1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_OPTIMIZING_LOCATIONS_H_ 18 #define ART_COMPILER_OPTIMIZING_LOCATIONS_H_ 19 20 #include "base/arena_containers.h" 21 #include "base/arena_object.h" 22 #include "base/bit_field.h" 23 #include "base/bit_utils.h" 24 #include "base/bit_vector.h" 25 #include "base/value_object.h" 26 27 namespace art { 28 29 class HConstant; 30 class HInstruction; 31 class Location; 32 33 std::ostream& operator<<(std::ostream& os, const Location& location); 34 35 /** 36 * A Location is an abstraction over the potential location 37 * of an instruction. It could be in register or stack. 38 */ 39 class Location : public ValueObject { 40 public: 41 enum OutputOverlap { 42 // The liveness of the output overlaps the liveness of one or 43 // several input(s); the register allocator cannot reuse an 44 // input's location for the output's location. 45 kOutputOverlap, 46 // The liveness of the output does not overlap the liveness of any 47 // input; the register allocator is allowed to reuse an input's 48 // location for the output's location. 49 kNoOutputOverlap 50 }; 51 52 enum Kind { 53 kInvalid = 0, 54 kConstant = 1, 55 kStackSlot = 2, // 32bit stack slot. 56 kDoubleStackSlot = 3, // 64bit stack slot. 57 58 kRegister = 4, // Core register. 59 60 // We do not use the value 5 because it conflicts with kLocationConstantMask. 61 kDoNotUse5 = 5, 62 63 kFpuRegister = 6, // Float register. 64 65 kRegisterPair = 7, // Long register. 66 67 kFpuRegisterPair = 8, // Double register. 68 69 // We do not use the value 9 because it conflicts with kLocationConstantMask. 70 kDoNotUse9 = 9, 71 72 kSIMDStackSlot = 10, // 128bit stack slot. TODO: generalize with encoded #bytes? 73 74 // Unallocated location represents a location that is not fixed and can be 75 // allocated by a register allocator. Each unallocated location has 76 // a policy that specifies what kind of location is suitable. Payload 77 // contains register allocation policy. 78 kUnallocated = 11, 79 }; 80 Location()81 Location() : ValueObject(), value_(kInvalid) { 82 // Verify that non-constant location kinds do not interfere with kConstant. 83 static_assert((kInvalid & kLocationConstantMask) != kConstant, "TagError"); 84 static_assert((kUnallocated & kLocationConstantMask) != kConstant, "TagError"); 85 static_assert((kStackSlot & kLocationConstantMask) != kConstant, "TagError"); 86 static_assert((kDoubleStackSlot & kLocationConstantMask) != kConstant, "TagError"); 87 static_assert((kSIMDStackSlot & kLocationConstantMask) != kConstant, "TagError"); 88 static_assert((kRegister & kLocationConstantMask) != kConstant, "TagError"); 89 static_assert((kFpuRegister & kLocationConstantMask) != kConstant, "TagError"); 90 static_assert((kRegisterPair & kLocationConstantMask) != kConstant, "TagError"); 91 static_assert((kFpuRegisterPair & kLocationConstantMask) != kConstant, "TagError"); 92 static_assert((kConstant & kLocationConstantMask) == kConstant, "TagError"); 93 94 DCHECK(!IsValid()); 95 } 96 97 Location(const Location& other) = default; 98 99 Location& operator=(const Location& other) = default; 100 IsConstant()101 bool IsConstant() const { 102 return (value_ & kLocationConstantMask) == kConstant; 103 } 104 ConstantLocation(HConstant * constant)105 static Location ConstantLocation(HConstant* constant) { 106 DCHECK(constant != nullptr); 107 return Location(kConstant | reinterpret_cast<uintptr_t>(constant)); 108 } 109 GetConstant()110 HConstant* GetConstant() const { 111 DCHECK(IsConstant()); 112 return reinterpret_cast<HConstant*>(value_ & ~kLocationConstantMask); 113 } 114 IsValid()115 bool IsValid() const { 116 return value_ != kInvalid; 117 } 118 IsInvalid()119 bool IsInvalid() const { 120 return !IsValid(); 