1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/metrics/persistent_memory_allocator.h"
6 
7 #include <assert.h>
8 #include <algorithm>
9 
10 #if defined(OS_WIN)
11 #include "winbase.h"
12 #elif defined(OS_POSIX)
13 #include <sys/mman.h>
14 #endif
15 
16 #include "base/files/memory_mapped_file.h"
17 #include "base/logging.h"
18 #include "base/memory/shared_memory.h"
19 #include "base/metrics/histogram_macros.h"
20 
21 namespace {
22 
23 // Limit of memory segment size. It has to fit in an unsigned 32-bit number
24 // and should be a power of 2 in order to accomodate almost any page size.
25 const uint32_t kSegmentMaxSize = 1 << 30;  // 1 GiB
26 
27 // A constant (random) value placed in the shared metadata to identify
28 // an already initialized memory segment.
29 const uint32_t kGlobalCookie = 0x408305DC;
30 
31 // The current version of the metadata. If updates are made that change
32 // the metadata, the version number can be queried to operate in a backward-
33 // compatible manner until the memory segment is completely re-initalized.
34 const uint32_t kGlobalVersion = 1;
35 
36 // Constant values placed in the block headers to indicate its state.
37 const uint32_t kBlockCookieFree = 0;
38 const uint32_t kBlockCookieQueue = 1;
39 const uint32_t kBlockCookieWasted = (uint32_t)-1;
40 const uint32_t kBlockCookieAllocated = 0xC8799269;
41 
42 // TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
43 // types rather than combined bitfield.
44 
45 // Flags stored in the flags_ field of the SharedMetaData structure below.
46 enum : int {
47   kFlagCorrupt = 1 << 0,
48   kFlagFull    = 1 << 1
49 };
50 
CheckFlag(const volatile std::atomic<uint32_t> * flags,int flag)51 bool CheckFlag(const volatile std::atomic<uint32_t>* flags, int flag) {
52   uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
53   return (loaded_flags & flag) != 0;
54 }
55 
SetFlag(volatile std::atomic<uint32_t> * flags,int flag)56 void SetFlag(volatile std::atomic<uint32_t>* flags, int flag) {
57   uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
58   for (;;) {
59     uint32_t new_flags = (loaded_flags & ~flag) | flag;
60     // In the failue case, actual "flags" value stored in loaded_flags.
61     if (flags->compare_exchange_weak(loaded_flags, new_flags))
62       break;
63   }
64 }
65 
66 }  // namespace
67 
68 namespace base {
69 
70 // All allocations and data-structures must be aligned to this byte boundary.
71 // Alignment as large as the physical bus between CPU and RAM is _required_
72 // for some architectures, is simply more efficient on other CPUs, and
73 // generally a Good Idea(tm) for all platforms as it reduces/eliminates the
74 // chance that a type will span cache lines. Alignment mustn't be less
75 // than 8 to ensure proper alignment for all types. The rest is a balance
76 // between reducing spans across multiple cache lines and wasted space spent
77 // padding out allocations. An alignment of 16 would ensure that the block
78 // header structure always sits in a single cache line. An average of about
79 // 1/2 this value will be wasted with every allocation.
80 const uint32_t PersistentMemoryAllocator::kAllocAlignment = 8;
81 
82 // The block-header is placed at the top of every allocation within the
83 // segment to describe the data that follows it.
84 struct PersistentMemoryAllocator::BlockHeader {
85   uint32_t size;       // Number of bytes in this block, including header.
86   uint32_t cookie;     // Constant value indicating completed allocation.
87   std::atomic<uint32_t> type_id;  // Arbitrary number indicating data type.
88   std::atomic<uint32_t> next;     // Pointer to the next block when iterating.
89 };
90 
91 // The shared metadata exists once at the top of the memory segment to
92 // describe the state of the allocator to all processes.
93 struct PersistentMemoryAllocator::SharedMetadata {
94   uint32_t cookie;     // Some value that indicates complete initialization.
95   uint32_t size;       // Total size of memory segment.
96   uint32_t page_size;  // Paging size within memory segment.
97   uint32_t version;    // Version code so upgrades don't break.
98   uint64_t id;         // Arbitrary ID number given by creator.
99   uint32_t name;       // Reference to stored name string.
100 
101   // Above is read-only after first construction. Below may be changed and
102   // so must be marked "volatile" to provide correct inter-process behavior.
103 
104   // Bitfield of information flags. Access to this should be done through
105   // the CheckFlag() and SetFlag() methods defined above.
106   volatile std::atomic<uint32_t> flags;
107 
108   // Offset/reference to first free space in segment.
