/external/autotest/client/deps/webgl_mpd/src/resources/ |
D | J3DIMath.js | 31 J3DIMatrix4 - A 4x4 Matrix 37 This class implements a 4x4 matrix. It has functions which duplicate the 38 functionality of the OpenGL matrix stack and glut functions. On browsers 44 … Constructor(in J3DIMatrix4 matrix), // copy passed matrix into new J3DIMatrix4 46 … Constructor() // create new J3DIMatrix4 with identity matrix 49 … void load(in J3DIMatrix4 matrix); // copy the values from the passed matrix 50 void load(in sequence<float> array); // copy 16 floats into the matrix 51 … sequence<float> getAsArray(); // return the matrix as an array of 16 floats 52 …Float32Array getAsFloat32Array(); // return the matrix as a Float32Array with 16 values 53 …void setUniform(in WebGLRenderingContext ctx, // Send the matrix to the passed uniform locat… [all …]
|
/external/deqp/framework/common/ |
D | tcuMatrix.hpp | 23 * \brief Templatized matrix class. 33 // Templated matrix class. 35 class Matrix class 48 Matrix (void); 49 explicit Matrix (const T& src); 50 explicit Matrix (const T src[Rows*Cols]); 51 Matrix (const Vector<T, Rows>& src); 52 Matrix (const Matrix<T, Rows, Cols>& src); 53 ~Matrix (void); 55 Matrix<T, Rows, Cols>& operator= (const Matrix<T, Rows, Cols>& src); [all …]
|
/external/swiftshader/src/Renderer/ |
D | Matrix.hpp | 24 struct Matrix struct 26 Matrix(); 27 Matrix(const int i); 28 Matrix(const float m[16]); 29 Matrix(const float m[4][4]); 30 Matrix(float m11, float m12, float m13, 33 Matrix(float m11, float m12, float m13, float m14, 37 Matrix(const Vector &v1, const Vector &v2, const Vector &v3); // Column vectors 39 Matrix &operator=(const Matrix &N); 44 static Matrix diag(float m11, float m22, float m33, float m44); [all …]
|
D | Matrix.cpp | 15 #include "Matrix.hpp" 22 Matrix Matrix::diag(float m11, float m22, float m33, float m44) in diag() 24 return Matrix(m11, 0, 0, 0, in diag() 30 Matrix::operator float*() in operator float*() 35 Matrix Matrix::operator+() const in operator +() 40 Matrix Matrix::operator-() const in operator -() 42 const Matrix &M = *this; in operator -() 44 return Matrix(-M(1, 1), -M(1, 2), -M(1, 3), -M(1, 4), in operator -() 50 Matrix Matrix::operator!() const in operator !() 52 const Matrix &M = *this; in operator !() [all …]
|
/external/vulkan-validation-layers/libs/glm/gtc/ |
D | matrix_integer.hpp | 60 /// High-precision signed integer 2x2 matrix. 64 /// High-precision signed integer 3x3 matrix. 68 /// High-precision signed integer 4x4 matrix. 72 /// High-precision signed integer 2x2 matrix. 76 /// High-precision signed integer 2x3 matrix. 80 /// High-precision signed integer 2x4 matrix. 84 /// High-precision signed integer 3x2 matrix. 88 /// High-precision signed integer 3x3 matrix. 92 /// High-precision signed integer 3x4 matrix. 96 /// High-precision signed integer 4x2 matrix. [all …]
|
/external/eigen/unsupported/Eigen/ |
D | MatrixFunctions | 22 * \defgroup MatrixFunctions_Module Matrix functions module 24 * matrix functions. 33 * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine 34 * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine 35 * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential 36 * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm 37 * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power 38 …* - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix f… 39 * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine 40 * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine [all …]
|
/external/eigen/Eigen/src/LU/ |
D | InverseImpl.h | 26 static inline void run(const MatrixType& matrix, ResultType& result) in run() 28 result = matrix.partialPivLu().inverse(); in run() 43 static inline void run(const MatrixType& matrix, ResultType& result) 46 internal::evaluator<MatrixType> matrixEval(matrix); 56 const MatrixType& matrix, 64 determinant = matrix.coeff(0,0); 77 const MatrixType& matrix, const typename ResultType::Scalar& invdet, 80 result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; 81 result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; 82 result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; [all …]
|
/external/eigen/test/ |
