  The
178    latter helps in disassembling ROM images, because there's no symbol
179    table at all.  Forced entry points can be given by supplying several
180    -M options to objdump: -M entry:0xffbb7730.  */
181 
182 static bfd_boolean
is_function_entry(struct disassemble_info * info,bfd_vma addr)183 is_function_entry (struct disassemble_info *info, bfd_vma addr)
184 {
185   unsigned int i;
186 
187   /* Check if there's a function or PLT symbol at our address.  */
188   if (info->symbols
189       && info->symbols[0]
190       && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
191       && addr == bfd_asymbol_value (info->symbols[0]))
192     return TRUE;
193 
194   /* Check for forced function entry address.  */
195   for (i = entry_addr_occupied_slots; i--;)
196     if (entry_addr[i] == addr)
197       return TRUE;
198 
199   return FALSE;
200 }
201 
202 /* Check if the given address is the last longword of a PLT entry.
203    This longword is data and depending on the value it may interfere
204    with disassembly of further PLT entries.  We make use of the fact
205    PLT symbols are marked BSF_SYNTHETIC.  */
206 static bfd_boolean
is_plt_tail(struct disassemble_info * info,bfd_vma addr)207 is_plt_tail (struct disassemble_info *info, bfd_vma addr)
208 {
209   if (info->symbols
210       && info->symbols[0]
211       && (info->symbols[0]->flags & BSF_SYNTHETIC)
212       && addr == bfd_asymbol_value (info->symbols[0]) + 8)
213     return TRUE;
214 
215   return FALSE;
216 }
217 
218 static int
print_insn_mode(const char * d,int size,unsigned char * p0,bfd_vma addr,disassemble_info * info)219 print_insn_mode (const char *d,
220 		 int size,
221 		 unsigned char *p0,
222 		 bfd_vma addr,	/* PC for this arg to be relative to.  */
223 		 disassemble_info *info)
224 {
225   unsigned char *p = p0;
226   unsigned char mode, reg;
227 
228   /* Fetch and interpret mode byte.  */
229   mode = (unsigned char) NEXTBYTE (p);
230   reg = mode & 0xF;
231   switch (mode & 0xF0)
232     {
233     case 0x00:
234     case 0x10:
235     case 0x20:
236     case 0x30: /* Literal mode			$number.  */
237       if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
238 	(*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
239       else
240         (*info->fprintf_func) (info->stream, "$0x%x", mode);
241       break;
242     case 0x40: /* Index:			base-addr[Rn] */
243       p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
244       (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
245       break;
246     case 0x50: /* Register:			Rn */
247       (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
248       break;
249     case 0x60: /* Register deferred:		(Rn) */
250       (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
251       break;
252     case 0x70: /* Autodecrement:		-(Rn) */
253       (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
254       break;
255     case 0x80: /* Autoincrement:		(Rn)+ */
256       if (reg == 0xF)
257 	{	/* Immediate?  */
258 	  int i;
259 
260 	  FETCH_DATA (info, p + size);
261 	  (*info->fprintf_func) (info->stream, "$0x");
262 	  if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
263 	    {
264 	      int float_word;
265 
266 	      float_word = p[0] | (p[1] << 8);
267 	      if ((d[1] == 'd' || d[1] == 'f')
268 		  && (float_word & 0xff80) == 0x8000)
269 		{
270 		  (*info->fprintf_func) (info->stream, "[invalid %c-float]",
271 					 d[1]);
272 		}
273 	      else
274 		{
275 	          for (i = 0; i < size; i++)
276 		    (*info->fprintf_func) (info->stream, "%02x",
277 		                           p[size - i - 1]);
278 	          (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
279 		}
280 	    }
281 	  else
282 	    {
283 	      for (i = 0; i < size; i++)
284 	        (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
285 	    }
286 	  p += size;
287 	}
288       else
289 	(*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
290       break;
291     case 0x90: /* Autoincrement deferred:	@(Rn)+ */
292       if (reg == 0xF)
293 	(*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
294       else
295 	(*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
296       break;
297     case 0xB0: /* Displacement byte deferred:	*displ(Rn).  */
298       (*info->fprintf_func) (info->stream, "*");
299     case 0xA0: /* Displacement byte:		displ(Rn).  */
300       if (reg == 0xF)
301 	(*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
302       else
303 	(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
304 			       reg_names[reg]);
305       break;
306     case 0xD0: /* Displacement word deferred:	*displ(Rn).  */
307       (*info->fprintf_func) (info->stream, "*");
308     case 0xC0: /* Displacement word:		displ(Rn).  */
309       if (reg == 0xF)
310 	(*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
311       else
312 	(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
313 			       reg_names[reg]);
314       break;
315     case 0xF0: /* Displacement long deferred:	*displ(Rn).  */
316       (*info->fprintf_func) (info->stream, "*");