109   volatile std::atomic<uint32_t> freeptr;
110 
111   // The "iterable" queue is an M&S Queue as described here, append-only:
112   // https://www.research.ibm.com/people/m/michael/podc-1996.pdf
113   volatile std::atomic<uint32_t> tailptr;  // Last block of iteration queue.
114   volatile BlockHeader queue;   // Empty block for linked-list head/tail.
115 };
116 
117 // The "queue" block header is used to detect "last node" so that zero/null
118 // can be used to indicate that it hasn't been added at all. It is part of
119 // the SharedMetadata structure which itself is always located at offset zero.
120 const PersistentMemoryAllocator::Reference
121     PersistentMemoryAllocator::kReferenceQueue =
122         offsetof(SharedMetadata, queue);
123 
124 const base::FilePath::CharType PersistentMemoryAllocator::kFileExtension[] =
125     FILE_PATH_LITERAL(".pma");
126 
127 
Iterator(const PersistentMemoryAllocator * allocator)128 PersistentMemoryAllocator::Iterator::Iterator(
129     const PersistentMemoryAllocator* allocator)
130     : allocator_(allocator), last_record_(kReferenceQueue), record_count_(0) {}
131 
Iterator(const PersistentMemoryAllocator * allocator,Reference starting_after)132 PersistentMemoryAllocator::Iterator::Iterator(
133     const PersistentMemoryAllocator* allocator,
134     Reference starting_after)
135     : allocator_(allocator), last_record_(starting_after), record_count_(0) {
136   // Ensure that the starting point is a valid, iterable block (meaning it can
137   // be read and has a non-zero "next" pointer).
138   const volatile BlockHeader* block =
139       allocator_->GetBlock(starting_after, 0, 0, false, false);
140   if (!block || block->next.load(std::memory_order_relaxed) == 0) {
141     NOTREACHED();
142     last_record_.store(kReferenceQueue, std::memory_order_release);
143   }
144 }
145 
146 PersistentMemoryAllocator::Reference
GetNext(uint32_t * type_return)147 PersistentMemoryAllocator::Iterator::GetNext(uint32_t* type_return) {
148   // Make a copy of the existing count of found-records, acquiring all changes
149   // made to the allocator, notably "freeptr" (see comment in loop for why
150   // the load of that value cannot be moved above here) that occurred during
151   // any previous runs of this method, including those by parallel threads
152   // that interrupted it. It pairs with the Release at the end of this method.
153   //
154   // Otherwise, if the compiler were to arrange the two loads such that
155   // "count" was fetched _after_ "freeptr" then it would be possible for
156   // this thread to be interrupted between them and other threads perform
157   // multiple allocations, make-iterables, and iterations (with the included
158   // increment of |record_count_|) culminating in the check at the bottom
159   // mistakenly determining that a loop exists. Isn't this stuff fun?
160   uint32_t count = record_count_.load(std::memory_order_acquire);
161 
162   Reference last = last_record_.load(std::memory_order_acquire);
163   Reference next;
164   while (true) {
165     const volatile BlockHeader* block =
166         allocator_->GetBlock(last, 0, 0, true, false);
167     if (!block)  // Invalid iterator state.
168       return kReferenceNull;
169 
170     // The compiler and CPU can freely reorder all memory accesses on which
171     // there are no dependencies. It could, for example, move the load of
172     // "freeptr" to above this point because there are no explicit dependencies
173     // between it and "next". If it did, however, then another block could
174     // be queued after that but before the following load meaning there is
175     // one more queued block than the future "detect loop by having more
176     // blocks that could fit before freeptr" will allow.
177     //
178     // By "acquiring" the "next" value here, it's synchronized to the enqueue
179     // of the node which in turn is synchronized to the allocation (which sets
180     // freeptr). Thus, the scenario above cannot happen.
181     next = block->next.load(std::memory_order_acquire);
182     if (next == kReferenceQueue)  // No next allocation in queue.
183       return kReferenceNull;
184     block = allocator_->GetBlock(next, 0, 0, false, false);
185     if (!block) {  // Memory is corrupt.
186       allocator_->SetCorrupt();
187       return kReferenceNull;
188     }
189 
190     // Update the "last_record" pointer to be the reference being returned.
191     // If it fails then another thread has already iterated past it so loop
192     // again. Failing will also load the existing value into "last" so there
193     // is no need to do another such load when the while-loop restarts. A
194     // "strong" compare-exchange is used because failing unnecessarily would
195     // mean repeating some fairly costly validations above.
