1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_processor.h"
18
19 #include "base/time_utils.h"
20 #include "collector/garbage_collector.h"
21 #include "java_vm_ext.h"
22 #include "mirror/class-inl.h"
23 #include "mirror/object-inl.h"
24 #include "mirror/reference-inl.h"
25 #include "reference_processor-inl.h"
26 #include "reflection.h"
27 #include "ScopedLocalRef.h"
28 #include "scoped_thread_state_change-inl.h"
29 #include "task_processor.h"
30 #include "utils.h"
31 #include "well_known_classes.h"
32
33 namespace art {
34 namespace gc {
35
36 static constexpr bool kAsyncReferenceQueueAdd = false;
37
ReferenceProcessor()38 ReferenceProcessor::ReferenceProcessor()
39 : collector_(nullptr),
40 preserving_references_(false),
41 condition_("reference processor condition", *Locks::reference_processor_lock_) ,
42 soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
43 weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
44 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
45 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
46 cleared_references_(Locks::reference_queue_cleared_references_lock_) {
47 }
48
EnableSlowPath()49 void ReferenceProcessor::EnableSlowPath() {
50 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
51 }
52
DisableSlowPath(Thread * self)53 void ReferenceProcessor::DisableSlowPath(Thread* self) {
54 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
55 condition_.Broadcast(self);
56 }
57
BroadcastForSlowPath(Thread * self)58 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
59 MutexLock mu(self, *Locks::reference_processor_lock_);
60 condition_.Broadcast(self);
61 }
62
GetReferent(Thread * self,ObjPtr<mirror::Reference> reference)63 ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
64 ObjPtr<mirror::Reference> reference) {
65 if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
66 // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
67 // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
68 // mark stack and interfere with termination of marking.
69 ObjPtr<mirror::Object> const referent = reference->GetReferent();
70 // If the referent is null then it is already cleared, we can just return null since there is no
71 // scenario where it becomes non-null during the reference processing phase.
72 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
73 return referent;
74 }
75 }
76 MutexLock mu(self, *Locks::reference_processor_lock_);
77 while ((!kUseReadBarrier && SlowPathEnabled()) ||
78 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
79 ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>();
80 // If the referent became cleared, return it. Don't need barrier since thread roots can't get
81 // updated until after we leave the function due to holding the mutator lock.
82 if (referent == nullptr) {
83 return nullptr;
84 }
85 // Try to see if the referent is already marked by using the is_marked_callback. We can return
86 // it to the mutator as long as the GC is not preserving references.
87 if (LIKELY(collector_ != nullptr)) {
88 // If it's null it means not marked, but it could become marked if the referent is reachable
89 // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
90 // can return it to the mutator as long as the GC is not preserving references, in which
91 // case only black nodes can be safely returned. If the GC is preserving references, the
92 // mutator could take a white field from a grey or white node and move it somewhere else
93 // in the heap causing corruption since this field would get swept.
94 // Use the cached referent instead of calling GetReferent since other threads could call
95 // Reference.clear() after we did the null check resulting in a null pointer being
96 // incorrectly passed to IsMarked. b/33569625
97 ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr());
98 if (forwarded_ref != nullptr) {
99 // Non null means that it is marked.
100 if (!preserving_references_ ||
101 (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
102 return forwarded_ref;
103 }
104 }
105 }
106 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
107 // presence of threads blocking for weak ref access.
108 self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
109 condition_.WaitHoldingLocks(self);
110 }
111 return reference->GetReferent();
112 }
113
StartPreservingReferences(Thread * self)114 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
115 MutexLock mu(self, *Locks::reference_processor_lock_);
116 preserving_references_ = true;
117 }
118
StopPreservingReferences(Thread * self)119 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
120 MutexLock mu(self, *Locks::reference_processor_lock_);
121 preserving_references_ = false;
122 // We are done preserving references, some people who are blocked may see a marked referent.