317     case 0xE0: /* Displacement long:		displ(Rn).  */
318       if (reg == 0xF)
319 	(*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
320       else
321 	(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
322 			       reg_names[reg]);
323       break;
324     }
325 
326   return p - p0;
327 }
328 
329 /* Returns number of bytes "eaten" by the operand, or return -1 if an
330    invalid operand was found, or -2 if an opcode tabel error was
331    found. */
332 
333 static int
print_insn_arg(const char * d,unsigned char * p0,bfd_vma addr,disassemble_info * info)334 print_insn_arg (const char *d,
335 		unsigned char *p0,
336 		bfd_vma addr,	/* PC for this arg to be relative to.  */
337 		disassemble_info *info)
338 {
339   int arg_len;
340 
341   /* Check validity of addressing length.  */
342   switch (d[1])
343     {
344     case 'b' : arg_len = 1;	break;
345     case 'd' : arg_len = 8;	break;
346     case 'f' : arg_len = 4;	break;
347     case 'g' : arg_len = 8;	break;
348     case 'h' : arg_len = 16;	break;
349     case 'l' : arg_len = 4;	break;
350     case 'o' : arg_len = 16;	break;
351     case 'w' : arg_len = 2;	break;
352     case 'q' : arg_len = 8;	break;
353     default  : abort ();
354     }
355 
356   /* Branches have no mode byte.  */
357   if (d[0] == 'b')
358     {
359       unsigned char *p = p0;
360 
361       if (arg_len == 1)
362 	(*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
363       else
364 	(*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
365 
366       return p - p0;
367     }
368 
369   return print_insn_mode (d, arg_len, p0, addr, info);
370 }
371 
372 /* Print the vax instruction at address MEMADDR in debugged memory,
373    on INFO->STREAM.  Returns length of the instruction, in bytes.  */
374 
375 int
print_insn_vax(bfd_vma memaddr,disassemble_info * info)376 print_insn_vax (bfd_vma memaddr, disassemble_info *info)
377 {
378   static bfd_boolean parsed_disassembler_options = FALSE;
379   const struct vot *votp;
380   const char *argp;
381   unsigned char *arg;
382   struct private priv;
383   bfd_byte *buffer = priv.the_buffer;
384 
385   info->private_data = & priv;
386   priv.max_fetched = priv.the_buffer;
387   priv.insn_start = memaddr;
388 
389   if (! parsed_disassembler_options
390       && info->disassembler_options != NULL)
391     {
392       parse_disassembler_options (info->disassembler_options);
393 
394       /* To avoid repeated parsing of these options.  */
395       parsed_disassembler_options = TRUE;
396     }
397 
398   if (OPCODES_SIGSETJMP (priv.bailout) != 0)
399     /* Error return.  */
400     return -1;
401 
402   argp = NULL;
403   /* Check if the info buffer has more than one byte left since
404      the last opcode might be a single byte with no argument data.  */
405   if (info->buffer_length - (memaddr - info->buffer_vma) > 1)
406     {
407       FETCH_DATA (info, buffer + 2);
408     }
409   else
410     {
411       FETCH_DATA (info, buffer + 1);
412       buffer[1] = 0;
413     }
414 
415   /* Decode function entry mask.  */
416   if (is_function_entry (info, memaddr))
417     {
418       int i = 0;
419       int register_mask = buffer[1] << 8 | buffer[0];
420 
421       (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
422 			     register_mask);
423 
424       for (i = 15; i >= 0; i--)
425 	if (register_mask & (1 << i))
426           (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
427 
428       (*info->fprintf_func) (info->stream, " >");
429 
430       return 2;
431     }
432 
433   /* Decode PLT entry offset longword.  */
434   if (is_plt_tail (info, memaddr))
435     {
436       int offset;
437 
438       FETCH_DATA (info, buffer + 4);
439       offset = buffer[3] << 24 | buffer[2] << 16 | buffer[1] << 8 | buffer[0];
440       (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
441 
442       return 4;
443     }
444 
445   for (votp = &votstrs[0]; votp->name[0]; votp++)
446     {
447       vax_opcodeT opcode = votp->detail.code;
448 
449       /* 2 byte codes match 2 buffer pos. */
450       if ((bfd_byte) opcode == buffer[0]
451 	  && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
452 	{
453 	  argp = votp->detail.args;
454 	  break;
455 	}
456     }
457   if (argp == NULL)
458     {
459       /* Handle undefined instructions. */
460       (*info->fprintf_func) (info->stream, ".word 0x%x",
461 			     (buffer[0] << 8) + buffer[1]);
462       return 2;
463     }
464 
465   /* Point at first byte of argument data, and at descriptor for first
466      argument.  */
467   arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
468 
469   /* Make sure we have it in mem */
470   FETCH_DATA (info, arg);
471 
472   (*info->fprintf_func) (info->stream, "%s", votp->name);
473   if (*argp)
474     (*info->fprintf_func) (info->stream, " ");
475 
476   while (*argp)
477     {
478       arg += print_insn_arg (argp, arg, memaddr + arg - buffer, info);
479       argp += 2;
480       if (*argp)
481 	(*info->fprintf_func) (info->stream, ",");
482     }
483 
484   return arg - buffer;
485 }
486 
487