196     if (last_record_.compare_exchange_strong(last, next)) {
197       *type_return = block->type_id.load(std::memory_order_relaxed);
198       break;
199     }
200   }
201 
202   // Memory corruption could cause a loop in the list. Such must be detected
203   // so as to not cause an infinite loop in the caller. This is done by simply
204   // making sure it doesn't iterate more times than the absolute maximum
205   // number of allocations that could have been made. Callers are likely
206   // to loop multiple times before it is detected but at least it stops.
207   const uint32_t freeptr = std::min(
208       allocator_->shared_meta()->freeptr.load(std::memory_order_relaxed),
209       allocator_->mem_size_);
210   const uint32_t max_records =
211       freeptr / (sizeof(BlockHeader) + kAllocAlignment);
212   if (count > max_records) {
213     allocator_->SetCorrupt();
214     return kReferenceNull;
215   }
216 
217   // Increment the count and release the changes made above. It pairs with
218   // the Acquire at the top of this method. Note that this operation is not
219   // strictly synchonized with fetching of the object to return, which would
220   // have to be done inside the loop and is somewhat complicated to achieve.
221   // It does not matter if it falls behind temporarily so long as it never
222   // gets ahead.
223   record_count_.fetch_add(1, std::memory_order_release);
224   return next;
225 }
226 
227 PersistentMemoryAllocator::Reference
GetNextOfType(uint32_t type_match)228 PersistentMemoryAllocator::Iterator::GetNextOfType(uint32_t type_match) {
229   Reference ref;
230   uint32_t type_found;
231   while ((ref = GetNext(&type_found)) != 0) {
232     if (type_found == type_match)
233       return ref;
234   }
235   return kReferenceNull;
236 }
237 
238 
239 // static
IsMemoryAcceptable(const void * base,size_t size,size_t page_size,bool readonly)240 bool PersistentMemoryAllocator::IsMemoryAcceptable(const void* base,
241                                                    size_t size,
242                                                    size_t page_size,
243                                                    bool readonly) {
244   return ((base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0) &&
245           (size >= sizeof(SharedMetadata) && size <= kSegmentMaxSize) &&
246           (size % kAllocAlignment == 0 || readonly) &&
247           (page_size == 0 || size % page_size == 0 || readonly));
248 }
249 
PersistentMemoryAllocator(void * base,size_t size,size_t page_size,uint64_t id,base::StringPiece name,bool readonly)250 PersistentMemoryAllocator::PersistentMemoryAllocator(
251     void* base,
252     size_t size,
253     size_t page_size,
254     uint64_t id,
255     base::StringPiece name,
256     bool readonly)
257     : mem_base_(static_cast<char*>(base)),
258       mem_size_(static_cast<uint32_t>(size)),
259       mem_page_(static_cast<uint32_t>((page_size ? page_size : size))),
260       readonly_(readonly),
261       corrupt_(0),
262       allocs_histogram_(nullptr),
263       used_histogram_(nullptr) {
264   static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
265                 "BlockHeader is not a multiple of kAllocAlignment");
266   static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
267                 "SharedMetadata is not a multiple of kAllocAlignment");
268   static_assert(kReferenceQueue % kAllocAlignment == 0,
269                 "\"queue\" is not aligned properly; must be at end of struct");
270 
271   // Ensure that memory segment is of acceptable size.
272   CHECK(IsMemoryAcceptable(base, size, page_size, readonly));
273 
274   // These atomics operate inter-process and so must be lock-free. The local
275   // casts are to make sure it can be evaluated at compile time to a constant.
276   CHECK(((SharedMetadata*)0)->freeptr.is_lock_free());
277   CHECK(((SharedMetadata*)0)->flags.is_lock_free());
278   CHECK(((BlockHeader*)0)->next.is_lock_free());
279   CHECK(corrupt_.is_lock_free());
280 
281   if (shared_meta()->cookie != kGlobalCookie) {
282     if (readonly) {
283       SetCorrupt();
284       return;
285     }
286 
287     // This block is only executed when a completely new memory segment is
288     // being initialized. It's unshared and single-threaded...
289     volatile BlockHeader* const first_block =
290         reinterpret_cast<volatile BlockHeader*>(mem_base_ +
291                                                 sizeof(SharedMetadata));
292     if (shared_meta()->cookie != 0 ||
293         shared_meta()->size != 0 ||
294         shared_meta()->version != 0 ||
295         shared_meta()->freeptr.load(std::memory_order_relaxed) != 0 ||
296         shared_meta()->flags.load(std::memory_order_relaxed) != 0 ||
297         shared_meta()->id != 0 ||
298         shared_meta()->name != 0 ||
299         shared_meta()->tailptr != 0 ||
300         shared_meta()->queue.cookie != 0 ||
301         shared_meta()->queue.next.load(std::memory_order_relaxed) != 0 ||
302         first_block->size != 0 ||
303         first_block->cookie != 0 ||
304         first_block->type_id.load(std::memory_order_relaxed) != 0 ||
305         first_block->next != 0) {
306       // ...or something malicious has been playing with the metadata.
