1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37 
38 #include "src/allocation.h"
39 #include "src/builtins/builtins.h"
40 #include "src/deoptimize-reason.h"
41 #include "src/globals.h"
42 #include "src/isolate.h"
43 #include "src/log.h"
44 #include "src/register-configuration.h"
45 #include "src/runtime/runtime.h"
46 
47 namespace v8 {
48 
49 // Forward declarations.
50 class ApiFunction;
51 
52 namespace internal {
53 
54 // Forward declarations.
55 class SourcePosition;
56 class StatsCounter;
57 
58 // -----------------------------------------------------------------------------
59 // Platform independent assembler base class.
60 
61 enum class CodeObjectRequired { kNo, kYes };
62 
63 
64 class AssemblerBase: public Malloced {
65  public:
66   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
67   virtual ~AssemblerBase();
68 
isolate()69   Isolate* isolate() const { return isolate_; }
jit_cookie()70   int jit_cookie() const { return jit_cookie_; }
71 
emit_debug_code()72   bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)73   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
74 
serializer_enabled()75   bool serializer_enabled() const { return serializer_enabled_; }
enable_serializer()76   void enable_serializer() { serializer_enabled_ = true; }
77 
predictable_code_size()78   bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)79   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
80 
enabled_cpu_features()81   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)82   void set_enabled_cpu_features(uint64_t features) {
83     enabled_cpu_features_ = features;
84   }
85   // Features are usually enabled by CpuFeatureScope, which also asserts that
86   // the features are supported before they are enabled.
IsEnabled(CpuFeature f)87   bool IsEnabled(CpuFeature f) {
88     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
89   }
EnableCpuFeature(CpuFeature f)90   void EnableCpuFeature(CpuFeature f) {
91     enabled_cpu_features_ |= (static_cast<uint64_t>(1) << f);
92   }
93 
is_constant_pool_available()94   bool is_constant_pool_available() const {
95     if (FLAG_enable_embedded_constant_pool) {
96       return constant_pool_available_;
97     } else {
98       // Embedded constant pool not supported on this architecture.
99       UNREACHABLE();
100       return false;
101     }
102   }
103 
104   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
105   // cross-snapshotting.
QuietNaN(HeapObject * nan)106   static void QuietNaN(HeapObject* nan) { }
107 
pc_offset()108   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
109 
110   // This function is called when code generation is aborted, so that
111   // the assembler could clean up internal data structures.
AbortedCodeGeneration()112   virtual void AbortedCodeGeneration() { }
113 
114   // Debugging
115   void Print();
116 
117   static const int kMinimalBufferSize = 4*KB;
118 
119   static void FlushICache(Isolate* isolate, void* start, size_t size);
120 
121  protected:
122   // The buffer into which code and relocation info are generated. It could
123   // either be owned by the assembler or be provided externally.
124   byte* buffer_;
125   int buffer_size_;
126   bool own_buffer_;
127 
set_constant_pool_available(bool available)128   void set_constant_pool_available(bool available) {
129     if (FLAG_enable_embedded_constant_pool) {
130       constant_pool_available_ = available;
131     } else {
132       // Embedded constant pool not supported on this architecture.
133       UNREACHABLE();
134     }
135   }
136 
137   // The program counter, which points into the buffer above and moves forward.
138   byte* pc_;
139 
140  private:
141   Isolate* isolate_;
142   int jit_cookie_;
143   uint64_t enabled_cpu_features_;
144   bool emit_debug_code_;
145   bool predictable_code_size_;
146   bool serializer_enabled_;
147 
148   // Indicates whether the constant pool can be accessed, which is only possible
149   // if the pp register points to the current code object's constant pool.
150   bool constant_pool_available_;
151 
152   // Constant pool.
153   friend class FrameAndConstantPoolScope;
154   friend class ConstantPoolUnavailableScope;
155 };
156 
157 
158 // Avoids emitting debug code during the lifetime of this scope object.
159 class DontEmitDebugCodeScope BASE_EMBEDDED {
160  public:
DontEmitDebugCodeScope(AssemblerBase * assembler)161   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
162       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
163     assembler_->set_emit_debug_code(false);
164   }
~DontEmitDebugCodeScope()165   ~DontEmitDebugCodeScope() {
166     assembler_->set_emit_debug_code(old_value_);
167   }
168  private:
169   AssemblerBase* assembler_;
170   bool old_value_;
171 };
172 
173 
174 // Avoids using instructions that vary in size in unpredictable ways between the
175 // snapshot and the running VM.
176 class PredictableCodeSizeScope {
177  public:
178   explicit PredictableCodeSizeScope(AssemblerBase* assembler);
179   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
180   ~PredictableCodeSizeScope();
ExpectSize(int expected_size)181   void ExpectSize(int expected_size) { expected_size_ = expected_size; }
182 
183  private:
184   AssemblerBase* assembler_;
185   int expected_size_;
186   int start_offset_;
187   bool old_value_;
188 };
189 
190 
191 // Enable a specified feature within a scope.
192 class CpuFeatureScope BASE_EMBEDDED {
193  public:
194   enum CheckPolicy {
195     kCheckSupported,
196     kDontCheckSupported,
197   };
198 
199 #ifdef DEBUG
200   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
201                   CheckPolicy check = kCheckSupported);
202   ~CpuFeatureScope();
203 
204  private:
205   AssemblerBase* assembler_;
206   uint64_t old_enabled_;
207 #else
208   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
209                   CheckPolicy check = kCheckSupported) {}
210 #endif
211 };
212 
213 
214 // CpuFeatures keeps track of which features are supported by the target CPU.
215 // Supported features must be enabled by a CpuFeatureScope before use.
216 // Example:
217 //   if (assembler->IsSupported(SSE3)) {
218 //     CpuFeatureScope fscope(assembler, SSE3);
219 //     // Generate code containing SSE3 instructions.
220 //   } else {
221 //     // Generate alternative code.