D | geo_transformations.cpp | 16 Matrix<T,2,1> angleToVec(T a) in angleToVec() 18 return Matrix<T,2,1>(std::cos(a), std::sin(a)); in angleToVec() 31 typedef Matrix<Scalar,3,1> Vector3; in non_projective_only() 50 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); in non_projective_only() 69 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); in non_projective_only() 72 VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); in non_projective_only() 93 typedef Matrix<Scalar,3,3> Matrix3; in transformations() 94 typedef Matrix<Scalar,4,4> Matrix4; in transformations() 95 typedef Matrix<Scalar,2,1> Vector2; in transformations() 96 typedef Matrix<Scalar,3,1> Vector3; in transformations() [all …]
|
D | corners.cpp | 13 VERIFY_IS_EQUAL(matrix.A, matrix.B); \ 25 MatrixType matrix = MatrixType::Random(rows,cols); in corners() local 48 MatrixType matrix = MatrixType::Random(); in corners_fixedsize() local 60 VERIFY_IS_EQUAL((matrix.template topLeftCorner<r,c>()), (matrix.template block<r,c>(0,0))); in corners_fixedsize() 61 VERIFY_IS_EQUAL((matrix.template topRightCorner<r,c>()), (matrix.template block<r,c>(0,cols-c))); in corners_fixedsize() 62 …VERIFY_IS_EQUAL((matrix.template bottomLeftCorner<r,c>()), (matrix.template block<r,c>(rows-r,0))); in corners_fixedsize() 63 …VERIFY_IS_EQUAL((matrix.template bottomRightCorner<r,c>()), (matrix.template block<r,c>(rows-r,col… in corners_fixedsize() 65 …VERIFY_IS_EQUAL((matrix.template topLeftCorner<r,c>()), (matrix.template topLeftCorner<r,Dynamic>(… in corners_fixedsize() 66 …VERIFY_IS_EQUAL((matrix.template topRightCorner<r,c>()), (matrix.template topRightCorner<r,Dynamic… in corners_fixedsize() 67 …VERIFY_IS_EQUAL((matrix.template bottomLeftCorner<r,c>()), (matrix.template bottomLeftCorner<r,Dyn… in corners_fixedsize() [all …]
|
/external/pdfium/xfa/fxbarcode/qrcode/ |
D | BC_QRCoderMatrixUtil.cpp | 78 void CBC_QRCoderMatrixUtil::ClearMatrix(CBC_CommonByteMatrix* matrix, in ClearMatrix() argument 80 if (!matrix) { in ClearMatrix() 84 matrix->clear((uint8_t)-1); in ClearMatrix() 91 CBC_CommonByteMatrix* matrix, in BuildMatrix() argument 93 if (!matrix) { in BuildMatrix() 97 ClearMatrix(matrix, e); in BuildMatrix() 100 EmbedBasicPatterns(version, matrix, e); in BuildMatrix() 103 EmbedTypeInfo(ecLevel, maskPattern, matrix, e); in BuildMatrix() 106 MaybeEmbedVersionInfo(version, matrix, e); in BuildMatrix() 109 EmbedDataBits(dataBits, maskPattern, matrix, e); in BuildMatrix() [all …]
|
/external/webrtc/webrtc/modules/audio_processing/beamformer/ |
D | matrix.h | 41 // Matrix is a class for doing standard matrix operations on 2 dimensional 42 // matrices of any size. Results of matrix operations are stored in the 49 // 'In-place' operations that inherently change the size of the matrix (eg. 57 // Memory for storage is allocated when a matrix is resized only if the new 62 // matrix. TODO(claguna): albeit tricky, allow for data to be referenced 65 class Matrix { 67 Matrix() : num_rows_(0), num_columns_(0) {} in Matrix() function 70 Matrix(size_t num_rows, size_t num_columns) in Matrix() function 77 // Copies |data| into the new Matrix. 78 Matrix(const T* data, size_t num_rows, size_t num_columns) in Matrix() function [all …]
|
D | matrix_unittest.cc | 14 #include "webrtc/modules/audio_processing/beamformer/matrix.h" 30 Matrix<float> lh_mat(*kValuesLeft, kNumRows, kNumCols); in TEST() 31 Matrix<float> rh_mat(*kValuesRight, kNumRows, kNumCols); in TEST() 32 Matrix<float> expected_result(*kValuesExpected, kNumRows, kNumCols); in TEST() 33 Matrix<float> actual_result(kNumRows, kNumCols); in TEST() 54 Matrix<int> lh_mat(*kValuesLeft, kNumRowsLeft, kNumColsLeft); in TEST() 55 Matrix<int> rh_mat(*kValuesRight, kNumRowsRight, kNumColsRight); in TEST() 56 Matrix<int> expected_result(*kValuesExpected, kNumRowsLeft, kNumColsRight); in TEST() 57 Matrix<int> actual_result(kNumRowsLeft, kNumColsRight); in TEST() 76 Matrix<float> initial_mat(*kValuesInitial, kNumInitialRows, kNumInitialCols); in TEST() [all …]
|
/external/eigen/Eigen/src/Core/ |