121 } 122 123 // Empty location. Used if there the location should be ignored. NoLocation()124 static Location NoLocation() { 125 return Location(); 126 } 127 128 // Register locations. RegisterLocation(int reg)129 static Location RegisterLocation(int reg) { 130 return Location(kRegister, reg); 131 } 132 FpuRegisterLocation(int reg)133 static Location FpuRegisterLocation(int reg) { 134 return Location(kFpuRegister, reg); 135 } 136 RegisterPairLocation(int low,int high)137 static Location RegisterPairLocation(int low, int high) { 138 return Location(kRegisterPair, low << 16 | high); 139 } 140 FpuRegisterPairLocation(int low,int high)141 static Location FpuRegisterPairLocation(int low, int high) { 142 return Location(kFpuRegisterPair, low << 16 | high); 143 } 144 IsRegister()145 bool IsRegister() const { 146 return GetKind() == kRegister; 147 } 148 IsFpuRegister()149 bool IsFpuRegister() const { 150 return GetKind() == kFpuRegister; 151 } 152 IsRegisterPair()153 bool IsRegisterPair() const { 154 return GetKind() == kRegisterPair; 155 } 156 IsFpuRegisterPair()157 bool IsFpuRegisterPair() const { 158 return GetKind() == kFpuRegisterPair; 159 } 160 IsRegisterKind()161 bool IsRegisterKind() const { 162 return IsRegister() || IsFpuRegister() || IsRegisterPair() || IsFpuRegisterPair(); 163 } 164 reg()165 int reg() const { 166 DCHECK(IsRegister() || IsFpuRegister()); 167 return GetPayload(); 168 } 169 low()170 int low() const { 171 DCHECK(IsPair()); 172 return GetPayload() >> 16; 173 } 174 high()175 int high() const { 176 DCHECK(IsPair()); 177 return GetPayload() & 0xFFFF; 178 } 179 180 template <typename T> AsRegister()181 T AsRegister() const { 182 DCHECK(IsRegister()); 183 return static_cast<T>(reg()); 184 } 185 186 template <typename T> AsFpuRegister()187 T AsFpuRegister() const { 188 DCHECK(IsFpuRegister()); 189 return static_cast<T>(reg()); 190 } 191 192 template <typename T> AsRegisterPairLow()193 T AsRegisterPairLow() const { 194 DCHECK(IsRegisterPair()); 195 return static_cast<T>(low()); 196 } 197 198 template <typename T> AsRegisterPairHigh()199 T AsRegisterPairHigh() const { 200 DCHECK(IsRegisterPair()); 201 return static_cast<T>(high()); 202 } 203 204 template <typename T> AsFpuRegisterPairLow()205 T AsFpuRegisterPairLow() const { 206 DCHECK(IsFpuRegisterPair()); 207 return static_cast<T>(low()); 208 } 209 210 template <typename T> AsFpuRegisterPairHigh()211 T AsFpuRegisterPairHigh() const { 212 DCHECK(IsFpuRegisterPair()); 213 return static_cast<T>(high()); 214 } 215 IsPair()216 bool IsPair() const { 217 return IsRegisterPair() || IsFpuRegisterPair(); 218 } 219 ToLow()220 Location ToLow() const { 221 if (IsRegisterPair()) { 222 return Location::RegisterLocation(low()); 223 } else if (IsFpuRegisterPair()) { 224 return Location::FpuRegisterLocation(low()); 225 } else { 226 DCHECK(IsDoubleStackSlot()); 227 return Location::StackSlot(GetStackIndex()); 228 } 229 } 230 ToHigh()231 Location ToHigh() const { 232 if (IsRegisterPair()) { 233 return Location::RegisterLocation(high()); 234 } else if (IsFpuRegisterPair()) { 235 return Location::FpuRegisterLocation(high()); 236 } else { 237 DCHECK(IsDoubleStackSlot()); 238 return Location::StackSlot(GetHighStackIndex(4)); 239 } 240 } 241 EncodeStackIndex(intptr_t stack_index)242 static uintptr_t EncodeStackIndex(intptr_t stack_index) { 243 DCHECK(-kStackIndexBias <= stack_index); 244 DCHECK(stack_index < kStackIndexBias); 245 return static_cast<uintptr_t>(kStackIndexBias + stack_index); 246 } 247 StackSlot(intptr_t stack_index)248 static Location StackSlot(intptr_t stack_index) { 249 uintptr_t payload = EncodeStackIndex(stack_index); 250 Location loc(kStackSlot, payload); 251 // Ensure that sign is preserved. 