1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_UMFPACKSUPPORT_H
11 #define EIGEN_UMFPACKSUPPORT_H
12 
13 namespace Eigen {
14 
15 /* TODO extract L, extract U, compute det, etc... */
16 
17 // generic double/complex<double> wrapper functions:
18 
19 
umfpack_defaults(double control[UMFPACK_CONTROL],double)20 inline void umfpack_defaults(double control[UMFPACK_CONTROL], double)
21 { umfpack_di_defaults(control); }
22 
umfpack_defaults(double control[UMFPACK_CONTROL],std::complex<double>)23 inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>)
24 { umfpack_zi_defaults(control); }
25 
umfpack_free_numeric(void ** Numeric,double)26 inline void umfpack_free_numeric(void **Numeric, double)
27 { umfpack_di_free_numeric(Numeric); *Numeric = 0; }
28 
umfpack_free_numeric(void ** Numeric,std::complex<double>)29 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
30 { umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
31 
umfpack_free_symbolic(void ** Symbolic,double)32 inline void umfpack_free_symbolic(void **Symbolic, double)
33 { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
34 
umfpack_free_symbolic(void ** Symbolic,std::complex<double>)35 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
36 { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
37 
umfpack_symbolic(int n_row,int n_col,const int Ap[],const int Ai[],const double Ax[],void ** Symbolic,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])38 inline int umfpack_symbolic(int n_row,int n_col,
39                             const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
40                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
41 {
42   return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
43 }
44 
umfpack_symbolic(int n_row,int n_col,const int Ap[],const int Ai[],const std::complex<double> Ax[],void ** Symbolic,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])45 inline int umfpack_symbolic(int n_row,int n_col,
46                             const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
47                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
48 {
49   return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
50 }
51 
umfpack_numeric(const int Ap[],const int Ai[],const double Ax[],void * Symbolic,void ** Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])52 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
53                             void *Symbolic, void **Numeric,
54                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
55 {
56   return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
57 }
58 
umfpack_numeric(const int Ap[],const int Ai[],const std::complex<double> Ax[],void * Symbolic,void ** Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])59 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
60                             void *Symbolic, void **Numeric,
61                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
62 {
63   return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
64 }
65 
umfpack_solve(int sys,const int Ap[],const int Ai[],const double Ax[],double X[],const double B[],void * Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])66 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
67                           double X[], const double B[], void *Numeric,
68                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
69 {
70   return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
71 }
72 
umfpack_solve(int sys,const int Ap[],const int Ai[],const std::complex<double> Ax[],std::complex<double> X[],const std::complex<double> B[],void * Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])73 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
74                           std::complex<double> X[], const std::complex<double> B[], void *Numeric,
75                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
76 {
77   return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
78 }
79 
umfpack_get_lunz(int * lnz,int * unz,int * n_row,int * n_col,int * nz_udiag,void * Numeric,double)80 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
81 {
82   return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
83 }
84 
umfpack_get_lunz(int * lnz,int * unz,int * n_row,int * n_col,int * nz_udiag,void * Numeric,std::complex<double>)85 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
86 {
87   return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
88 }
89 
umfpack_get_numeric(int Lp[],int Lj[],double Lx[],int Up[],int Ui[],double Ux[],int P[],int Q[],double Dx[],int * do_recip,double Rs[],void * Numeric)90 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
91                                int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
92 {
93   return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
94 }
95 
umfpack_get_numeric(int Lp[],int Lj[],std::complex<double> Lx[],int Up[],int Ui[],std::complex<double> Ux[],int P[],int Q[],std::complex<double> Dx[],int * do_recip,double Rs[],void * Numeric)96 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
97                                int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
98 {
99   double& lx0_real = numext::real_ref(Lx[0]);
100   double& ux0_real = numext::real_ref(Ux[0]);
101   double& dx0_real = numext::real_ref(Dx[0]);
102   return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
103                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
104 }
105 
umfpack_get_determinant(double * Mx,double * Ex,void * NumericHandle,double User_Info[UMFPACK_INFO])106 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
107 {
108   return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
109 }
110 
umfpack_get_determinant(std::complex<double> * Mx,double * Ex,void * NumericHandle,double User_Info[UMFPACK_INFO])111 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
112 {
113   double& mx_real = numext::real_ref(*Mx);
114   return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
115 }
116 
117 
118 /** \ingroup UmfPackSupport_Module
119   * \brief A sparse LU factorization and solver based on UmfPack
120   *
121   * This class allows to solve for A.X = B sparse linear problems via a LU factorization
122   * using the UmfPack library. The sparse matrix A must be squared and full rank.
123   * The vectors or matrices X and B can be either dense or sparse.
124   *
125   * \warning The input matrix A should be in a \b compressed and \b column-major form.