123 condition_.Broadcast(self);
124 }
125
126 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,collector::GarbageCollector * collector)127 void ReferenceProcessor::ProcessReferences(bool concurrent,
128 TimingLogger* timings,
129 bool clear_soft_references,
130 collector::GarbageCollector* collector) {
131 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
132 Thread* self = Thread::Current();
133 {
134 MutexLock mu(self, *Locks::reference_processor_lock_);
135 collector_ = collector;
136 if (!kUseReadBarrier) {
137 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
138 } else {
139 // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
140 CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
141 }
142 }
143 if (kIsDebugBuild && collector->IsTransactionActive()) {
144 // In transaction mode, we shouldn't enqueue any Reference to the queues.
145 // See DelayReferenceReferent().
146 DCHECK(soft_reference_queue_.IsEmpty());
147 DCHECK(weak_reference_queue_.IsEmpty());
148 DCHECK(finalizer_reference_queue_.IsEmpty());
149 DCHECK(phantom_reference_queue_.IsEmpty());
150 }
151 // Unless required to clear soft references with white references, preserve some white referents.
152 if (!clear_soft_references) {
153 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
154 "(Paused)ForwardSoftReferences", timings);
155 if (concurrent) {
156 StartPreservingReferences(self);
157 }
158 // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
159 // mark if the SoftReference is supposed to be preserved.
160 soft_reference_queue_.ForwardSoftReferences(collector);
161 collector->ProcessMarkStack();
162 if (concurrent) {
163 StopPreservingReferences(self);
164 }
165 }
166 // Clear all remaining soft and weak references with white referents.
167 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
168 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
169 {
170 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
171 "(Paused)EnqueueFinalizerReferences", timings);
172 if (concurrent) {
173 StartPreservingReferences(self);
174 }
175 // Preserve all white objects with finalize methods and schedule them for finalization.
176 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
177 collector->ProcessMarkStack();
178 if (concurrent) {
179 StopPreservingReferences(self);
180 }
181 }
182 // Clear all finalizer referent reachable soft and weak references with white referents.
183 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
184 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
185 // Clear all phantom references with white referents.
186 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
187 // At this point all reference queues other than the cleared references should be empty.
188 DCHECK(soft_reference_queue_.IsEmpty());
189 DCHECK(weak_reference_queue_.IsEmpty());
190 DCHECK(finalizer_reference_queue_.IsEmpty());
191 DCHECK(phantom_reference_queue_.IsEmpty());
192 {
193 MutexLock mu(self, *Locks::reference_processor_lock_);
194 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
195 // could result in a stale is_marked_callback_ being called before the reference processing
196 // starts since there is a small window of time where slow_path_enabled_ is enabled but the
197 // callback isn't yet set.
198 collector_ = nullptr;
199 if (!kUseReadBarrier && concurrent) {
200 // Done processing, disable the slow path and broadcast to the waiters.
201 DisableSlowPath(self);
202 }
203 }
204 }
205
206 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
207 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref,collector::GarbageCollector * collector)208 void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
209 ObjPtr<mirror::Reference> ref,
210 collector::GarbageCollector* collector) {
211 // klass can be the class of the old object if the visitor already updated the class of ref.
212 DCHECK(klass != nullptr);
213 DCHECK(klass->IsTypeOfReferenceClass());
214 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
215 // do_atomic_update needs to be true because this happens outside of the reference processing
216 // phase.
217 if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update*/true)) {
218 if (UNLIKELY(collector->IsTransactionActive())) {
219 // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
220 // issue of rolling back reference processing. do_atomic_update needs to be true because this
221 // happens outside of the reference processing phase.
222 if (!referent->IsNull()) {
223 collector->MarkHeapReference(referent, /*do_atomic_update*/ true);
224 }
225 return;
226 }
227 Thread* self = Thread::Current();
228 // TODO: Remove these locks, and use atomic stacks for storing references?
229 // We need to check that the references haven't already been enqueued since we can end up
230 // scanning the same reference multiple times due to dirty cards.
