Home
last modified time | relevance | path

Searched refs:Ax (Results 1 – 25 of 43) sorted by relevance

12

/external/eigen/Eigen/src/UmfPackSupport/
DUmfPackSupport.h39 const int Ap[], const int Ai[], const double Ax[], void **Symbolic, in umfpack_symbolic() argument
42 return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); in umfpack_symbolic()
46 … const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, in umfpack_symbolic() argument
49 return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); in umfpack_symbolic()
52 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], in umfpack_numeric() argument
56 return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); in umfpack_numeric()
59 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], in umfpack_numeric() argument
63 return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); in umfpack_numeric()
66 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], in umfpack_solve() argument
70 return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); in umfpack_solve()
[all …]
/external/skia/src/utils/
DSkCurveMeasure.cpp110 float Ax = pts[0].x(); in ArcLengthIntegrator() local
118 Sk8f(2*(Ax - 2*Bx + Cx)).store(&xCoeff[0]); in ArcLengthIntegrator()
119 Sk8f(2*(Bx - Ax)).store(&xCoeff[1]); in ArcLengthIntegrator()
127 float Ax = pts[0].x(); in ArcLengthIntegrator() local
137 Sk8f(3*(-Ax + 3*(Bx - Cx) + Dx)).store(&xCoeff[0]); in ArcLengthIntegrator()
138 Sk8f(6*(Ax - 2*Bx + Cx)).store(&xCoeff[1]); in ArcLengthIntegrator()
139 Sk8f(3*(-Ax + Bx)).store(&xCoeff[2]); in ArcLengthIntegrator()
/external/eigen/bench/
Dsparse_setter.cpp304 const Values Ax, in coo_tocsr() argument
330 Bx[dest] = Ax[n]; in coo_tocsr()
354 T Ax[]) in csr_sort_indices() argument
365 temp.push_back(std::make_pair(Aj[jj],Ax[jj])); in csr_sort_indices()
372 Ax[jj] = temp[n].second; in csr_sort_indices()
382 T Ax[]) in csr_sum_duplicates() argument
391 T x = Ax[jj]; in csr_sum_duplicates()
394 x += Ax[jj]; in csr_sum_duplicates()
398 Ax[nnz] = x; in csr_sum_duplicates()
/external/eigen/doc/
DLeastSquares.dox6 of equations, say \a Ax = \a b, has no solutions. In this case, it makes sense to search for the
7 vector \a x which is closest to being a solution, in the sense that the difference \a Ax - \a b is
53 Finding the least squares solution of \a Ax = \a b is equivalent to solving the normal equation
54 <i>A</i><sup>T</sup><i>Ax</i> = <i>A</i><sup>T</sup><i>b</i>. This leads to the following code
DInplaceDecomposition.dox45 Then, one can use the \c lu object as usual, for instance to solve the Ax=b problem:
DSparseLinearSystems.dox51 <td>Solve for min |A'Ax-b|^2 without forming A'A</td></tr>
97 // solve Ax = b
DAsciiQuickReference.txt197 // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
DTutorialLinearAlgebra.dox14 \f[ Ax \: = \: b \f]
DTutorialSparse.dox87 Such problem can be mathematically expressed as a linear problem of the form \f$ Ax=b \f$ where \f$…
/external/llvm/test/Transforms/InstSimplify/
Dcompare.ll1209 define void @icmp_slt_sge_or(i32 %Ax, i32 %Bx) {
1215 %Aneg = or i32 %Ax, 2147483648
1216 %Apos = and i32 %Ax, 2147483647
1236 %Cxp = or i32 %Ax, %Bpos
1237 %Dxp = icmp slt i32 %Cxp, %Ax