222 //   }
223 class CpuFeatures : public AllStatic {
224  public:
Probe(bool cross_compile)225   static void Probe(bool cross_compile) {
226     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
227     if (initialized_) return;
228     initialized_ = true;
229     ProbeImpl(cross_compile);
230   }
231 
SupportedFeatures()232   static unsigned SupportedFeatures() {
233     Probe(false);
234     return supported_;
235   }
236 
IsSupported(CpuFeature f)237   static bool IsSupported(CpuFeature f) {
238     return (supported_ & (1u << f)) != 0;
239   }
240 
241   static inline bool SupportsCrankshaft();
242 
243   static inline bool SupportsSimd128();
244 
icache_line_size()245   static inline unsigned icache_line_size() {
246     DCHECK(icache_line_size_ != 0);
247     return icache_line_size_;
248   }
249 
dcache_line_size()250   static inline unsigned dcache_line_size() {
251     DCHECK(dcache_line_size_ != 0);
252     return dcache_line_size_;
253   }
254 
255   static void PrintTarget();
256   static void PrintFeatures();
257 
258  private:
259   friend class ExternalReference;
260   friend class AssemblerBase;
261   // Flush instruction cache.
262   static void FlushICache(void* start, size_t size);
263 
264   // Platform-dependent implementation.
265   static void ProbeImpl(bool cross_compile);
266 
267   static unsigned supported_;
268   static unsigned icache_line_size_;
269   static unsigned dcache_line_size_;
270   static bool initialized_;
271   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
272 };
273 
274 
275 // -----------------------------------------------------------------------------
276 // Labels represent pc locations; they are typically jump or call targets.
277 // After declaration, a label can be freely used to denote known or (yet)
278 // unknown pc location. Assembler::bind() is used to bind a label to the
279 // current pc. A label can be bound only once.
280 
281 class Label {
282  public:
283   enum Distance {
284     kNear, kFar
285   };
286 
INLINE(Label ())287   INLINE(Label()) {
288     Unuse();
289     UnuseNear();
290   }
291 
INLINE(~Label ())292   INLINE(~Label()) {
293     DCHECK(!is_linked());
294     DCHECK(!is_near_linked());
295   }
296 
INLINE(void Unuse ())297   INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())298   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
299 
INLINE(bool is_bound ()const)300   INLINE(bool is_bound() const) { return pos_ <  0; }
INLINE(bool is_unused ()const)301   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)302   INLINE(bool is_linked() const) { return pos_ >  0; }
INLINE(bool is_near_linked ()const)303   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
304 
305   // Returns the position of bound or linked labels. Cannot be used
306   // for unused labels.
307   int pos() const;
near_link_pos()308   int near_link_pos() const { return near_link_pos_ - 1; }
309 
310  private:
311   // pos_ encodes both the binding state (via its sign)
312   // and the binding position (via its value) of a label.
313   //
314   // pos_ <  0  bound label, pos() returns the jump target position
315   // pos_ == 0  unused label
316   // pos_ >  0  linked label, pos() returns the last reference position
317   int pos_;
318 
319   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
320   int near_link_pos_;
321 
bind_to(int pos)322   void bind_to(int pos)  {
323     pos_ = -pos - 1;
324     DCHECK(is_bound());
325   }
326   void link_to(int pos, Distance distance = kFar) {
327     if (distance == kNear) {
328       near_link_pos_ = pos + 1;
329       DCHECK(is_near_linked());
330     } else {
331       pos_ = pos + 1;
332       DCHECK(is_linked());
333     }
334   }
335 
336   friend class Assembler;
337   friend class Displacement;
338   friend class RegExpMacroAssemblerIrregexp;
339 
340 #if V8_TARGET_ARCH_ARM64
341   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
342   // branches to distant targets. Copying labels would confuse the Assembler.
343   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
344 #endif
345 };
346 
347 
348 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
349 
350 enum ArgvMode { kArgvOnStack, kArgvInRegister };
351 
352 // Specifies whether to perform icache flush operations on RelocInfo updates.
353 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
354 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
355 // skipped (only use this if you will flush the icache manually before it is
356 // executed).
357 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
358 
359 // -----------------------------------------------------------------------------
360 // Relocation information
361 
362 
363 // Relocation information consists of the address (pc) of the datum
364 // to which the relocation information applies, the relocation mode
365 // (rmode), and an optional data field. The relocation mode may be
366 // "descriptive" and not indicate a need for relocation, but simply
367 // describe a property of the datum. Such rmodes are useful for GC
368 // and nice disassembly output.
369 
370 class RelocInfo {
371  public:
372   // This string is used to add padding comments to the reloc info in cases
373   // where we are not sure to have enough space for patching in during
374   // lazy deoptimization. This is the case if we have indirect calls for which
375   // we do not normally record relocation info.
376   static const char* const kFillerCommentString;
377 
378   // The minimum size of a comment is equal to two bytes for the extra tagged
379   // pc and kPointerSize for the actual pointer to the comment.
380   static const int kMinRelocCommentSize = 2 + kPointerSize;
381 
382   // The maximum size for a call instruction including pc-jump.
383   static const int kMaxCallSize = 6;
384 
385   // The maximum pc delta that will use the short encoding.
386   static const int kMaxSmallPCDelta;
387 
388   enum Mode {
389     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
390     CODE_TARGET,  // Code target which is not any of the above.
391     CODE_TARGET_WITH_ID,
392     DEBUGGER_STATEMENT,  // Code target for the debugger statement.
393     EMBEDDED_OBJECT,
394     // To relocate pointers into the wasm memory embedded in wasm code
395     WASM_MEMORY_REFERENCE,
396     WASM_GLOBAL_REFERENCE,
397     WASM_MEMORY_SIZE_REFERENCE,
398     CELL,
399 
400     // Everything after runtime_entry (inclusive) is not GC'ed.
401     RUNTIME_ENTRY,
402     COMMENT,
403 
404     // Additional code inserted for debug break slot.