307       SetCorrupt();
308     }
309 
310     // This is still safe to do even if corruption has been detected.
311     shared_meta()->cookie = kGlobalCookie;
312     shared_meta()->size = mem_size_;
313     shared_meta()->page_size = mem_page_;
314     shared_meta()->version = kGlobalVersion;
315     shared_meta()->id = id;
316     shared_meta()->freeptr.store(sizeof(SharedMetadata),
317                                  std::memory_order_release);
318 
319     // Set up the queue of iterable allocations.
320     shared_meta()->queue.size = sizeof(BlockHeader);
321     shared_meta()->queue.cookie = kBlockCookieQueue;
322     shared_meta()->queue.next.store(kReferenceQueue, std::memory_order_release);
323     shared_meta()->tailptr.store(kReferenceQueue, std::memory_order_release);
324 
325     // Allocate space for the name so other processes can learn it.
326     if (!name.empty()) {
327       const size_t name_length = name.length() + 1;
328       shared_meta()->name = Allocate(name_length, 0);
329       char* name_cstr = GetAsObject<char>(shared_meta()->name, 0);
330       if (name_cstr)
331         memcpy(name_cstr, name.data(), name.length());
332     }
333   } else {
334     if (shared_meta()->size == 0 ||
335         shared_meta()->version == 0 ||
336         shared_meta()->freeptr.load(std::memory_order_relaxed) == 0 ||
337         shared_meta()->tailptr == 0 ||
338         shared_meta()->queue.cookie == 0 ||
339         shared_meta()->queue.next.load(std::memory_order_relaxed) == 0) {
340       SetCorrupt();
341     }
342     if (!readonly) {
343       // The allocator is attaching to a previously initialized segment of
344       // memory. If the initialization parameters differ, make the best of it
345       // by reducing the local construction parameters to match those of
346       // the actual memory area. This ensures that the local object never
347       // tries to write outside of the original bounds.
348       // Because the fields are const to ensure that no code other than the
349       // constructor makes changes to them as well as to give optimization
350       // hints to the compiler, it's necessary to const-cast them for changes
351       // here.
352       if (shared_meta()->size < mem_size_)
353         *const_cast<uint32_t*>(&mem_size_) = shared_meta()->size;
354       if (shared_meta()->page_size < mem_page_)
355         *const_cast<uint32_t*>(&mem_page_) = shared_meta()->page_size;
356 
357       // Ensure that settings are still valid after the above adjustments.
358       if (!IsMemoryAcceptable(base, mem_size_, mem_page_, readonly))
359         SetCorrupt();
360     }
361   }
362 }
363 
~PersistentMemoryAllocator()364 PersistentMemoryAllocator::~PersistentMemoryAllocator() {
365   // It's strictly forbidden to do any memory access here in case there is
366   // some issue with the underlying memory segment. The "Local" allocator
367   // makes use of this to allow deletion of the segment on the heap from
368   // within its destructor.
369 }
370 
Id() const371 uint64_t PersistentMemoryAllocator::Id() const {
372   return shared_meta()->id;
373 }
374 
Name() const375 const char* PersistentMemoryAllocator::Name() const {
376   Reference name_ref = shared_meta()->name;
377   const char* name_cstr = GetAsObject<char>(name_ref, 0);
378   if (!name_cstr)
379     return "";
380 
381   size_t name_length = GetAllocSize(name_ref);
382   if (name_cstr[name_length - 1] != '\0') {
383     NOTREACHED();
384     SetCorrupt();
385     return "";
386   }
387 
388   return name_cstr;
389 }
390 
CreateTrackingHistograms(base::StringPiece name)391 void PersistentMemoryAllocator::CreateTrackingHistograms(
392     base::StringPiece name) {
393   if (name.empty() || readonly_)
394     return;
395 
396   std::string name_string = name.as_string();
397   DCHECK(!used_histogram_);
398   used_histogram_ = LinearHistogram::FactoryGet(
399       "UMA.PersistentAllocator." + name_string + ".UsedPct", 1, 101, 21,
400       HistogramBase::kUmaTargetedHistogramFlag);
401 
402   DCHECK(!allocs_histogram_);
403   allocs_histogram_ = Histogram::FactoryGet(
404       "UMA.PersistentAllocator." + name_string + ".Allocs", 1, 10000, 50,
405       HistogramBase::kUmaTargetedHistogramFlag);
406 }
407 
used() const408 size_t PersistentMemoryAllocator::used() const {
409   return std::min(shared_meta()->freeptr.load(std::memory_order_relaxed),
410                   mem_size_);
411 }
412 
GetAllocSize(Reference ref) const413 size_t PersistentMemoryAllocator::GetAllocSize(Reference ref) const {
414   const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
415   if (!block)
416     return 0;
417   uint32_t size = block->size;
418   // Header was verified by GetBlock() but a malicious actor could change
419   // the value between there and here. Check it again.