252 DCHECK_EQ(loc.GetStackIndex(), stack_index); 253 return loc; 254 } 255 IsStackSlot()256 bool IsStackSlot() const { 257 return GetKind() == kStackSlot; 258 } 259 DoubleStackSlot(intptr_t stack_index)260 static Location DoubleStackSlot(intptr_t stack_index) { 261 uintptr_t payload = EncodeStackIndex(stack_index); 262 Location loc(kDoubleStackSlot, payload); 263 // Ensure that sign is preserved. 264 DCHECK_EQ(loc.GetStackIndex(), stack_index); 265 return loc; 266 } 267 IsDoubleStackSlot()268 bool IsDoubleStackSlot() const { 269 return GetKind() == kDoubleStackSlot; 270 } 271 SIMDStackSlot(intptr_t stack_index)272 static Location SIMDStackSlot(intptr_t stack_index) { 273 uintptr_t payload = EncodeStackIndex(stack_index); 274 Location loc(kSIMDStackSlot, payload); 275 // Ensure that sign is preserved. 276 DCHECK_EQ(loc.GetStackIndex(), stack_index); 277 return loc; 278 } 279 IsSIMDStackSlot()280 bool IsSIMDStackSlot() const { 281 return GetKind() == kSIMDStackSlot; 282 } 283 GetStackIndex()284 intptr_t GetStackIndex() const { 285 DCHECK(IsStackSlot() || IsDoubleStackSlot() || IsSIMDStackSlot()); 286 // Decode stack index manually to preserve sign. 287 return GetPayload() - kStackIndexBias; 288 } 289 GetHighStackIndex(uintptr_t word_size)290 intptr_t GetHighStackIndex(uintptr_t word_size) const { 291 DCHECK(IsDoubleStackSlot()); 292 // Decode stack index manually to preserve sign. 293 return GetPayload() - kStackIndexBias + word_size; 294 } 295 GetKind()296 Kind GetKind() const { 297 return IsConstant() ? kConstant : KindField::Decode(value_); 298 } 299 Equals(Location other)300 bool Equals(Location other) const { 301 return value_ == other.value_; 302 } 303 Contains(Location other)304 bool Contains(Location other) const { 305 if (Equals(other)) { 306 return true; 307 } else if (IsPair() || IsDoubleStackSlot()) { 308 return ToLow().Equals(other) || ToHigh().Equals(other); 309 } 310 return false; 311 } 312 OverlapsWith(Location other)313 bool OverlapsWith(Location other) const { 314 // Only check the overlapping case that can happen with our register allocation algorithm. 315 bool overlap = Contains(other) || other.Contains(*this); 316 if (kIsDebugBuild && !overlap) { 317 // Note: These are also overlapping cases. But we are not able to handle them in 318 // ParallelMoveResolverWithSwap. Make sure that we do not meet such case with our compiler. 319 if ((IsPair() && other.IsPair()) || (IsDoubleStackSlot() && other.IsDoubleStackSlot())) { 320 DCHECK(!Contains(other.ToLow())); 321 DCHECK(!Contains(other.ToHigh())); 322 } 323 } 324 return overlap; 325 } 326 DebugString()327 const char* DebugString() const { 328 switch (GetKind()) { 329 case kInvalid: return "I"; 330 case kRegister: return "R"; 331 case kStackSlot: return "S"; 332 case kDoubleStackSlot: return "DS"; 333 case kSIMDStackSlot: return "SIMD"; 334 case kUnallocated: return "U"; 335 case kConstant: return "C"; 336 case kFpuRegister: return "F"; 337 case kRegisterPair: return "RP"; 338 case kFpuRegisterPair: return "FP"; 339 case kDoNotUse5: // fall-through 340 case kDoNotUse9: 341 LOG(FATAL) << "Should not use this location kind"; 342 } 343 UNREACHABLE(); 344 } 345 346 // Unallocated locations. 347 enum Policy { 348 kAny, 349 kRequiresRegister, 350 kRequiresFpuRegister, 351 kSameAsFirstInput, 352 }; 353 IsUnallocated()354 bool IsUnallocated() const { 355 return GetKind() == kUnallocated; 356 } 357 UnallocatedLocation(Policy policy)358 static Location UnallocatedLocation(Policy policy) { 359 return Location(kUnallocated, PolicyField::Encode(policy)); 360 } 361 362 // Any free register is suitable to replace this unallocated location. Any()363 static Location Any() { 364 return UnallocatedLocation(kAny); 365 } 366 RequiresRegister()367 static Location