126   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
127   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
128   *
129   * \implsparsesolverconcept
130   *
131   * \sa \ref TutorialSparseSolverConcept, class SparseLU
132   */
133 template<typename _MatrixType>
134 class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
135 {
136   protected:
137     typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
138     using Base::m_isInitialized;
139   public:
140     using Base::_solve_impl;
141     typedef _MatrixType MatrixType;
142     typedef typename MatrixType::Scalar Scalar;
143     typedef typename MatrixType::RealScalar RealScalar;
144     typedef typename MatrixType::StorageIndex StorageIndex;
145     typedef Matrix<Scalar,Dynamic,1> Vector;
146     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
147     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
148     typedef SparseMatrix<Scalar> LUMatrixType;
149     typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
150     typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef;
151     enum {
152       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154     };
155 
156   public:
157 
158     typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl;
159 
UmfPackLU()160     UmfPackLU()
161       : m_dummy(0,0), mp_matrix(m_dummy)
162     {
163       init();
164     }
165 
166     template<typename InputMatrixType>
UmfPackLU(const InputMatrixType & matrix)167     explicit UmfPackLU(const InputMatrixType& matrix)
168       : mp_matrix(matrix)
169     {
170       init();
171       compute(matrix);
172     }
173 
~UmfPackLU()174     ~UmfPackLU()
175     {
176       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
177       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
178     }
179 
rows()180     inline Index rows() const { return mp_matrix.rows(); }
cols()181     inline Index cols() const { return mp_matrix.cols(); }
182 
183     /** \brief Reports whether previous computation was successful.
184       *
185       * \returns \c Success if computation was succesful,
186       *          \c NumericalIssue if the matrix.appears to be negative.
187       */
info()188     ComputationInfo info() const
189     {
190       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
191       return m_info;
192     }
193 
matrixL()194     inline const LUMatrixType& matrixL() const
195     {
196       if (m_extractedDataAreDirty) extractData();
197       return m_l;
198     }
199 
matrixU()200     inline const LUMatrixType& matrixU() const
201     {
202       if (m_extractedDataAreDirty) extractData();
203       return m_u;
204     }
205 
permutationP()206     inline const IntColVectorType& permutationP() const
207     {
208       if (m_extractedDataAreDirty) extractData();
209       return m_p;
210     }
211 
permutationQ()212     inline const IntRowVectorType& permutationQ() const
213     {
214       if (m_extractedDataAreDirty) extractData();
215       return m_q;
216     }
217 
218     /** Computes the sparse Cholesky decomposition of \a matrix
219      *  Note that the matrix should be column-major, and in compressed format for best performance.
220      *  \sa SparseMatrix::makeCompressed().
221      */
222     template<typename InputMatrixType>
compute(const InputMatrixType & matrix)223     void compute(const InputMatrixType& matrix)
224     {
225       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
226       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
227       grab(matrix.derived());
228       analyzePattern_impl();
229       factorize_impl();
230     }
231 
232     /** Performs a symbolic decomposition on the sparcity of \a matrix.
233       *
234       * This function is particularly useful when solving for several problems having the same structure.
235       *
236       * \sa factorize(), compute()
237       */
238     template<typename InputMatrixType>
analyzePattern(const InputMatrixType & matrix)239     void analyzePattern(const InputMatrixType& matrix)
240     {
241       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
242       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
243 
244       grab(matrix.derived());
245 
246       analyzePattern_impl();
247     }
248 
249     /** Provides the return status code returned by UmfPack during the numeric
250       * factorization.
251       *
252       * \sa factorize(), compute()
253       */
umfpackFactorizeReturncode()254     inline int umfpackFactorizeReturncode() const
255     {
256       eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()");
257       return m_fact_errorCode;
258     }
259 
260     /** Provides access to the control settings array used by UmfPack.
261       *
262       * If this array contains NaN's, the default values are used.
263       *
264       * See UMFPACK documentation for details.
265       */
umfpackControl()266     inline const UmfpackControl& umfpackControl() const
267     {
268       return m_control;
269     }
270 
271     /** Provides access to the control settings array used by UmfPack.
272       *
273       * If this array contains NaN's, the default values are used.
274       *
275       * See UMFPACK documentation for details.