405     DEBUG_BREAK_SLOT_AT_POSITION,
406     DEBUG_BREAK_SLOT_AT_RETURN,
407     DEBUG_BREAK_SLOT_AT_CALL,
408     DEBUG_BREAK_SLOT_AT_TAIL_CALL,
409 
410     EXTERNAL_REFERENCE,  // The address of an external C++ function.
411     INTERNAL_REFERENCE,  // An address inside the same function.
412 
413     // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
414     INTERNAL_REFERENCE_ENCODED,
415 
416     // Continuation points for a generator yield.
417     GENERATOR_CONTINUATION,
418 
419     // Marks constant and veneer pools. Only used on ARM and ARM64.
420     // They use a custom noncompact encoding.
421     CONST_POOL,
422     VENEER_POOL,
423 
424     DEOPT_SCRIPT_OFFSET,
425     DEOPT_INLINING_ID,  // Deoptimization source position.
426     DEOPT_REASON,       // Deoptimization reason index.
427     DEOPT_ID,           // Deoptimization inlining id.
428 
429     // This is not an actual reloc mode, but used to encode a long pc jump that
430     // cannot be encoded as part of another record.
431     PC_JUMP,
432 
433     // Pseudo-types
434     NUMBER_OF_MODES,
435     NONE32,             // never recorded 32-bit value
436     NONE64,             // never recorded 64-bit value
437     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
438                         // code aging.
439 
440     FIRST_REAL_RELOC_MODE = CODE_TARGET,
441     LAST_REAL_RELOC_MODE = VENEER_POOL,
442     LAST_CODE_ENUM = DEBUGGER_STATEMENT,
443     LAST_GCED_ENUM = WASM_MEMORY_SIZE_REFERENCE,
444     FIRST_SHAREABLE_RELOC_MODE = CELL,
445   };
446 
447   STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);
448 
RelocInfo(Isolate * isolate)449   explicit RelocInfo(Isolate* isolate) : isolate_(isolate) {
450     DCHECK_NOT_NULL(isolate);
451   }
452 
RelocInfo(Isolate * isolate,byte * pc,Mode rmode,intptr_t data,Code * host)453   RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host)
454       : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) {
455     DCHECK_NOT_NULL(isolate);
456   }
457 
IsRealRelocMode(Mode mode)458   static inline bool IsRealRelocMode(Mode mode) {
459     return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE;
460   }
IsCodeTarget(Mode mode)461   static inline bool IsCodeTarget(Mode mode) {
462     return mode <= LAST_CODE_ENUM;
463   }
IsEmbeddedObject(Mode mode)464   static inline bool IsEmbeddedObject(Mode mode) {
465     return mode == EMBEDDED_OBJECT;
466   }
IsCell(Mode mode)467   static inline bool IsCell(Mode mode) { return mode == CELL; }
IsRuntimeEntry(Mode mode)468   static inline bool IsRuntimeEntry(Mode mode) {
469     return mode == RUNTIME_ENTRY;
470   }
471   // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)472   static inline bool IsGCRelocMode(Mode mode) {
473     return mode <= LAST_GCED_ENUM;
474   }
IsComment(Mode mode)475   static inline bool IsComment(Mode mode) {
476     return mode == COMMENT;
477   }
IsConstPool(Mode mode)478   static inline bool IsConstPool(Mode mode) {
479     return mode == CONST_POOL;
480   }
IsVeneerPool(Mode mode)481   static inline bool IsVeneerPool(Mode mode) {
482     return mode == VENEER_POOL;
483   }
IsDeoptPosition(Mode mode)484   static inline bool IsDeoptPosition(Mode mode) {
485     return mode == DEOPT_SCRIPT_OFFSET || mode == DEOPT_INLINING_ID;
486   }
IsDeoptReason(Mode mode)487   static inline bool IsDeoptReason(Mode mode) {
488     return mode == DEOPT_REASON;
489   }
IsDeoptId(Mode mode)490   static inline bool IsDeoptId(Mode mode) {
491     return mode == DEOPT_ID;
492   }
IsExternalReference(Mode mode)493   static inline bool IsExternalReference(Mode mode) {
494     return mode == EXTERNAL_REFERENCE;
495   }
IsInternalReference(Mode mode)496   static inline bool IsInternalReference(Mode mode) {
497     return mode == INTERNAL_REFERENCE;
498   }
IsInternalReferenceEncoded(Mode mode)499   static inline bool IsInternalReferenceEncoded(Mode mode) {
500     return mode == INTERNAL_REFERENCE_ENCODED;
501   }
IsDebugBreakSlot(Mode mode)502   static inline bool IsDebugBreakSlot(Mode mode) {
503     return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) ||
504            IsDebugBreakSlotAtCall(mode) || IsDebugBreakSlotAtTailCall(mode);
505   }
IsDebugBreakSlotAtPosition(Mode mode)506   static inline bool IsDebugBreakSlotAtPosition(Mode mode) {
507     return mode == DEBUG_BREAK_SLOT_AT_POSITION;
508   }
IsDebugBreakSlotAtReturn(Mode mode)509   static inline bool IsDebugBreakSlotAtReturn(Mode mode) {
510     return mode == DEBUG_BREAK_SLOT_AT_RETURN;
511   }
IsDebugBreakSlotAtCall(Mode mode)512   static inline bool IsDebugBreakSlotAtCall(Mode mode) {
513     return mode == DEBUG_BREAK_SLOT_AT_CALL;
514   }
IsDebugBreakSlotAtTailCall(Mode mode)515   static inline bool IsDebugBreakSlotAtTailCall(Mode mode) {
516     return mode == DEBUG_BREAK_SLOT_AT_TAIL_CALL;
517   }
IsDebuggerStatement(Mode mode)518   static inline bool IsDebuggerStatement(Mode mode) {
519     return mode == DEBUGGER_STATEMENT;
520   }
IsNone(Mode mode)521   static inline bool IsNone(Mode mode) {
522     return mode == NONE32 || mode == NONE64;
523   }
IsCodeAgeSequence(Mode mode)524   static inline bool IsCodeAgeSequence(Mode mode) {
525     return mode == CODE_AGE_SEQUENCE;
526   }
IsGeneratorContinuation(Mode mode)527   static inline bool IsGeneratorContinuation(Mode mode) {
528     return mode == GENERATOR_CONTINUATION;
529   }
IsWasmMemoryReference(Mode mode)530   static inline bool IsWasmMemoryReference(Mode mode) {
531     return mode == WASM_MEMORY_REFERENCE;
532   }
IsWasmMemorySizeReference(Mode mode)533   static inline bool IsWasmMemorySizeReference(Mode mode) {
534     return mode == WASM_MEMORY_SIZE_REFERENCE;
535   }
IsWasmGlobalReference(Mode mode)536   static inline bool IsWasmGlobalReference(Mode mode) {
537     return mode == WASM_GLOBAL_REFERENCE;
538   }
ModeMask(Mode mode)539   static inline int ModeMask(Mode mode) { return 1 << mode; }
540 
541   // Accessors
isolate()542   Isolate* isolate() const { return isolate_; }
pc()543   byte* pc() const { return pc_; }
set_pc(byte * pc)544   void set_pc(byte* pc) { pc_ = pc; }
rmode()545   Mode rmode() const {  return rmode_; }
data()546   intptr_t data() const { return data_; }
host()547   Code* host() const { return host_; }
set_host(Code * host)548   void set_host(Code* host) { host_ = host; }
549 
550   // Apply a relocation by delta bytes. When the code object is moved, PC
551   // relative addresses have to be updated as well as absolute addresses
552   // inside the code (internal references).