D | Matrix.h | 18 struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > 55 /** \class Matrix 58 * \brief The matrix class, also used for vectors and row-vectors 60 …* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors w… 63 …* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note… 81 * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>) 82 * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>) 83 * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>) 85 * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>) 86 * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>) [all …]
|
/external/opencv/cxcore/include/ |
D | cxcore.hpp | 213 CvMatrix() : matrix(0) {} in CvMatrix() 215 { matrix = cvCreateMat( rows, cols, type ); } in CvMatrix() 219 { matrix = cvInitMatHeader( hdr, rows, cols, type, data, step ); } in CvMatrix() 224 { matrix = cvCreateMatHeader( rows, cols, type ); in CvMatrix() 225 cvSetData( matrix, data, step ); } in CvMatrix() 228 { matrix = m; } in CvMatrix() 232 matrix = m.matrix; in CvMatrix() 236 CvMatrix( const char* filename, const char* matname=0, int color=-1 ) : matrix(0) in CvMatrix() 239 CvMatrix( CvFileStorage* fs, const char* mapname, const char* matname ) : matrix(0) in CvMatrix() 242 CvMatrix( CvFileStorage* fs, const char* seqname, int idx ) : matrix(0) in CvMatrix() [all …]
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | HessenbergDecomposition.h | 32 * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation 34 …* \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition 36 * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In 38 * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H 39 * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its 40 * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the 42 * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is, 46 * given matrix. Alternatively, you can use the 82 … typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; 91 * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed. [all …]
|
D | ComplexSchur.h | 28 * \brief Performs a complex Schur decomposition of a real or complex square matrix 30 * \tparam _MatrixType the type of the matrix of which we are 32 * instantiation of the Matrix class template. 34 * Given a real or complex square matrix A, this class computes the 36 * complex matrix, and T is a complex upper triangular matrix. The 37 * diagonal of the matrix T corresponds to the eigenvalues of the 38 * matrix A. 41 * a given matrix. Alternatively, you can use the 78 * This is a square matrix with entries of type #ComplexScalar. 81 …typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,… [all …]
|
D | Tridiagonalization.h | 36 * \brief Tridiagonal decomposition of a selfadjoint matrix 38 * \tparam _MatrixType the type of the matrix of which we are computing the 40 * Matrix class template. 42 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: 43 …* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. 45 * A tridiagonal matrix is a matrix which has nonzero elements only on the 47 * decomposition of a selfadjoint matrix is in fact a tridiagonal 49 * eigenvalues and eigenvectors of a selfadjoint matrix. 52 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) 82 … typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; [all …]
|
D | ComplexEigenSolver.h | 26 * \tparam _MatrixType the type of the matrix of which we are 28 * instantiation of the Matrix class template. 30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 32 * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on 33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as 34 * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is 78 …typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> … 80 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 82 * This is a square matrix with entries of type #ComplexScalar. 85 …typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,… [all …]
|
/external/llvm/include/llvm/CodeGen/PBQP/ |
D | Math.h | 1 //===------ Math.h - PBQP Vector and Matrix classes -------------*- C++ -*-===// 162 /// \brief PBQP Matrix class 163 class Matrix { 165 friend hash_code hash_value(const Matrix &); 168 /// \brief Construct a PBQP Matrix with the given dimensions. 169 Matrix(unsigned Rows, unsigned Cols) : in Matrix() function 173 /// \brief Construct a PBQP Matrix with the given dimensions and initial 175 Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal) in Matrix() function 180 /// \brief Copy construct a PBQP matrix. 181 Matrix(const Matrix &M) in Matrix() function [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/ |