276       */
umfpackControl()277     inline UmfpackControl& umfpackControl()
278     {
279       return m_control;
280     }
281 
282     /** Performs a numeric decomposition of \a matrix
283       *
284       * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
285       *
286       * \sa analyzePattern(), compute()
287       */
288     template<typename InputMatrixType>
factorize(const InputMatrixType & matrix)289     void factorize(const InputMatrixType& matrix)
290     {
291       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
292       if(m_numeric)
293         umfpack_free_numeric(&m_numeric,Scalar());
294 
295       grab(matrix.derived());
296 
297       factorize_impl();
298     }
299 
300     /** \internal */
301     template<typename BDerived,typename XDerived>
302     bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
303 
304     Scalar determinant() const;
305 
306     void extractData() const;
307 
308   protected:
309 
init()310     void init()
311     {
312       m_info                  = InvalidInput;
313       m_isInitialized         = false;
314       m_numeric               = 0;
315       m_symbolic              = 0;
316       m_extractedDataAreDirty = true;
317     }
318 
analyzePattern_impl()319     void analyzePattern_impl()
320     {
321       umfpack_defaults(m_control.data(), Scalar());
322       int errorCode = 0;
323       errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()),
324                                    internal::convert_index<int>(mp_matrix.cols()),
325                                    mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
326                                    &m_symbolic, m_control.data(), 0);
327 
328       m_isInitialized = true;
329       m_info = errorCode ? InvalidInput : Success;
330       m_analysisIsOk = true;
331       m_factorizationIsOk = false;
332       m_extractedDataAreDirty = true;
333     }
334 
factorize_impl()335     void factorize_impl()
336     {
337       m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
338                                          m_symbolic, &m_numeric, m_control.data(), 0);
339 
340       m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue;
341       m_factorizationIsOk = true;
342       m_extractedDataAreDirty = true;
343     }
344 
345     template<typename MatrixDerived>
grab(const EigenBase<MatrixDerived> & A)346     void grab(const EigenBase<MatrixDerived> &A)
347     {
348       mp_matrix.~UmfpackMatrixRef();
349       ::new (&mp_matrix) UmfpackMatrixRef(A.derived());
350     }
351 
grab(const UmfpackMatrixRef & A)352     void grab(const UmfpackMatrixRef &A)
353     {
354       if(&(A.derived()) != &mp_matrix)
355       {
356         mp_matrix.~UmfpackMatrixRef();
357         ::new (&mp_matrix) UmfpackMatrixRef(A);
358       }
359     }
360 
361     // cached data to reduce reallocation, etc.
362     mutable LUMatrixType m_l;
363     int m_fact_errorCode;
364     UmfpackControl m_control;
365 
366     mutable LUMatrixType m_u;
367     mutable IntColVectorType m_p;
368     mutable IntRowVectorType m_q;
369 
370     UmfpackMatrixType m_dummy;
371     UmfpackMatrixRef mp_matrix;
372 
373     void* m_numeric;
374     void* m_symbolic;
375 
376     mutable ComputationInfo m_info;
377     int m_factorizationIsOk;
378     int m_analysisIsOk;
379     mutable bool m_extractedDataAreDirty;
380 
381   private:
UmfPackLU(const UmfPackLU &)382     UmfPackLU(const UmfPackLU& ) { }
383 };
384 
385 
386 template<typename MatrixType>
extractData()387 void UmfPackLU<MatrixType>::extractData() const
388 {
389   if (m_extractedDataAreDirty)
390   {
391     // get size of the data
392     int lnz, unz, rows, cols, nz_udiag;
393     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
394 
395     // allocate data
396     m_l.resize(rows,(std::min)(rows,cols));
397     m_l.resizeNonZeros(lnz);
398 
399     m_u.resize((std::min)(rows,cols),cols);
400     m_u.resizeNonZeros(unz);
401 
402     m_p.resize(rows);
403     m_q.resize(cols);
404 
405     // extract
406     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
407                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
408                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
409 
410     m_extractedDataAreDirty = false;
411   }
412 }
413 
414 template<typename MatrixType>
determinant()415 typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
416 {
417   Scalar det;
418   umfpack_get_determinant(&det, 0, m_numeric, 0);
419   return det;
420 }
421 
422 template<typename MatrixType>
423 template<typename BDerived,typename XDerived>
_solve_impl(const MatrixBase<BDerived> & b,MatrixBase<XDerived> & x)424 bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
425 {
426   Index rhsCols = b.cols();
427   eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
428   eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
429   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
430 
431   int errorCode;
432   Scalar* x_ptr = 0;
433   Matrix<Scalar,Dynamic,1> x_tmp;
434   if(x.innerStride()!=1)
435   {
436     x_tmp.resize(x.rows());
437     x_ptr = x_tmp.data();
438   }
439   for (int j=0; j<rhsCols; ++j)
440   {
441     if(x.innerStride()==1)
442       x_ptr = &x.col(j).coeffRef(0);
443     errorCode = umfpack_solve(UMFPACK_A,
444         mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
445         x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), 0);
446     if(x.innerStride()!=1)
447       x.col(j) = x_tmp;
448     if (errorCode!=0)
449       return false;
450   }
451 
452   return true;
453 }
454 
455 } // end namespace Eigen
456 
457 #endif // EIGEN_UMFPACKSUPPORT_H
458