420   if (size <= sizeof(BlockHeader) || ref + size > mem_size_) {
421     SetCorrupt();
422     return 0;
423   }
424   return size - sizeof(BlockHeader);
425 }
426 
GetType(Reference ref) const427 uint32_t PersistentMemoryAllocator::GetType(Reference ref) const {
428   const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
429   if (!block)
430     return 0;
431   return block->type_id.load(std::memory_order_relaxed);
432 }
433 
ChangeType(Reference ref,uint32_t to_type_id,uint32_t from_type_id)434 bool PersistentMemoryAllocator::ChangeType(Reference ref,
435                                            uint32_t to_type_id,
436                                            uint32_t from_type_id) {
437   DCHECK(!readonly_);
438   volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
439   if (!block)
440     return false;
441 
442   // This is a "strong" exchange because there is no loop that can retry in
443   // the wake of spurious failures possible with "weak" exchanges.
444   return block->type_id.compare_exchange_strong(from_type_id, to_type_id);
445 }
446 
Allocate(size_t req_size,uint32_t type_id)447 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::Allocate(
448     size_t req_size,
449     uint32_t type_id) {
450   Reference ref = AllocateImpl(req_size, type_id);
451   if (ref) {
452     // Success: Record this allocation in usage stats (if active).
453     if (allocs_histogram_)
454       allocs_histogram_->Add(static_cast<HistogramBase::Sample>(req_size));
455   } else {
456     // Failure: Record an allocation of zero for tracking.
457     if (allocs_histogram_)
458       allocs_histogram_->Add(0);
459   }
460   return ref;
461 }
462 
AllocateImpl(size_t req_size,uint32_t type_id)463 PersistentMemoryAllocator::Reference PersistentMemoryAllocator::AllocateImpl(
464     size_t req_size,
465     uint32_t type_id) {
466   DCHECK(!readonly_);
467 
468   // Validate req_size to ensure it won't overflow when used as 32-bit value.
469   if (req_size > kSegmentMaxSize - sizeof(BlockHeader)) {
470     NOTREACHED();
471     return kReferenceNull;
472   }
473 
474   // Round up the requested size, plus header, to the next allocation alignment.
475   uint32_t size = static_cast<uint32_t>(req_size + sizeof(BlockHeader));
476   size = (size + (kAllocAlignment - 1)) & ~(kAllocAlignment - 1);
477   if (size <= sizeof(BlockHeader) || size > mem_page_) {
478     NOTREACHED();
479     return kReferenceNull;
480   }
481 
482   // Get the current start of unallocated memory. Other threads may
483   // update this at any time and cause us to retry these operations.
484   // This value should be treated as "const" to avoid confusion through
485   // the code below but recognize that any failed compare-exchange operation
486   // involving it will cause it to be loaded with a more recent value. The
487   // code should either exit or restart the loop in that case.
488   /* const */ uint32_t freeptr =
489       shared_meta()->freeptr.load(std::memory_order_acquire);
490 
491   // Allocation is lockless so we do all our caculation and then, if saving
492   // indicates a change has occurred since we started, scrap everything and
493   // start over.
494   for (;;) {
495     if (IsCorrupt())
496       return kReferenceNull;
497 
498     if (freeptr + size > mem_size_) {
499       SetFlag(&shared_meta()->flags, kFlagFull);
500       return kReferenceNull;
501     }
502 
503     // Get pointer to the "free" block. If something has been allocated since
504     // the load of freeptr above, it is still safe as nothing will be written
505     // to that location until after the compare-exchange below.
506     volatile BlockHeader* const block = GetBlock(freeptr, 0, 0, false, true);
507     if (!block) {
508       SetCorrupt();
509       return kReferenceNull;
510     }
511 
512     // An allocation cannot cross page boundaries. If it would, create a
513     // "wasted" block and begin again at the top of the next page. This
514     // area could just be left empty but we fill in the block header just
515     // for completeness sake.