231 if (klass->IsSoftReferenceClass()) {
232 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
233 } else if (klass->IsWeakReferenceClass()) {
234 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
235 } else if (klass->IsFinalizerReferenceClass()) {
236 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
237 } else if (klass->IsPhantomReferenceClass()) {
238 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
239 } else {
240 LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
241 << klass->GetAccessFlags();
242 }
243 }
244 }
245
UpdateRoots(IsMarkedVisitor * visitor)246 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
247 cleared_references_.UpdateRoots(visitor);
248 }
249
250 class ClearedReferenceTask : public HeapTask {
251 public:
ClearedReferenceTask(jobject cleared_references)252 explicit ClearedReferenceTask(jobject cleared_references)
253 : HeapTask(NanoTime()), cleared_references_(cleared_references) {
254 }
Run(Thread * thread)255 virtual void Run(Thread* thread) {
256 ScopedObjectAccess soa(thread);
257 jvalue args[1];
258 args[0].l = cleared_references_;
259 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
260 soa.Env()->DeleteGlobalRef(cleared_references_);
261 }
262
263 private:
264 const jobject cleared_references_;
265 };
266
EnqueueClearedReferences(Thread * self)267 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
268 Locks::mutator_lock_->AssertNotHeld(self);
269 // When a runtime isn't started there are no reference queues to care about so ignore.
270 if (!cleared_references_.IsEmpty()) {
271 if (LIKELY(Runtime::Current()->IsStarted())) {
272 jobject cleared_references;
273 {
274 ReaderMutexLock mu(self, *Locks::mutator_lock_);
275 cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
276 self, cleared_references_.GetList());
277 }
278 if (kAsyncReferenceQueueAdd) {
279 // TODO: This can cause RunFinalization to terminate before newly freed objects are
280 // finalized since they may not be enqueued by the time RunFinalization starts.
281 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
282 self, new ClearedReferenceTask(cleared_references));
283 } else {
284 ClearedReferenceTask task(cleared_references);
285 task.Run(self);
286 }
287 }
288 cleared_references_.Clear();
289 }
290 }
291
ClearReferent(ObjPtr<mirror::Reference> ref)292 void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
293 Thread* self = Thread::Current();
294 MutexLock mu(self, *Locks::reference_processor_lock_);
295 // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
296 // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
297 // This also handles the race where the referent gets cleared after a null check but before
298 // IsMarkedHeapReference is called.
299 WaitUntilDoneProcessingReferences(self);
300 if (Runtime::Current()->IsActiveTransaction()) {
301 ref->ClearReferent<true>();
302 } else {
303 ref->ClearReferent<false>();
304 }
305 }
306
WaitUntilDoneProcessingReferences(Thread * self)307 void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
308 // Wait until we are done processing reference.
309 while ((!kUseReadBarrier && SlowPathEnabled()) ||
310 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
311 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
312 // presence of threads blocking for weak ref access.
313 self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
314 condition_.WaitHoldingLocks(self);
315 }
316 }
317
MakeCircularListIfUnenqueued(ObjPtr<mirror::FinalizerReference> reference)318 bool ReferenceProcessor::MakeCircularListIfUnenqueued(
319 ObjPtr<mirror::FinalizerReference> reference) {
320 Thread* self = Thread::Current();
321 MutexLock mu(self, *Locks::reference_processor_lock_);
322 WaitUntilDoneProcessingReferences(self);
323 // At this point, since the sentinel of the reference is live, it is guaranteed to not be
324 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
325 // phase. Since we are holding the reference processor lock, it guarantees that reference
326 // processing can't begin. The GC could have just enqueued the reference one one of the internal
327 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
328 // race.
329 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
330 if (reference->IsUnprocessed()) {
331 CHECK(reference->IsFinalizerReferenceInstance());
332 reference->SetPendingNext(reference);
333 return true;
334 }
335 return false;
336 }
337
338 } // namespace gc
339 } // namespace art
340