553   // Do not forget to flush the icache afterwards!
554   INLINE(void apply(intptr_t delta));
555 
556   // Is the pointer this relocation info refers to coded like a plain pointer
557   // or is it strange in some way (e.g. relative or patched into a series of
558   // instructions).
559   bool IsCodedSpecially();
560 
561   // If true, the pointer this relocation info refers to is an entry in the
562   // constant pool, otherwise the pointer is embedded in the instruction stream.
563   bool IsInConstantPool();
564 
565   Address wasm_memory_reference();
566   Address wasm_global_reference();
567   uint32_t wasm_memory_size_reference();
568   void update_wasm_memory_reference(
569       Address old_base, Address new_base, uint32_t old_size, uint32_t new_size,
570       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
571   void update_wasm_global_reference(
572       Address old_base, Address new_base,
573       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
574   void set_target_address(
575       Address target,
576       WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
577       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
578 
579   // this relocation applies to;
580   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
581   INLINE(Address target_address());
582   INLINE(Object* target_object());
583   INLINE(Handle<Object> target_object_handle(Assembler* origin));
584   INLINE(void set_target_object(
585       Object* target,
586       WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
587       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
588   INLINE(Address target_runtime_entry(Assembler* origin));
589   INLINE(void set_target_runtime_entry(
590       Address target,
591       WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
592       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
593   INLINE(Cell* target_cell());
594   INLINE(Handle<Cell> target_cell_handle());
595   INLINE(void set_target_cell(
596       Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
597       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
598   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
599   INLINE(Code* code_age_stub());
600   INLINE(void set_code_age_stub(
601       Code* stub, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
602 
603   // Returns the address of the constant pool entry where the target address
604   // is held.  This should only be called if IsInConstantPool returns true.
605   INLINE(Address constant_pool_entry_address());
606 
607   // Read the address of the word containing the target_address in an
608   // instruction stream.  What this means exactly is architecture-independent.
609   // The only architecture-independent user of this function is the serializer.
610   // The serializer uses it to find out how many raw bytes of instruction to
611   // output before the next target.  Architecture-independent code shouldn't
612   // dereference the pointer it gets back from this.
613   INLINE(Address target_address_address());
614 
615   // This indicates how much space a target takes up when deserializing a code
616   // stream.  For most architectures this is just the size of a pointer.  For
617   // an instruction like movw/movt where the target bits are mixed into the
618   // instruction bits the size of the target will be zero, indicating that the
619   // serializer should not step forwards in memory after a target is resolved
620   // and written.  In this case the target_address_address function above
621   // should return the end of the instructions to be patched, allowing the
622   // deserializer to deserialize the instructions as raw bytes and put them in
623   // place, ready to be patched with the target.
624   INLINE(int target_address_size());
625 
626   // Read the reference in the instruction this relocation
627   // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
628   INLINE(Address target_external_reference());
629 
630   // Read the reference in the instruction this relocation
631   // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
632   INLINE(Address target_internal_reference());
633 
634   // Return the reference address this relocation applies to;
635   // can only be called if rmode_ is INTERNAL_REFERENCE.
636   INLINE(Address target_internal_reference_address());
637 
638   // Read/modify the address of a call instruction. This is used to relocate
639   // the break points where straight-line code is patched with a call
640   // instruction.
641   INLINE(Address debug_call_address());
642   INLINE(void set_debug_call_address(Address target));
643 
644   // Wipe out a relocation to a fixed value, used for making snapshots
645   // reproducible.
646   INLINE(void WipeOut());
647 
648   template<typename StaticVisitor> inline void Visit(Heap* heap);
649 
650   template <typename ObjectVisitor>
651   inline void Visit(Isolate* isolate, ObjectVisitor* v);
652 
653   // Check whether this debug break slot has been patched with a call to the
654   // debugger.
655   bool IsPatchedDebugBreakSlotSequence();
656 
657 #ifdef DEBUG
658   // Check whether the given code contains relocation information that
659   // either is position-relative or movable by the garbage collector.
660   static bool RequiresRelocation(const CodeDesc& desc);
661 #endif
662 
663 #ifdef ENABLE_DISASSEMBLER
664   // Printing
665   static const char* RelocModeName(Mode rmode);
666   void Print(Isolate* isolate, std::ostream& os);  // NOLINT
667 #endif  // ENABLE_DISASSEMBLER
668 #ifdef VERIFY_HEAP
669   void Verify(Isolate* isolate);
670 #endif
671 
672   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
673   static const int kDataMask = (1 << CODE_TARGET_WITH_ID) | (1 << COMMENT);
674   static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION |
675                                          1 << DEBUG_BREAK_SLOT_AT_RETURN |
676                                          1 << DEBUG_BREAK_SLOT_AT_CALL;
677   static const int kApplyMask;  // Modes affected by apply.  Depends on arch.