1238 %Exp = icmp sge i32 %Cxp, %Ax
1239 %Fxp = icmp sgt i32 %Ax, %Cxp
1240 %Gxp = icmp sle i32 %Ax, %Cxp
1241 %Cxx = or i32 %Ax, %Bx
1242 %Dxx = icmp slt i32 %Cxx, %Ax
[all …]
/external/skia/src/core/
DSkGeometry.cpp249 SkScalar Ax = src[1].fX - src[0].fX; in SkFindQuadMaxCurvature() local
255 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); in SkFindQuadMaxCurvature()
507 SkScalar Ax = src[1].fX - src[0].fX; in SkFindCubicInflections() local
515 Ax*Cy - Ay*Cx, in SkFindCubicInflections()
516 Ax*By - Ay*Bx, in SkFindCubicInflections()
/external/skia/src/pathops/
DSkPathOpsCubic.cpp526 double Ax = fPts[1].fX - fPts[0].fX; in findInflections() local
532 return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); in findInflections()
/external/pdfium/third_party/freetype/src/raster/
Dftraster.c1005 Long Ix, Rx, Ax; in Line_Up() local
1087 Ax = -Dy; in Line_Up()
1095 Ax += Rx; in Line_Up()
1096 if ( Ax >= 0 ) in Line_Up()
1098 Ax -= Dy; in Line_Up()
/external/freetype/src/raster/
Dftraster.c1013 Long Ix, Rx, Ax; in Line_Up() local
1095 Ax = -Dy; in Line_Up()
1103 Ax += Rx; in Line_Up()
1104 if ( Ax >= 0 ) in Line_Up()
1106 Ax -= Dy; in Line_Up()
/external/svox/pico_resources/tools/LingwareBuilding/PicoLingware_source_files/pkb/en-GB/
Den-GB_kdt_posd.pkb62 � @Axx2Hk�<̠fj�ŗ9 ��4����xzd�� � �!��������.l_&
202 …tŎ/B�7sl�!����|��H����n���-�/8��x h��@��� BP %�B!+K�E���AxԼ�^^/5��K�Sd�� �zI�_…
/external/vboot_reference/utility/
Ddev_debug_vboot369 loghead od -Ax -tx1 "${kfile}"
/external/ImageMagick/PerlMagick/t/
Dinput_rgb_lsb_08bit.mat25 .7U���������nj>;8>VbB70&)2rīw@*[����j/Wk���������������������}�r; �6HJ����������ʃ3-Ax~?/=[{��…
/external/eigen/unsupported/Eigen/
DMPRealSupport53 // Solve Ax=b using LU
/external/svox/pico_resources/tools/LingwareBuilding/PicoLingware_source_files/pkb/fr-FR/
Dfr-FR_kdt_posp.pkb71 ��(&H+�� (�����A�Cp��ć��Ɓ�I�H�9�<oq5 R@��AR=�� F(6�f�Kq���Ax׼��c���p 8Hy�������…
/external/ImageMagick/PerlMagick/t/reference/read/
Dinput_uyvy.miff14 …vقvَs�|s�Ft�Bt�vx��x��~z�~z�{��{�ρ����rvx_vx2~�4~�7|�;|�Bz�Ez�Gv�Hv�D|�I|�Ax�<x�:y�9y�9{�8{�9|�=|…
/external/svox/pico_resources/tools/LingwareBuilding/PicoLingware_source_files/pkb/de-DE/
Dde-DE_kdt_g2p.pkb10 …B�p%Q9�`�`Gm�c�à ���������������sV�&o@�* �����_1��mX��A>z�D ���r@Ax���Z���A�vW&P����p…
/external/icu/icu4j/main/tests/collate/src/com/ibm/icu/dev/data/
Dcollationtest.txt898 <3 Ax
/external/icu/android_icu4j/src/main/tests/android/icu/dev/data/
Dcollationtest.txt898 <3 Ax
/external/icu/icu4c/source/test/testdata/
Dcollationtest.txt896 <3 Ax
/external/webrtc/talk/media/testdata/
Dh264-svc-99-640x360.rtpdump2848 �����&ͥ�#����A��r�3 �0��^��/�@'���JGͱV\$��� Ax-�u�"�x2�?�U� *����=��f�n��1"��X+�y������7�…
3442 �k�� �Q����0��(z::CǃI�� 1�����v|!x ��n������:1=� �׈�� ;���Axއ��Y�9�GHhL�^v�n6����� `V�…
3456 …�|�%�i���4$��@G@cXu�\ �Y�.m�4Y���X�?�<�n=)H���*�7M?�E��� K��[AB� sI?Ax��-���0����V+�j�+i…
3879 …�T�NŢ��|�ʢ��-�>�*�dX1�vl����,���.���5{�<N��C����?���{*���*~tV���Ax^p�$����:������3"#…
4039 � �?.Ax�3��=�Qյ�ذ����h�����4�o`)�
4289 v�@Ax``'��k��_���!���� #@J�������H��j&���O���W@46{H�@"�`��`�% �P�����@~>0ea��
7195 ��:s�[?���Z��l�����?�Vu�@Q�a���Ax�%��a�/�a�’�\?��� P1��X>� ǘe���d �z}8A~����_�U…

12