RequiresRegister() { 368 return UnallocatedLocation(kRequiresRegister); 369 } 370 RequiresFpuRegister()371 static Location RequiresFpuRegister() { 372 return UnallocatedLocation(kRequiresFpuRegister); 373 } 374 375 static Location RegisterOrConstant(HInstruction* instruction); 376 static Location RegisterOrInt32Constant(HInstruction* instruction); 377 static Location ByteRegisterOrConstant(int reg, HInstruction* instruction); 378 static Location FpuRegisterOrConstant(HInstruction* instruction); 379 static Location FpuRegisterOrInt32Constant(HInstruction* instruction); 380 381 // The location of the first input to the instruction will be 382 // used to replace this unallocated location. SameAsFirstInput()383 static Location SameAsFirstInput() { 384 return UnallocatedLocation(kSameAsFirstInput); 385 } 386 GetPolicy()387 Policy GetPolicy() const { 388 DCHECK(IsUnallocated()); 389 return PolicyField::Decode(GetPayload()); 390 } 391 RequiresRegisterKind()392 bool RequiresRegisterKind() const { 393 return GetPolicy() == kRequiresRegister || GetPolicy() == kRequiresFpuRegister; 394 } 395 GetEncoding()396 uintptr_t GetEncoding() const { 397 return GetPayload(); 398 } 399 400 private: 401 // Number of bits required to encode Kind value. 402 static constexpr uint32_t kBitsForKind = 4; 403 static constexpr uint32_t kBitsForPayload = kBitsPerIntPtrT - kBitsForKind; 404 static constexpr uintptr_t kLocationConstantMask = 0x3; 405 Location(uintptr_t value)406 explicit Location(uintptr_t value) : value_(value) {} 407 Location(Kind kind,uintptr_t payload)408 Location(Kind kind, uintptr_t payload) 409 : value_(KindField::Encode(kind) | PayloadField::Encode(payload)) {} 410 GetPayload()411 uintptr_t GetPayload() const { 412 return PayloadField::Decode(value_); 413 } 414 415 typedef BitField<Kind, 0, kBitsForKind> KindField; 416 typedef BitField<uintptr_t, kBitsForKind, kBitsForPayload> PayloadField; 417 418 // Layout for kUnallocated locations payload. 419 typedef BitField<Policy, 0, 3> PolicyField; 420 421 // Layout for stack slots. 422 static const intptr_t kStackIndexBias = 423 static_cast<intptr_t>(1) << (kBitsForPayload - 1); 424 425 // Location either contains kind and payload fields or a tagged handle for 426 // a constant locations. Values of enumeration Kind are selected in such a 427 // way that none of them can be interpreted as a kConstant tag. 428 uintptr_t value_; 429 }; 430 std::ostream& operator<<(std::ostream& os, const Location::Kind& rhs); 431 std::ostream& operator<<(std::ostream& os, const Location::Policy& rhs); 432 433 class RegisterSet : public ValueObject { 434 public: Empty()435 static RegisterSet Empty() { return RegisterSet(); } AllFpu()436 static RegisterSet AllFpu() { return RegisterSet(0, -1); } 437 Add(Location loc)438 void Add(Location loc) { 439 if (loc.IsRegister()) { 440 core_registers_ |= (1 << loc.reg()); 441 } else { 442 DCHECK(loc.IsFpuRegister()); 443 floating_point_registers_ |= (1 << loc.reg()); 444 } 445 } 446 Remove(Location loc)447 void Remove(Location loc) { 448 if (loc.IsRegister()) { 449 core_registers_ &= ~(1 << loc.reg()); 450 } else { 451 DCHECK(loc.IsFpuRegister()) << loc; 452 floating_point_registers_ &= ~(1 << loc.reg()); 453 } 454 } 455 ContainsCoreRegister(uint32_t id)456 bool ContainsCoreRegister(uint32_t id) const { 457 return Contains(core_registers_, id); 458 } 459 ContainsFloatingPointRegister(uint32_t id)460 bool ContainsFloatingPointRegister(uint32_t id) const { 461 return Contains(floating_point_registers_, id); 462 } 463 Contains(uint32_t register_set,uint32_t reg)464 static bool Contains(uint32_t register_set, uint32_t reg) { 465 return (register_set & (1 << reg)) != 0; 466 } 467 GetNumberOfRegisters()468 size_t GetNumberOfRegisters() const { 469 return POPCOUNT(core_registers_) + POPCOUNT(floating_point_registers_); 470 } 471 GetCoreRegisters()472 uint32_t GetCoreRegisters() const { 473 return core_registers_; 474 } 475 GetFloatingPointRegisters()476 uint32_t GetFloatingPointRegisters() const { 477 return floating_point_registers_; 478 } 479 480 private: RegisterSet()481 RegisterSet() : core_registers_(0), floating_point_registers_(0) {} RegisterSet(uint32_t core,uint32_t fp)482 RegisterSet(uint32_t core, uint32_t fp) : core_registers_(core), floating_point_registers_(fp) {} 483 484 uint32_t core_registers_; 485 uint32_t floating_point_registers_; 486 }; 487 488 static constexpr bool kIntrinsified = true; 489 490 /** 491 * The code generator computes LocationSummary for each instruction so that 492 * the instruction itself knows what code to generate: where to find the inputs 493 * and where to place the result. 494 * 495 * The intent is to have the code for generating the instruction independent of 496 * register allocation. A register allocator just has to provide a LocationSummary. 497 */ 498 class LocationSummary : public ArenaObject<kArenaAllocLocationSummary> { 499 public: 500 enum CallKind { 501 kNoCall, 502 kCallOnMainAndSlowPath, 503 kCallOnSlowPath, 504 kCallOnMainOnly 505 }; 506 507 explicit LocationSummary(HInstruction* instruction, 508 CallKind call_kind = kNoCall, 509 bool intrinsified = false); 510 SetInAt(uint32_t at,Location location)511 void SetInAt(uint32_t at, Location location) { 512 inputs_[at] = location; 513 } 514 InAt(uint32_t at)515 Location InAt(uint32_t at) const { 516 return inputs_[at]; 517 } 518 GetInputCount()519 size_t GetInputCount() const { 520 return inputs_.size(); 521 } 522 523 // Set the output location. Argument `overlaps` tells whether the 524 // output overlaps any of the inputs (if so, it cannot share the 525 // same register as one of the inputs); it is set to 526 // `Location::kOutputOverlap` by default for safety. 527 void SetOut(Location location, Location::OutputOverlap overlaps = Location::kOutputOverlap) { 528 DCHECK(output_.IsInvalid()); 529 output_overlaps_ = overlaps; 530 output_ = location; 531 } 532 UpdateOut(Location location)533 void UpdateOut(Location location) { 534 // There are two reasons for updating an output: 535 // 1) Parameters, where we only know the exact stack slot after 536 // doing full register allocation. 537 // 2) Unallocated location. 538 DCHECK(output_.IsStackSlot() || output_.IsDoubleStackSlot() || output_.IsUnallocated()); 539 output_ = location; 540 } 541 AddTemp(Location location)542 void AddTemp(Location location) { 543 temps_.push_back(location); 544 } 545 AddRegisterTemps(size_t count)546 void AddRegisterTemps(size_t count) { 547 for (size_t i = 0; i < count; ++i) { 548 AddTemp(Location::RequiresRegister()); 549 } 550 } 551 GetTemp(uint32_t at)552 Location GetTemp(uint32_t at) const { 553 return temps_[at]; 554 } 555 SetTempAt(uint32_t at,Location location)556 void SetTempAt(uint32_t at, Location location) { 557 DCHECK(temps_[at].IsUnallocated() || temps_[at].IsInvalid()); 558 temps_[at] = location; 559 } 560 GetTempCount()561 size_t GetTempCount() const { 562 return temps_.size(); 563 } 564 HasTemps()565 bool HasTemps() const { return !temps_.empty(); } 566 Out()567 Location Out() const { return output_; } 568 CanCall()569 bool CanCall() const { 570 return call_kind_ != kNoCall; 571 } 572 WillCall()573 bool WillCall() const { 574 return call_kind_ == kCallOnMainOnly || call_kind_ == kCallOnMainAndSlowPath; 575 } 576 CallsOnSlowPath()577 bool CallsOnSlowPath() const { 578 return call_kind_ == kCallOnSlowPath || call_kind_ == kCallOnMainAndSlowPath; 579 } 580 OnlyCallsOnSlowPath()581 bool OnlyCallsOnSlowPath() const { 582 return