678 
679  private:
680   void unchecked_update_wasm_memory_reference(Address address,
681                                               ICacheFlushMode flush_mode);
682   void unchecked_update_wasm_memory_size(uint32_t size,
683                                          ICacheFlushMode flush_mode);
684 
685   Isolate* isolate_;
686   // On ARM, note that pc_ is the address of the constant pool entry
687   // to be relocated and not the address of the instruction
688   // referencing the constant pool entry (except when rmode_ ==
689   // comment).
690   byte* pc_;
691   Mode rmode_;
692   intptr_t data_;
693   Code* host_;
694   friend class RelocIterator;
695 };
696 
697 
698 // RelocInfoWriter serializes a stream of relocation info. It writes towards
699 // lower addresses.
700 class RelocInfoWriter BASE_EMBEDDED {
701  public:
RelocInfoWriter()702   RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_id_(0) {}
RelocInfoWriter(byte * pos,byte * pc)703   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc), last_id_(0) {}
704 
pos()705   byte* pos() const { return pos_; }
last_pc()706   byte* last_pc() const { return last_pc_; }
707 
708   void Write(const RelocInfo* rinfo);
709 
710   // Update the state of the stream after reloc info buffer
711   // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)712   void Reposition(byte* pos, byte* pc) {
713     pos_ = pos;
714     last_pc_ = pc;
715   }
716 
717   // Max size (bytes) of a written RelocInfo. Longest encoding is
718   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
719   // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11.
720   // On x64 this is 1 + 4 + 1 + 1 + 8 == 15;
721   // Here we use the maximum of the two.
722   static const int kMaxSize = 15;
723 
724  private:
725   inline uint32_t WriteLongPCJump(uint32_t pc_delta);
726 
727   inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
728   inline void WriteShortTaggedData(intptr_t data_delta, int tag);
729 
730   inline void WriteMode(RelocInfo::Mode rmode);
731   inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
732   inline void WriteIntData(int data_delta);
733   inline void WriteData(intptr_t data_delta);
734 
735   byte* pos_;
736   byte* last_pc_;
737   int last_id_;
738   RelocInfo::Mode last_mode_;
739 
740   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
741 };
742 
743 
744 // A RelocIterator iterates over relocation information.
745 // Typical use:
746 //
747 //   for (RelocIterator it(code); !it.done(); it.next()) {
748 //     // do something with it.rinfo() here
749 //   }
750 //
751 // A mask can be specified to skip unwanted modes.
752 class RelocIterator: public Malloced {
753  public:
754   // Create a new iterator positioned at
755   // the beginning of the reloc info.
756   // Relocation information with mode k is included in the
757   // iteration iff bit k of mode_mask is set.
758   explicit RelocIterator(Code* code, int mode_mask = -1);
759   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
760 
761   // Iteration
done()762   bool done() const { return done_; }
763   void next();
764 
765   // Return pointer valid until next next().
rinfo()766   RelocInfo* rinfo() {
767     DCHECK(!done());
768     return &rinfo_;
769   }
770 
771  private:
772   // Advance* moves the position before/after reading.
773   // *Read* reads from current byte(s) into rinfo_.
774   // *Get* just reads and returns info on current byte.
775   void Advance(int bytes = 1) { pos_ -= bytes; }
776   int AdvanceGetTag();
777   RelocInfo::Mode GetMode();
778 
779   void AdvanceReadLongPCJump();
780 
781   int GetShortDataTypeTag();
782   void ReadShortTaggedPC();
783   void ReadShortTaggedId();
784   void ReadShortTaggedData();
785 
786   void AdvanceReadPC();
787   void AdvanceReadId();
788   void AdvanceReadInt();
789   void AdvanceReadData();
790 
791   // If the given mode is wanted, set it in rinfo_ and return true.
792   // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)793   bool SetMode(RelocInfo::Mode mode) {
794     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
795   }
796 
797   byte* pos_;
798   byte* end_;
799   byte* code_age_sequence_;
800   RelocInfo rinfo_;
801   bool done_;
802   int mode_mask_;
803   int last_id_;
804   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
805 };
806 
807 
808 //------------------------------------------------------------------------------
809 // External function
810 
811 //----------------------------------------------------------------------------
812 class SCTableReference;
813 class Debug_Address;
814 
815 
816 // An ExternalReference represents a C++ address used in the generated
817 // code. All references to C++ functions and variables must be encapsulated in
818 // an ExternalReference instance. This is done in order to track the origin of
819 // all external references in the code so that they can be bound to the correct
820 // addresses when deserializing a heap.
821 class ExternalReference BASE_EMBEDDED {
822  public:
823   // Used in the simulator to support different native api calls.
824   enum Type {
825     // Builtin call.
826     // Object* f(v8::internal::Arguments).
827     BUILTIN_CALL,  // default
828 
829     // Builtin call returning object pair.
830     // ObjectPair f(v8::internal::Arguments).
831     BUILTIN_CALL_PAIR,
832 
833     // Builtin call that returns .
834     // ObjectTriple f(v8::internal::Arguments).
835     BUILTIN_CALL_TRIPLE,
836 
837     // Builtin that takes float arguments and returns an int.
838     // int f(double, double).
839     BUILTIN_COMPARE_CALL,
840 
841     // Builtin call that returns floating point.
842     // double f(double, double).
843     BUILTIN_FP_FP_CALL,
844 
845     // Builtin call that returns floating point.
846     // double f(double).
847     BUILTIN_FP_CALL,
848 
849     // Builtin call that returns floating point.
850     // double f(double, int).
851     BUILTIN_FP_INT_CALL,
852 
853     // Direct call to API function callback.
854     // void f(v8::FunctionCallbackInfo&)
855     DIRECT_API_CALL,
856 
857     // Call to function callback via InvokeFunctionCallback.
858     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
859     PROFILING_API_CALL,
860 
861     // Direct call to accessor getter callback.
