1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reference_processor.h"
18 
19 #include "base/time_utils.h"
20 #include "collector/garbage_collector.h"
21 #include "java_vm_ext.h"
22 #include "mirror/class-inl.h"
23 #include "mirror/object-inl.h"
24 #include "mirror/reference-inl.h"
25 #include "reference_processor-inl.h"
26 #include "reflection.h"
27 #include "ScopedLocalRef.h"
28 #include "scoped_thread_state_change-inl.h"
29 #include "task_processor.h"
30 #include "utils.h"
31 #include "well_known_classes.h"
32 
33 namespace art {
34 namespace gc {
35 
36 static constexpr bool kAsyncReferenceQueueAdd = false;
37 
ReferenceProcessor()38 ReferenceProcessor::ReferenceProcessor()
39     : collector_(nullptr),
40       preserving_references_(false),
41       condition_("reference processor condition", *Locks::reference_processor_lock_) ,
42       soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
43       weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
44       finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
45       phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
46       cleared_references_(Locks::reference_queue_cleared_references_lock_) {
47 }
48 
EnableSlowPath()49 void ReferenceProcessor::EnableSlowPath() {
50   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
51 }
52 
DisableSlowPath(Thread * self)53 void ReferenceProcessor::DisableSlowPath(Thread* self) {
54   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
55   condition_.Broadcast(self);
56 }
57 
BroadcastForSlowPath(Thread * self)58 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
59   MutexLock mu(self, *Locks::reference_processor_lock_);
60   condition_.Broadcast(self);
61 }
62 
GetReferent(Thread * self,ObjPtr<mirror::Reference> reference)63 ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
64                                                        ObjPtr<mirror::Reference> reference) {
65   if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
66     // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
67     // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
68     // mark stack and interfere with termination of marking.
69     ObjPtr<mirror::Object> const referent = reference->GetReferent();
70     // If the referent is null then it is already cleared, we can just return null since there is no
71     // scenario where it becomes non-null during the reference processing phase.
72     if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
73       return referent;
74     }
75   }
76   MutexLock mu(self, *Locks::reference_processor_lock_);
77   while ((!kUseReadBarrier && SlowPathEnabled()) ||
78          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
79     ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>();
80     // If the referent became cleared, return it. Don't need barrier since thread roots can't get
81     // updated until after we leave the function due to holding the mutator lock.
82     if (referent == nullptr) {
83       return nullptr;
84     }
85     // Try to see if the referent is already marked by using the is_marked_callback. We can return
86     // it to the mutator as long as the GC is not preserving references.
87     if (LIKELY(collector_ != nullptr)) {
88       // If it's null it means not marked, but it could become marked if the referent is reachable
89       // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
90       // can return it to the mutator as long as the GC is not preserving references, in which
91       // case only black nodes can be safely returned. If the GC is preserving references, the
92       // mutator could take a white field from a grey or white node and move it somewhere else
93       // in the heap causing corruption since this field would get swept.
94       // Use the cached referent instead of calling GetReferent since other threads could call
95       // Reference.clear() after we did the null check resulting in a null pointer being
96       // incorrectly passed to IsMarked. b/33569625
97       ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr());
98       if (forwarded_ref != nullptr) {
99         // Non null means that it is marked.
100         if (!preserving_references_ ||
101            (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
102           return forwarded_ref;
103         }
104       }
105     }
106     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
107     // presence of threads blocking for weak ref access.
108     self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
109     condition_.WaitHoldingLocks(self);
110   }
111   return reference->GetReferent();
112 }
113 
StartPreservingReferences(Thread * self)114 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
115   MutexLock mu(self, *Locks::reference_processor_lock_);
116   preserving_references_ = true;
117 }
118 
StopPreservingReferences(Thread * self)119 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
120   MutexLock mu(self, *Locks::reference_processor_lock_);
121   preserving_references_ = false;
122   // We are done preserving references, some people who are blocked may see a marked referent.