call_kind_ == kCallOnSlowPath; 583 } 584 CallsOnMainAndSlowPath()585 bool CallsOnMainAndSlowPath() const { 586 return call_kind_ == kCallOnMainAndSlowPath; 587 } 588 NeedsSafepoint()589 bool NeedsSafepoint() const { 590 return CanCall(); 591 } 592 SetCustomSlowPathCallerSaves(const RegisterSet & caller_saves)593 void SetCustomSlowPathCallerSaves(const RegisterSet& caller_saves) { 594 DCHECK(OnlyCallsOnSlowPath()); 595 has_custom_slow_path_calling_convention_ = true; 596 custom_slow_path_caller_saves_ = caller_saves; 597 } 598 HasCustomSlowPathCallingConvention()599 bool HasCustomSlowPathCallingConvention() const { 600 return has_custom_slow_path_calling_convention_; 601 } 602 GetCustomSlowPathCallerSaves()603 const RegisterSet& GetCustomSlowPathCallerSaves() const { 604 DCHECK(HasCustomSlowPathCallingConvention()); 605 return custom_slow_path_caller_saves_; 606 } 607 SetStackBit(uint32_t index)608 void SetStackBit(uint32_t index) { 609 stack_mask_->SetBit(index); 610 } 611 ClearStackBit(uint32_t index)612 void ClearStackBit(uint32_t index) { 613 stack_mask_->ClearBit(index); 614 } 615 SetRegisterBit(uint32_t reg_id)616 void SetRegisterBit(uint32_t reg_id) { 617 register_mask_ |= (1 << reg_id); 618 } 619 GetRegisterMask()620 uint32_t GetRegisterMask() const { 621 return register_mask_; 622 } 623 RegisterContainsObject(uint32_t reg_id)624 bool RegisterContainsObject(uint32_t reg_id) { 625 return RegisterSet::Contains(register_mask_, reg_id); 626 } 627 AddLiveRegister(Location location)628 void AddLiveRegister(Location location) { 629 live_registers_.Add(location); 630 } 631 GetStackMask()632 BitVector* GetStackMask() const { 633 return stack_mask_; 634 } 635 GetLiveRegisters()636 RegisterSet* GetLiveRegisters() { 637 return &live_registers_; 638 } 639 GetNumberOfLiveRegisters()640 size_t GetNumberOfLiveRegisters() const { 641 return live_registers_.GetNumberOfRegisters(); 642 } 643 OutputUsesSameAs(uint32_t input_index)644 bool OutputUsesSameAs(uint32_t input_index) const { 645 return (input_index == 0) 646 && output_.IsUnallocated() 647 && (output_.GetPolicy() == Location::kSameAsFirstInput); 648 } 649 IsFixedInput(uint32_t input_index)650 bool IsFixedInput(uint32_t input_index) const { 651 Location input = inputs_[input_index]; 652 return input.IsRegister() 653 || input.IsFpuRegister() 654 || input.IsPair() 655 || input.IsStackSlot() 656 || input.IsDoubleStackSlot(); 657 } 658 OutputCanOverlapWithInputs()659 bool OutputCanOverlapWithInputs() const { 660 return output_overlaps_ == Location::kOutputOverlap; 661 } 662 Intrinsified()663 bool Intrinsified() const { 664 return intrinsified_; 665 } 666 667 private: 668 ArenaVector<Location> inputs_; 669 ArenaVector<Location> temps_; 670 const CallKind call_kind_; 671 // Whether these are locations for an intrinsified call. 672 const bool intrinsified_; 673 // Whether the slow path has default or custom calling convention. 674 bool has_custom_slow_path_calling_convention_; 675 // Whether the output overlaps with any of the inputs. If it overlaps, then it cannot 676 // share the same register as the inputs. 677 Location::OutputOverlap output_overlaps_; 678 Location output_; 679 680 // Mask of objects that live in the stack. 681 BitVector* stack_mask_; 682 683 // Mask of objects that live in register. 684 uint32_t register_mask_; 685 686 // Registers that are in use at this position. 687 RegisterSet live_registers_; 688 689 // Custom slow path caller saves. Valid only if indicated by slow_path_calling_convention_. 690 RegisterSet custom_slow_path_caller_saves_; 691 692 friend class RegisterAllocatorTest; 693 DISALLOW_COPY_AND_ASSIGN(LocationSummary); 694 }; 695 696 } // namespace art 697 698 #endif // ART_COMPILER_OPTIMIZING_LOCATIONS_H_ 699