862     // void f(Local<Name> property, PropertyCallbackInfo& info)
863     DIRECT_GETTER_CALL,
864 
865     // Call to accessor getter callback via InvokeAccessorGetterCallback.
866     // void f(Local<Name> property, PropertyCallbackInfo& info,
867     //     AccessorNameGetterCallback callback)
868     PROFILING_GETTER_CALL
869   };
870 
871   static void SetUp();
872 
873   typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original,
874                                             Type type);
875 
ExternalReference()876   ExternalReference() : address_(NULL) {}
877 
878   ExternalReference(Address address, Isolate* isolate);
879 
880   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
881 
882   ExternalReference(Builtins::Name name, Isolate* isolate);
883 
884   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
885 
886   ExternalReference(const Runtime::Function* f, Isolate* isolate);
887 
888   explicit ExternalReference(StatsCounter* counter);
889 
890   ExternalReference(Isolate::AddressId id, Isolate* isolate);
891 
892   explicit ExternalReference(const SCTableReference& table_ref);
893 
894   // Isolate as an external reference.
895   static ExternalReference isolate_address(Isolate* isolate);
896 
897   // One-of-a-kind references. These references are not part of a general
898   // pattern. This means that they have to be added to the
899   // ExternalReferenceTable in serialize.cc manually.
900 
901   static ExternalReference interpreter_dispatch_table_address(Isolate* isolate);
902   static ExternalReference interpreter_dispatch_counters(Isolate* isolate);
903 
904   static ExternalReference incremental_marking_record_write_function(
905       Isolate* isolate);
906   static ExternalReference incremental_marking_record_write_code_entry_function(
907       Isolate* isolate);
908   static ExternalReference store_buffer_overflow_function(
909       Isolate* isolate);
910   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
911 
912   static ExternalReference get_date_field_function(Isolate* isolate);
913   static ExternalReference date_cache_stamp(Isolate* isolate);
914 
915   static ExternalReference get_make_code_young_function(Isolate* isolate);
916   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
917 
918   // Deoptimization support.
919   static ExternalReference new_deoptimizer_function(Isolate* isolate);
920   static ExternalReference compute_output_frames_function(Isolate* isolate);
921 
922   static ExternalReference wasm_f32_trunc(Isolate* isolate);
923   static ExternalReference wasm_f32_floor(Isolate* isolate);
924   static ExternalReference wasm_f32_ceil(Isolate* isolate);
925   static ExternalReference wasm_f32_nearest_int(Isolate* isolate);
926   static ExternalReference wasm_f64_trunc(Isolate* isolate);
927   static ExternalReference wasm_f64_floor(Isolate* isolate);
928   static ExternalReference wasm_f64_ceil(Isolate* isolate);
929   static ExternalReference wasm_f64_nearest_int(Isolate* isolate);
930   static ExternalReference wasm_int64_to_float32(Isolate* isolate);
931   static ExternalReference wasm_uint64_to_float32(Isolate* isolate);
932   static ExternalReference wasm_int64_to_float64(Isolate* isolate);
933   static ExternalReference wasm_uint64_to_float64(Isolate* isolate);
934   static ExternalReference wasm_float32_to_int64(Isolate* isolate);
935   static ExternalReference wasm_float32_to_uint64(Isolate* isolate);
936   static ExternalReference wasm_float64_to_int64(Isolate* isolate);
937   static ExternalReference wasm_float64_to_uint64(Isolate* isolate);
938   static ExternalReference wasm_int64_div(Isolate* isolate);
939   static ExternalReference wasm_int64_mod(Isolate* isolate);
940   static ExternalReference wasm_uint64_div(Isolate* isolate);
941   static ExternalReference wasm_uint64_mod(Isolate* isolate);
942   static ExternalReference wasm_word32_ctz(Isolate* isolate);
943   static ExternalReference wasm_word64_ctz(Isolate* isolate);
944   static ExternalReference wasm_word32_popcnt(Isolate* isolate);
945   static ExternalReference wasm_word64_popcnt(Isolate* isolate);
946   static ExternalReference wasm_float64_pow(Isolate* isolate);
947 
948   static ExternalReference f64_acos_wrapper_function(Isolate* isolate);
949   static ExternalReference f64_asin_wrapper_function(Isolate* isolate);
950   static ExternalReference f64_mod_wrapper_function(Isolate* isolate);
951 
952   // Log support.
953   static ExternalReference log_enter_external_function(Isolate* isolate);
954   static ExternalReference log_leave_external_function(Isolate* isolate);
955 
956   // Static variable Heap::roots_array_start()
957   static ExternalReference roots_array_start(Isolate* isolate);
958 
959   // Static variable Heap::allocation_sites_list_address()
960   static ExternalReference allocation_sites_list_address(Isolate* isolate);
961 
962   // Static variable StackGuard::address_of_jslimit()
963   V8_EXPORT_PRIVATE static ExternalReference address_of_stack_limit(
964       Isolate* isolate);
965 
966   // Static variable StackGuard::address_of_real_jslimit()
967   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
968 
969   // Static variable RegExpStack::limit_address()
970   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
971 
972   // Static variables for RegExp.
973   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
974   static ExternalReference address_of_regexp_stack_memory_address(
975       Isolate* isolate);
976   static ExternalReference address_of_regexp_stack_memory_size(
977       Isolate* isolate);
978 
979   // Write barrier.
980   static ExternalReference store_buffer_top(Isolate* isolate);
981 
982   // Used for fast allocation in generated code.
983   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
984   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
985   static ExternalReference old_space_allocation_top_address(Isolate* isolate);
986   static ExternalReference old_space_allocation_limit_address(Isolate* isolate);
987 
988   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
989   static ExternalReference power_double_double_function(Isolate* isolate);
990 
991   static ExternalReference handle_scope_next_address(Isolate* isolate);
992   static ExternalReference handle_scope_limit_address(Isolate* isolate);
993   static ExternalReference handle_scope_level_address(Isolate* isolate);
994 
995   static ExternalReference scheduled_exception_address(Isolate* isolate);
996   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
997 
998   // Static variables containing common double constants.