516     const uint32_t page_free = mem_page_ - freeptr % mem_page_;
517     if (size > page_free) {
518       if (page_free <= sizeof(BlockHeader)) {
519         SetCorrupt();
520         return kReferenceNull;
521       }
522       const uint32_t new_freeptr = freeptr + page_free;
523       if (shared_meta()->freeptr.compare_exchange_strong(freeptr,
524                                                          new_freeptr)) {
525         block->size = page_free;
526         block->cookie = kBlockCookieWasted;
527       }
528       continue;
529     }
530 
531     // Don't leave a slice at the end of a page too small for anything. This
532     // can result in an allocation up to two alignment-sizes greater than the
533     // minimum required by requested-size + header + alignment.
534     if (page_free - size < sizeof(BlockHeader) + kAllocAlignment)
535       size = page_free;
536 
537     const uint32_t new_freeptr = freeptr + size;
538     if (new_freeptr > mem_size_) {
539       SetCorrupt();
540       return kReferenceNull;
541     }
542 
543     // Save our work. Try again if another thread has completed an allocation
544     // while we were processing. A "weak" exchange would be permissable here
545     // because the code will just loop and try again but the above processing
546     // is significant so make the extra effort of a "strong" exchange.
547     if (!shared_meta()->freeptr.compare_exchange_strong(freeptr, new_freeptr))
548       continue;
549 
550     // Given that all memory was zeroed before ever being given to an instance
551     // of this class and given that we only allocate in a monotomic fashion
552     // going forward, it must be that the newly allocated block is completely
553     // full of zeros. If we find anything in the block header that is NOT a
554     // zero then something must have previously run amuck through memory,
555     // writing beyond the allocated space and into unallocated space.
556     if (block->size != 0 ||
557         block->cookie != kBlockCookieFree ||
558         block->type_id.load(std::memory_order_relaxed) != 0 ||
559         block->next.load(std::memory_order_relaxed) != 0) {
560       SetCorrupt();
561       return kReferenceNull;
562     }
563 
564     block->size = size;
565     block->cookie = kBlockCookieAllocated;
566     block->type_id.store(type_id, std::memory_order_relaxed);
567     return freeptr;
568   }
569 }
570 
GetMemoryInfo(MemoryInfo * meminfo) const571 void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) const {
572   uint32_t remaining = std::max(
573       mem_size_ - shared_meta()->freeptr.load(std::memory_order_relaxed),
574       (uint32_t)sizeof(BlockHeader));
575   meminfo->total = mem_size_;
576   meminfo->free = IsCorrupt() ? 0 : remaining - sizeof(BlockHeader);
577 }
578 
MakeIterable(Reference ref)579 void PersistentMemoryAllocator::MakeIterable(Reference ref) {
580   DCHECK(!readonly_);
581   if (IsCorrupt())
582     return;
583   volatile BlockHeader* block = GetBlock(ref, 0, 0, false, false);
584   if (!block)  // invalid reference
585     return;
586   if (block->next.load(std::memory_order_acquire) != 0)  // Already iterable.
587     return;
588   block->next.store(kReferenceQueue, std::memory_order_release);  // New tail.
589 
590   // Try to add this block to the tail of the queue. May take multiple tries.
591   // If so, tail will be automatically updated with a more recent value during
592   // compare-exchange operations.
593   uint32_t tail = shared_meta()->tailptr.load(std::memory_order_acquire);
594   for (;;) {
595     // Acquire the current tail-pointer released by previous call to this
596     // method and validate it.
597     block = GetBlock(tail, 0, 0, true, false);
598     if (!block) {
599       SetCorrupt();
600       return;
601     }
602 
603     // Try to insert the block at the tail of the queue. The tail node always
604     // has an existing value of kReferenceQueue; if that is somehow not the
605     // existing value then another thread has acted in the meantime. A "strong"
606     // exchange is necessary so the "else" block does not get executed when
607     // that is not actually the case (which can happen with a "weak" exchange).
608     uint32_t next = kReferenceQueue;  // Will get replaced with existing value.
609     if (block->next.compare_exchange_strong(next, ref,
610                                             std::memory_order_acq_rel,
611                                             std::memory_order_acquire)) {
612       // Update the tail pointer to the new offset. If the "else" clause did
613       // not exist, then this could be a simple Release_Store to set the new
614       // value but because it does, it's possible that other threads could add
615       // one or more nodes at the tail before reaching this point. We don't
616       // have to check the return value because it either operates correctly
617       // or the exact same operation has already been done (by the "else"
618       // clause) on some other thread.
619       shared_meta()->tailptr.compare_exchange_strong(tail, ref,
620                                                      std::memory_order_release,
621                                                      std::memory_order_relaxed);
622       return;
623     } else {
624       // In the unlikely case that a thread crashed or was killed between the
625       // update of "next" and the update of "tailptr", it is necessary to
626       // perform the operation that would have been done. There's no explicit
627       // check for crash/kill which means that this operation may also happen
628       // even when the other thread is in perfect working order which is what
629       // necessitates the CompareAndSwap above.