123   condition_.Broadcast(self);
124 }
125 
126 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,collector::GarbageCollector * collector)127 void ReferenceProcessor::ProcessReferences(bool concurrent,
128                                            TimingLogger* timings,
129                                            bool clear_soft_references,
130                                            collector::GarbageCollector* collector) {
131   TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
132   Thread* self = Thread::Current();
133   {
134     MutexLock mu(self, *Locks::reference_processor_lock_);
135     collector_ = collector;
136     if (!kUseReadBarrier) {
137       CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
138     } else {
139       // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
140       CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
141     }
142   }
143   if (kIsDebugBuild && collector->IsTransactionActive()) {
144     // In transaction mode, we shouldn't enqueue any Reference to the queues.
145     // See DelayReferenceReferent().
146     DCHECK(soft_reference_queue_.IsEmpty());
147     DCHECK(weak_reference_queue_.IsEmpty());
148     DCHECK(finalizer_reference_queue_.IsEmpty());
149     DCHECK(phantom_reference_queue_.IsEmpty());
150   }
151   // Unless required to clear soft references with white references, preserve some white referents.
152   if (!clear_soft_references) {
153     TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
154         "(Paused)ForwardSoftReferences", timings);
155     if (concurrent) {
156       StartPreservingReferences(self);
157     }
158     // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
159     // mark if the SoftReference is supposed to be preserved.
160     soft_reference_queue_.ForwardSoftReferences(collector);
161     collector->ProcessMarkStack();
162     if (concurrent) {
163       StopPreservingReferences(self);
164     }
165   }
166   // Clear all remaining soft and weak references with white referents.
167   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
168   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
169   {
170     TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
171         "(Paused)EnqueueFinalizerReferences", timings);
172     if (concurrent) {
173       StartPreservingReferences(self);
174     }
175     // Preserve all white objects with finalize methods and schedule them for finalization.
176     finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
177     collector->ProcessMarkStack();
178     if (concurrent) {
179       StopPreservingReferences(self);
180     }
181   }
182   // Clear all finalizer referent reachable soft and weak references with white referents.
183   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
184   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
185   // Clear all phantom references with white referents.
186   phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
187   // At this point all reference queues other than the cleared references should be empty.
188   DCHECK(soft_reference_queue_.IsEmpty());
189   DCHECK(weak_reference_queue_.IsEmpty());
190   DCHECK(finalizer_reference_queue_.IsEmpty());
191   DCHECK(phantom_reference_queue_.IsEmpty());
192   {
193     MutexLock mu(self, *Locks::reference_processor_lock_);
194     // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
195     // could result in a stale is_marked_callback_ being called before the reference processing
196     // starts since there is a small window of time where slow_path_enabled_ is enabled but the
197     // callback isn't yet set.
198     collector_ = nullptr;
199     if (!kUseReadBarrier && concurrent) {
200       // Done processing, disable the slow path and broadcast to the waiters.
201       DisableSlowPath(self);
202     }
203   }
204 }
205 
206 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
207 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref,collector::GarbageCollector * collector)208 void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
209                                                 ObjPtr<mirror::Reference> ref,
210                                                 collector::GarbageCollector* collector) {
211   // klass can be the class of the old object if the visitor already updated the class of ref.
212   DCHECK(klass != nullptr);
213   DCHECK(klass->IsTypeOfReferenceClass());
214   mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
215   // do_atomic_update needs to be true because this happens outside of the reference processing
216   // phase.
217   if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update*/true)) {
218     if (UNLIKELY(collector->IsTransactionActive())) {
219       // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
220       // issue of rolling back reference processing.  do_atomic_update needs to be true because this
221       // happens outside of the reference processing phase.
222       if (!referent->IsNull()) {
223         collector->MarkHeapReference(referent, /*do_atomic_update*/ true);
224       }
225       return;
226     }
227     Thread* self = Thread::Current();
228     // TODO: Remove these locks, and use atomic stacks for storing references?
229     // We need to check that the references haven't already been enqueued since we can end up
230     // scanning the same reference multiple times due to dirty cards.