D | Covariance.java | 27 * Computes covariances for pairs of arrays or columns of a matrix. 48 /** covariance matrix */ 52 * Create an empty covariance matrix. 67 * Create a Covariance matrix from a rectangular array 86 * Create a Covariance matrix from a rectangular array 101 * Create a covariance matrix from a matrix whose columns 107 * <p>The matrix must have at least two columns and two rows</p> 109 * @param matrix matrix with columns representing covariates 111 * @throws IllegalArgumentException if the input matrix does not have 114 public Covariance(RealMatrix matrix, boolean biasCorrected) { in Covariance() argument [all …]
|
D | PearsonsCorrelation.java | 33 * or columns of a matrix. 48 /** correlation matrix */ 79 * @param matrix matrix with columns representing variables to correlate 81 public PearsonsCorrelation(RealMatrix matrix) { in PearsonsCorrelation() argument 82 checkSufficientData(matrix); in PearsonsCorrelation() 83 nObs = matrix.getRowDimension(); in PearsonsCorrelation() 84 correlationMatrix = computeCorrelationMatrix(matrix); in PearsonsCorrelation() 89 * matrix is computed by scaling the Covariance's covariance matrix. 90 * The Covariance instance must have been created from a data matrix with 105 * Create a PearsonsCorrelation from a covariance matrix. The correlation [all …]
|
/external/libtextclassifier/common/ |
D | embedding-network-params.h | 45 // Simple representation of a matrix. This small struct that doesn't own any 47 struct Matrix { struct 56 // Pointer to matrix elements, in row-major order 74 // Returns embedding matrix for the i-th embedding space. 78 Matrix GetEmbeddingMatrix(int i) const { in GetEmbeddingMatrix() argument 80 Matrix matrix; in GetEmbeddingMatrix() local 81 matrix.rows = embeddings_num_rows(i); in GetEmbeddingMatrix() 82 matrix.cols = embeddings_num_cols(i); in GetEmbeddingMatrix() 83 matrix.elements = embeddings_weights(i); in GetEmbeddingMatrix() 84 matrix.quant_type = embeddings_quant_type(i); in GetEmbeddingMatrix() [all …]
|
/external/eigen/Eigen/src/PaStiXSupport/ |
D | PaStiXSupport.h | 27 * The matrix can be either real or complex, symmetric or not. 95 // Convert the matrix to Fortran-style Numbering 142 typedef Matrix<Scalar,Dynamic,1> Vector; 208 * \c InvalidInput if the input matrix is invalid 220 // Initialize the Pastix data structure, check the matrix 249 mutable Matrix<StorageIndex,Dynamic,1> m_perm; // Permutation vector 250 mutable Matrix<StorageIndex,Dynamic,1> m_invp; // Inverse permutation vector 251 mutable int m_size; // Size of the matrix 297 eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); 369 eigen_assert(m_isInitialized && "The matrix should be factorized first"); [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
D | SingularValueDecomposition.java | 24 * Singular Value Decomposition of a real matrix. 26 * The Singular Value Decomposition of matrix A is a set of three matrices: U, 28 * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a 29 * p × p diagonal matrix with positive or null elements, V is a p × 30 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where 56 * Returns the matrix U of the decomposition. 57 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 58 * @return the U matrix 64 * Returns the transpose of the matrix U of the decomposition. 65 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> [all …]
|
/external/eigen/bench/btl/data/ |
D | action_settings.txt | 1 aat ; "{/*1.5 A x A^T}" ; "matrix size" ; 4:5000 2 ata ; "{/*1.5 A^T x A}" ; "matrix size" ; 4:5000 3 atv ; "{/*1.5 matrix^T x vector}" ; "matrix size" ; 4:5000 6 matrix_matrix ; "{/*1.5 matrix matrix product}" ; "matrix size" ; 4:5000 7 matrix_vector ; "{/*1.5 matrix vector product}" ; "matrix size" ; 4:5000 8 trmm ; "{/*1.5 triangular matrix matrix product}" ; "matrix size" ; 4:5000 10 trisolve_matrix ; "{/*1.5 triangular solver - matrix (M = inv(L) M)}" ; "size" ; 4:5000 11 cholesky ; "{/*1.5 Cholesky decomposition}" ; "matrix size" ; 4:5000 12 complete_lu_decomp ; "{/*1.5 Complete LU decomposition}" ; "matrix size" ; 4:5000 13 partial_lu_decomp ; "{/*1.5 Partial LU decomposition}" ; "matrix size" ; 4:5000 [all …]
|