999   static ExternalReference address_of_min_int();
1000   static ExternalReference address_of_one_half();
1001   static ExternalReference address_of_minus_one_half();
1002   static ExternalReference address_of_negative_infinity();
1003   static ExternalReference address_of_the_hole_nan();
1004   static ExternalReference address_of_uint32_bias();
1005 
1006   // Static variables containing simd constants.
1007   static ExternalReference address_of_float_abs_constant();
1008   static ExternalReference address_of_float_neg_constant();
1009   static ExternalReference address_of_double_abs_constant();
1010   static ExternalReference address_of_double_neg_constant();
1011 
1012   // IEEE 754 functions.
1013   static ExternalReference ieee754_acos_function(Isolate* isolate);
1014   static ExternalReference ieee754_acosh_function(Isolate* isolate);
1015   static ExternalReference ieee754_asin_function(Isolate* isolate);
1016   static ExternalReference ieee754_asinh_function(Isolate* isolate);
1017   static ExternalReference ieee754_atan_function(Isolate* isolate);
1018   static ExternalReference ieee754_atanh_function(Isolate* isolate);
1019   static ExternalReference ieee754_atan2_function(Isolate* isolate);
1020   static ExternalReference ieee754_cbrt_function(Isolate* isolate);
1021   static ExternalReference ieee754_cos_function(Isolate* isolate);
1022   static ExternalReference ieee754_cosh_function(Isolate* isolate);
1023   static ExternalReference ieee754_exp_function(Isolate* isolate);
1024   static ExternalReference ieee754_expm1_function(Isolate* isolate);
1025   static ExternalReference ieee754_log_function(Isolate* isolate);
1026   static ExternalReference ieee754_log1p_function(Isolate* isolate);
1027   static ExternalReference ieee754_log10_function(Isolate* isolate);
1028   static ExternalReference ieee754_log2_function(Isolate* isolate);
1029   static ExternalReference ieee754_sin_function(Isolate* isolate);
1030   static ExternalReference ieee754_sinh_function(Isolate* isolate);
1031   static ExternalReference ieee754_tan_function(Isolate* isolate);
1032   static ExternalReference ieee754_tanh_function(Isolate* isolate);
1033 
1034   static ExternalReference page_flags(Page* page);
1035 
1036   static ExternalReference ForDeoptEntry(Address entry);
1037 
1038   static ExternalReference cpu_features();
1039 
1040   static ExternalReference is_tail_call_elimination_enabled_address(
1041       Isolate* isolate);
1042 
1043   static ExternalReference debug_is_active_address(Isolate* isolate);
1044   static ExternalReference debug_after_break_target_address(Isolate* isolate);
1045 
1046   static ExternalReference is_profiling_address(Isolate* isolate);
1047   static ExternalReference invoke_function_callback(Isolate* isolate);
1048   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
1049 
1050   V8_EXPORT_PRIVATE static ExternalReference runtime_function_table_address(
1051       Isolate* isolate);
1052 
address()1053   Address address() const { return reinterpret_cast<Address>(address_); }
1054 
1055   // Used to read out the last step action of the debugger.
1056   static ExternalReference debug_last_step_action_address(Isolate* isolate);
1057 
1058   // Used to check for suspended generator, used for stepping across await call.
1059   static ExternalReference debug_suspended_generator_address(Isolate* isolate);
1060 
1061 #ifndef V8_INTERPRETED_REGEXP
1062   // C functions called from RegExp generated code.
1063 
1064   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
1065   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
1066 
1067   // Function RegExpMacroAssembler*::CheckStackGuardState()
1068   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
1069 
1070   // Function NativeRegExpMacroAssembler::GrowStack()
1071   static ExternalReference re_grow_stack(Isolate* isolate);
1072 
1073   // byte NativeRegExpMacroAssembler::word_character_bitmap
1074   static ExternalReference re_word_character_map();
1075 
1076 #endif
1077 
1078   // This lets you register a function that rewrites all external references.
1079   // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)1080   static void set_redirector(Isolate* isolate,
1081                              ExternalReferenceRedirector* redirector) {
1082     // We can't stack them.
1083     DCHECK(isolate->external_reference_redirector() == NULL);
1084     isolate->set_external_reference_redirector(
1085         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
1086   }
1087 
1088   static ExternalReference stress_deopt_count(Isolate* isolate);
1089 
1090   static ExternalReference fixed_typed_array_base_data_offset();
1091 
1092  private:
ExternalReference(void * address)1093   explicit ExternalReference(void* address)
1094       : address_(address) {}
1095 
1096   static void* Redirect(Isolate* isolate,
1097                         Address address_arg,
1098                         Type type = ExternalReference::BUILTIN_CALL) {
1099     ExternalReferenceRedirector* redirector =
1100         reinterpret_cast<ExternalReferenceRedirector*>(
1101             isolate->external_reference_redirector());
1102     void* address = reinterpret_cast<void*>(address_arg);
1103     void* answer =
1104         (redirector == NULL) ? address : (*redirector)(isolate, address, type);
1105     return answer;
1106   }
1107 
1108   void* address_;
1109 };
1110 
1111 V8_EXPORT_PRIVATE bool operator==(ExternalReference, ExternalReference);
1112 bool operator!=(ExternalReference, ExternalReference);
1113 
1114 size_t hash_value(ExternalReference);
1115 
1116 V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&, ExternalReference);
1117 
1118 // -----------------------------------------------------------------------------
1119 // Utility functions
1120 
NumberOfBitsSet(uint32_t x)1121 inline int NumberOfBitsSet(uint32_t x) {
1122   unsigned int num_bits_set;
1123   for (num_bits_set = 0; x; x >>= 1) {
1124     num_bits_set += x & 1;
1125   }
1126   return num_bits_set;
1127 }
1128 
1129 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1130 double power_helper(Isolate* isolate, double x, double y);
1131 double power_double_int(double x, int y);
1132 double power_double_double(double x, double y);
1133 
1134 // Helper class for generating code or data associated with the code
1135 // right after a call instruction. As an example this can be used to
1136 // generate safepoint data after calls for crankshaft.