231     if (klass->IsSoftReferenceClass()) {
232       soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
233     } else if (klass->IsWeakReferenceClass()) {
234       weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
235     } else if (klass->IsFinalizerReferenceClass()) {
236       finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
237     } else if (klass->IsPhantomReferenceClass()) {
238       phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
239     } else {
240       LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
241                  << klass->GetAccessFlags();
242     }
243   }
244 }
245 
UpdateRoots(IsMarkedVisitor * visitor)246 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
247   cleared_references_.UpdateRoots(visitor);
248 }
249 
250 class ClearedReferenceTask : public HeapTask {
251  public:
ClearedReferenceTask(jobject cleared_references)252   explicit ClearedReferenceTask(jobject cleared_references)
253       : HeapTask(NanoTime()), cleared_references_(cleared_references) {
254   }
Run(Thread * thread)255   virtual void Run(Thread* thread) {
256     ScopedObjectAccess soa(thread);
257     jvalue args[1];
258     args[0].l = cleared_references_;
259     InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
260     soa.Env()->DeleteGlobalRef(cleared_references_);
261   }
262 
263  private:
264   const jobject cleared_references_;
265 };
266 
EnqueueClearedReferences(Thread * self)267 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
268   Locks::mutator_lock_->AssertNotHeld(self);
269   // When a runtime isn't started there are no reference queues to care about so ignore.
270   if (!cleared_references_.IsEmpty()) {
271     if (LIKELY(Runtime::Current()->IsStarted())) {
272       jobject cleared_references;
273       {
274         ReaderMutexLock mu(self, *Locks::mutator_lock_);
275         cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
276             self, cleared_references_.GetList());
277       }
278       if (kAsyncReferenceQueueAdd) {
279         // TODO: This can cause RunFinalization to terminate before newly freed objects are
280         // finalized since they may not be enqueued by the time RunFinalization starts.
281         Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
282             self, new ClearedReferenceTask(cleared_references));
283       } else {
284         ClearedReferenceTask task(cleared_references);
285         task.Run(self);
286       }
287     }
288     cleared_references_.Clear();
289   }
290 }
291 
ClearReferent(ObjPtr<mirror::Reference> ref)292 void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
293   Thread* self = Thread::Current();
294   MutexLock mu(self, *Locks::reference_processor_lock_);
295   // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
296   // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
297   // This also handles the race where the referent gets cleared after a null check but before
298   // IsMarkedHeapReference is called.
299   WaitUntilDoneProcessingReferences(self);
300   if (Runtime::Current()->IsActiveTransaction()) {
301     ref->ClearReferent<true>();
302   } else {
303     ref->ClearReferent<false>();
304   }
305 }
306 
WaitUntilDoneProcessingReferences(Thread * self)307 void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
308   // Wait until we are done processing reference.
309   while ((!kUseReadBarrier && SlowPathEnabled()) ||
310          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
311     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
312     // presence of threads blocking for weak ref access.
313     self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
314     condition_.WaitHoldingLocks(self);
315   }
316 }
317 
MakeCircularListIfUnenqueued(ObjPtr<mirror::FinalizerReference> reference)318 bool ReferenceProcessor::MakeCircularListIfUnenqueued(
319     ObjPtr<mirror::FinalizerReference> reference) {
320   Thread* self = Thread::Current();
321   MutexLock mu(self, *Locks::reference_processor_lock_);
322   WaitUntilDoneProcessingReferences(self);
323   // At this point, since the sentinel of the reference is live, it is guaranteed to not be
324   // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
325   // phase. Since we are holding the reference processor lock, it guarantees that reference
326   // processing can't begin. The GC could have just enqueued the reference one one of the internal
327   // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
328   // race.
329   MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
330   if (reference->IsUnprocessed()) {
331     CHECK(reference->IsFinalizerReferenceInstance());
332     reference->SetPendingNext(reference);
333     return true;
334   }
335   return false;
336 }
337 
338 }  // namespace gc
339 }  // namespace art
340