630       shared_meta()->tailptr.compare_exchange_strong(tail, next,
631                                                      std::memory_order_acq_rel,
632                                                      std::memory_order_acquire);
633     }
634   }
635 }
636 
637 // The "corrupted" state is held both locally and globally (shared). The
638 // shared flag can't be trusted since a malicious actor could overwrite it.
639 // Because corruption can be detected during read-only operations such as
640 // iteration, this method may be called by other "const" methods. In this
641 // case, it's safe to discard the constness and modify the local flag and
642 // maybe even the shared flag if the underlying data isn't actually read-only.
SetCorrupt() const643 void PersistentMemoryAllocator::SetCorrupt() const {
644   LOG(ERROR) << "Corruption detected in shared-memory segment.";
645   const_cast<std::atomic<bool>*>(&corrupt_)->store(true,
646                                                    std::memory_order_relaxed);
647   if (!readonly_) {
648     SetFlag(const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
649             kFlagCorrupt);
650   }
651 }
652 
IsCorrupt() const653 bool PersistentMemoryAllocator::IsCorrupt() const {
654   if (corrupt_.load(std::memory_order_relaxed) ||
655       CheckFlag(&shared_meta()->flags, kFlagCorrupt)) {
656     SetCorrupt();  // Make sure all indicators are set.
657     return true;
658   }
659   return false;
660 }
661 
IsFull() const662 bool PersistentMemoryAllocator::IsFull() const {
663   return CheckFlag(&shared_meta()->flags, kFlagFull);
664 }
665 
666 // Dereference a block |ref| and ensure that it's valid for the desired
667 // |type_id| and |size|. |special| indicates that we may try to access block
668 // headers not available to callers but still accessed by this module. By
669 // having internal dereferences go through this same function, the allocator
670 // is hardened against corruption.
671 const volatile PersistentMemoryAllocator::BlockHeader*
GetBlock(Reference ref,uint32_t type_id,uint32_t size,bool queue_ok,bool free_ok) const672 PersistentMemoryAllocator::GetBlock(Reference ref, uint32_t type_id,
673                                     uint32_t size, bool queue_ok,
674                                     bool free_ok) const {
675   // Validation of parameters.
676   if (ref % kAllocAlignment != 0)
677     return nullptr;
678   if (ref < (queue_ok ? kReferenceQueue : sizeof(SharedMetadata)))
679     return nullptr;
680   size += sizeof(BlockHeader);
681   if (ref + size > mem_size_)
682     return nullptr;
683 
684   // Validation of referenced block-header.
685   if (!free_ok) {
686     uint32_t freeptr = std::min(
687         shared_meta()->freeptr.load(std::memory_order_relaxed), mem_size_);
688     if (ref + size > freeptr)
689       return nullptr;
690     const volatile BlockHeader* const block =
691         reinterpret_cast<volatile BlockHeader*>(mem_base_ + ref);
692     if (block->size < size)
693       return nullptr;
694     if (ref + block->size > freeptr)
695       return nullptr;
696     if (ref != kReferenceQueue && block->cookie != kBlockCookieAllocated)
697       return nullptr;
698     if (type_id != 0 &&
699         block->type_id.load(std::memory_order_relaxed) != type_id) {
700       return nullptr;
701     }
702   }
703 
704   // Return pointer to block data.