1137 class CallWrapper {
1138  public:
CallWrapper()1139   CallWrapper() { }
~CallWrapper()1140   virtual ~CallWrapper() { }
1141   // Called just before emitting a call. Argument is the size of the generated
1142   // call code.
1143   virtual void BeforeCall(int call_size) const = 0;
1144   // Called just after emitting a call, i.e., at the return site for the call.
1145   virtual void AfterCall() const = 0;
1146   // Return whether call needs to check for debug stepping.
NeedsDebugStepCheck()1147   virtual bool NeedsDebugStepCheck() const { return false; }
1148 };
1149 
1150 
1151 class NullCallWrapper : public CallWrapper {
1152  public:
NullCallWrapper()1153   NullCallWrapper() { }
~NullCallWrapper()1154   virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1155   virtual void BeforeCall(int call_size) const { }
AfterCall()1156   virtual void AfterCall() const { }
1157 };
1158 
1159 
1160 class CheckDebugStepCallWrapper : public CallWrapper {
1161  public:
CheckDebugStepCallWrapper()1162   CheckDebugStepCallWrapper() {}
~CheckDebugStepCallWrapper()1163   virtual ~CheckDebugStepCallWrapper() {}
BeforeCall(int call_size)1164   virtual void BeforeCall(int call_size) const {}
AfterCall()1165   virtual void AfterCall() const {}
NeedsDebugStepCheck()1166   virtual bool NeedsDebugStepCheck() const { return true; }
1167 };
1168 
1169 
1170 // -----------------------------------------------------------------------------
1171 // Constant pool support
1172 
1173 class ConstantPoolEntry {
1174  public:
ConstantPoolEntry()1175   ConstantPoolEntry() {}
ConstantPoolEntry(int position,intptr_t value,bool sharing_ok)1176   ConstantPoolEntry(int position, intptr_t value, bool sharing_ok)
1177       : position_(position),
1178         merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
1179         value_(value) {}
ConstantPoolEntry(int position,double value)1180   ConstantPoolEntry(int position, double value)
1181       : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {}
1182 
position()1183   int position() const { return position_; }
sharing_ok()1184   bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
is_merged()1185   bool is_merged() const { return merged_index_ >= 0; }
merged_index(void)1186   int merged_index(void) const {
1187     DCHECK(is_merged());
1188     return merged_index_;
1189   }
set_merged_index(int index)1190   void set_merged_index(int index) {
1191     merged_index_ = index;
1192     DCHECK(is_merged());
1193   }
offset(void)1194   int offset(void) const {
1195     DCHECK(merged_index_ >= 0);
1196     return merged_index_;
1197   }
set_offset(int offset)1198   void set_offset(int offset) {
1199     DCHECK(offset >= 0);
1200     merged_index_ = offset;
1201   }
value()1202   intptr_t value() const { return value_; }
value64()1203   uint64_t value64() const { return bit_cast<uint64_t>(value64_); }
1204 
1205   enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };
1206 
size(Type type)1207   static int size(Type type) {
1208     return (type == INTPTR) ? kPointerSize : kDoubleSize;
1209   }
1210 
1211   enum Access { REGULAR, OVERFLOWED };
1212 
1213  private:
1214   int position_;
1215   int merged_index_;
1216   union {
1217     intptr_t value_;
1218     double value64_;
1219   };
1220   enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
1221 };
1222 
1223 
1224 // -----------------------------------------------------------------------------
1225 // Embedded constant pool support
1226 
1227 class ConstantPoolBuilder BASE_EMBEDDED {
1228  public:
1229   ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);
1230 
1231   // Add pointer-sized constant to the embedded constant pool
AddEntry(int position,intptr_t value,bool sharing_ok)1232   ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
1233                                      bool sharing_ok) {
1234     ConstantPoolEntry entry(position, value, sharing_ok);
1235     return AddEntry(entry, ConstantPoolEntry::INTPTR);
1236   }
1237 
1238   // Add double constant to the embedded constant pool
AddEntry(int position,double value)1239   ConstantPoolEntry::Access AddEntry(int position, double value) {
1240     ConstantPoolEntry entry(position, value);
1241     return AddEntry(entry, ConstantPoolEntry::DOUBLE);
1242   }
1243 
1244   // Previews the access type required for the next new entry to be added.
1245   ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;
1246 
IsEmpty()1247   bool IsEmpty() {
1248     return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
1249            info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
1250            info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
1251            info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
1252   }
1253 
1254   // Emit the constant pool.  Invoke only after all entries have been
1255   // added and all instructions have been emitted.
1256   // Returns position of the emitted pool (zero implies no constant pool).
1257   int Emit(Assembler* assm);
1258 
1259   // Returns the label associated with the start of the constant pool.
1260   // Linking to this label in the function prologue may provide an
1261   // efficient means of constant pool pointer register initialization
1262   // on some architectures.
EmittedPosition()1263   inline Label* EmittedPosition() { return &emitted_label_; }
1264 
1265  private:
1266   ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
1267                                      ConstantPoolEntry::Type type);
1268   void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
1269   void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
1270                  ConstantPoolEntry::Type type);
1271 
1272   struct PerTypeEntryInfo {
PerTypeEntryInfoPerTypeEntryInfo1273     PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
overflowPerTypeEntryInfo1274     bool overflow() const {
1275       return (overflow_start >= 0 &&
1276               overflow_start < static_cast<int>(entries.size()));
1277     }
1278     int regular_reach_bits;
1279     int regular_count;
1280     int overflow_start;
1281     std::vector<ConstantPoolEntry> entries;
1282     std::vector<ConstantPoolEntry> shared_entries;
1283   };
1284 
1285   Label emitted_label_;  // Records pc_offset of emitted pool
1286   PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
1287 };
1288 
1289 }  // namespace internal
1290 }  // namespace v8
1291 #endif  // V8_ASSEMBLER_H_
1292