705   return reinterpret_cast<const volatile BlockHeader*>(mem_base_ + ref);
706 }
707 
GetBlockData(Reference ref,uint32_t type_id,uint32_t size) const708 const volatile void* PersistentMemoryAllocator::GetBlockData(
709     Reference ref,
710     uint32_t type_id,
711     uint32_t size) const {
712   DCHECK(size > 0);
713   const volatile BlockHeader* block =
714       GetBlock(ref, type_id, size, false, false);
715   if (!block)
716     return nullptr;
717   return reinterpret_cast<const volatile char*>(block) + sizeof(BlockHeader);
718 }
719 
UpdateTrackingHistograms()720 void PersistentMemoryAllocator::UpdateTrackingHistograms() {
721   DCHECK(!readonly_);
722   if (used_histogram_) {
723     MemoryInfo meminfo;
724     GetMemoryInfo(&meminfo);
725     HistogramBase::Sample used_percent = static_cast<HistogramBase::Sample>(
726         ((meminfo.total - meminfo.free) * 100ULL / meminfo.total));
727     used_histogram_->Add(used_percent);
728   }
729 }
730 
731 
732 //----- LocalPersistentMemoryAllocator -----------------------------------------
733 
LocalPersistentMemoryAllocator(size_t size,uint64_t id,base::StringPiece name)734 LocalPersistentMemoryAllocator::LocalPersistentMemoryAllocator(
735     size_t size,
736     uint64_t id,
737     base::StringPiece name)
738     : PersistentMemoryAllocator(AllocateLocalMemory(size),
739                                 size, 0, id, name, false) {}
740 
~LocalPersistentMemoryAllocator()741 LocalPersistentMemoryAllocator::~LocalPersistentMemoryAllocator() {
742   DeallocateLocalMemory(const_cast<char*>(mem_base_), mem_size_);
743 }
744 
745 // static
AllocateLocalMemory(size_t size)746 void* LocalPersistentMemoryAllocator::AllocateLocalMemory(size_t size) {
747 #if defined(OS_WIN)
748   void* address =
749       ::VirtualAlloc(nullptr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
750   DPCHECK(address);
751   return address;
752 #elif defined(OS_POSIX)
753   // MAP_ANON is deprecated on Linux but MAP_ANONYMOUS is not universal on Mac.
754   // MAP_SHARED is not available on Linux <2.4 but required on Mac.
755   void* address = ::mmap(nullptr, size, PROT_READ | PROT_WRITE,
756                          MAP_ANON | MAP_SHARED, -1, 0);
757   DPCHECK(MAP_FAILED != address);
758   return address;
759 #else
760 #error This architecture is not (yet) supported.
761 #endif
762 }
763 
764 // static
DeallocateLocalMemory(void * memory,size_t size)765 void LocalPersistentMemoryAllocator::DeallocateLocalMemory(void* memory,
766                                                            size_t size) {
767 #if defined(OS_WIN)
768   BOOL success = ::VirtualFree(memory, 0, MEM_DECOMMIT);
769   DPCHECK(success);
770 #elif defined(OS_POSIX)
771   int result = ::munmap(memory, size);
772   DPCHECK(0 == result);
773 #else
774 #error This architecture is not (yet) supported.
775 #endif
776 }
777 
778 
779 //----- SharedPersistentMemoryAllocator ----------------------------------------
780 
SharedPersistentMemoryAllocator(std::unique_ptr<SharedMemory> memory,uint64_t id,base::StringPiece name,bool read_only)781 SharedPersistentMemoryAllocator::SharedPersistentMemoryAllocator(
782     std::unique_ptr<SharedMemory> memory,
783     uint64_t id,
784     base::StringPiece name,
785     bool read_only)
786     : PersistentMemoryAllocator(static_cast<uint8_t*>(memory->memory()),
787                                 memory->mapped_size(),
788                                 0,
789                                 id,
790                                 name,
791                                 read_only),
792       shared_memory_(std::move(memory)) {}
793 
~SharedPersistentMemoryAllocator()794 SharedPersistentMemoryAllocator::~SharedPersistentMemoryAllocator() {}
795 
796 // static
IsSharedMemoryAcceptable(const SharedMemory & memory)797 bool SharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(
798     const SharedMemory& memory) {
799   return IsMemoryAcceptable(memory.memory(), memory.mapped_size(), 0, false);
800 }
801 
802 
803 #if !defined(OS_NACL)
804 //----- FilePersistentMemoryAllocator ------------------------------------------
805 
FilePersistentMemoryAllocator(std::unique_ptr<MemoryMappedFile> file,size_t max_size,uint64_t id,base::StringPiece name,bool read_only)806 FilePersistentMemoryAllocator::FilePersistentMemoryAllocator(
807     std::unique_ptr<MemoryMappedFile> file,
808     size_t max_size,
809     uint64_t id,
810     base::StringPiece name,
811     bool read_only)
812     : PersistentMemoryAllocator(const_cast<uint8_t*>(file->data()),
813                                 max_size != 0 ? max_size : file->length(),
814                                 0,
815                                 id,
816                                 name,
817                                 read_only),
818       mapped_file_(std::move(file)) {}
819 
~FilePersistentMemoryAllocator()820 FilePersistentMemoryAllocator::~FilePersistentMemoryAllocator() {}
821 
822 // static
IsFileAcceptable(const MemoryMappedFile & file,bool read_only)823 bool FilePersistentMemoryAllocator::IsFileAcceptable(
824     const MemoryMappedFile& file,
825     bool read_only) {
826   return IsMemoryAcceptable(file.data(), file.length(), 0, read_only);
827 }
828 #endif  // !defined(OS_NACL)
829 
830 }  // namespace base
831