1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "base/enums.h"
19 #include "callee_save_frame.h"
20 #include "common_throws.h"
21 #include "dex_file-inl.h"
22 #include "dex_instruction-inl.h"
23 #include "entrypoints/entrypoint_utils-inl.h"
24 #include "entrypoints/runtime_asm_entrypoints.h"
25 #include "gc/accounting/card_table-inl.h"
26 #include "imt_conflict_table.h"
27 #include "imtable-inl.h"
28 #include "interpreter/interpreter.h"
29 #include "linear_alloc.h"
30 #include "method_handles.h"
31 #include "method_reference.h"
32 #include "mirror/class-inl.h"
33 #include "mirror/dex_cache-inl.h"
34 #include "mirror/method.h"
35 #include "mirror/method_handle_impl.h"
36 #include "mirror/object-inl.h"
37 #include "mirror/object_array-inl.h"
38 #include "oat_quick_method_header.h"
39 #include "quick_exception_handler.h"
40 #include "runtime.h"
41 #include "scoped_thread_state_change-inl.h"
42 #include "stack.h"
43 #include "debugger.h"
44 #include "well_known_classes.h"
45 
46 namespace art {
47 
48 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
49 class QuickArgumentVisitor {
50   // Number of bytes for each out register in the caller method's frame.
51   static constexpr size_t kBytesStackArgLocation = 4;
52   // Frame size in bytes of a callee-save frame for RefsAndArgs.
53   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
54       GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
55 #if defined(__arm__)
56   // The callee save frame is pointed to by SP.
57   // | argN       |  |
58   // | ...        |  |
59   // | arg4       |  |
60   // | arg3 spill |  |  Caller's frame
61   // | arg2 spill |  |
62   // | arg1 spill |  |
63   // | Method*    | ---
64   // | LR         |
65   // | ...        |    4x6 bytes callee saves
66   // | R3         |
67   // | R2         |
68   // | R1         |
69   // | S15        |
70   // | :          |
71   // | S0         |
72   // |            |    4x2 bytes padding
73   // | Method*    |  <- sp
74   static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
75   static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
76   static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
77   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
78   static constexpr bool kQuickSkipOddFpRegisters = false;
79   static constexpr size_t kNumQuickGprArgs = 3;
80   static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
81   static constexpr bool kGprFprLockstep = false;
82   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
83       arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
84   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
85       arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
86   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
87       arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)88   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
89     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
90   }
91 #elif defined(__aarch64__)
92   // The callee save frame is pointed to by SP.
93   // | argN       |  |
94   // | ...        |  |
95   // | arg4       |  |
96   // | arg3 spill |  |  Caller's frame
97   // | arg2 spill |  |
98   // | arg1 spill |  |
99   // | Method*    | ---
100   // | LR         |
101   // | X29        |
102   // |  :         |
103   // | X20        |
104   // | X7         |
105   // | :          |
106   // | X1         |
107   // | D7         |
108   // |  :         |
109   // | D0         |
110   // |            |    padding
111   // | Method*    |  <- sp
112   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
113   static constexpr bool kAlignPairRegister = false;
114   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
115   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
116   static constexpr bool kQuickSkipOddFpRegisters = false;
117   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
118   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
119   static constexpr bool kGprFprLockstep = false;
120   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
121       arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
122   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
123       arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
124   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
125       arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)126   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
127     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
128   }
129 #elif defined(__mips__) && !defined(__LP64__)
130   // The callee save frame is pointed to by SP.
131   // | argN       |  |
132   // | ...        |  |
133   // | arg4       |  |
134   // | arg3 spill |  |  Caller's frame
135   // | arg2 spill |  |
136   // | arg1 spill |  |
137   // | Method*    | ---
138   // | RA         |
139   // | ...        |    callee saves
140   // | T1         |    arg5
141   // | T0         |    arg4
142   // | A3         |    arg3
143   // | A2         |    arg2
144   // | A1         |    arg1
145   // | F19        |
146   // | F18        |    f_arg5
147   // | F17        |
148   // | F16        |    f_arg4
149   // | F15        |
150   // | F14        |    f_arg3
151   // | F13        |
152   // | F12        |    f_arg2
153   // | F11        |
154   // | F10        |    f_arg1
155   // | F9         |
156   // | F8         |    f_arg0
157   // |            |    padding
158   // | A0/Method* |  <- sp
159   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
160   static constexpr bool kAlignPairRegister = true;
161   static constexpr bool kQuickSoftFloatAbi = false;
162   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
163   static constexpr bool kQuickSkipOddFpRegisters = true;
164   static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
165   static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
166                                                   // passed only in even numbered registers and each
167                                                   // double occupies two registers.
168   static constexpr bool kGprFprLockstep = false;
169   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
170   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
171   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)172   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
173     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
174   }
175 #elif defined(__mips__) && defined(__LP64__)
176   // The callee save frame is pointed to by SP.
177   // | argN       |  |
178   // | ...        |  |
179   // | arg4       |  |
180   // | arg3 spill |  |  Caller's frame
181   // | arg2 spill |  |
182   // | arg1 spill |  |
183   // | Method*    | ---
184   // | RA         |
185   // | ...        |    callee saves
186   // | A7         |    arg7
187   // | A6         |    arg6
188   // | A5         |    arg5
189   // | A4         |    arg4
190   // | A3         |    arg3
191   // | A2         |    arg2
192   // | A1         |    arg1
193   // | F19        |    f_arg7
194   // | F18        |    f_arg6
195   // | F17        |    f_arg5
196   // | F16        |    f_arg4
197   // | F15        |    f_arg3
198   // | F14        |    f_arg2
199   // | F13        |    f_arg1
200   // | F12        |    f_arg0
201   // |            |    padding
202   // | A0/Method* |  <- sp
203   // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
204   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
205   static constexpr bool kAlignPairRegister = false;
206   static constexpr bool kQuickSoftFloatAbi = false;
207   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
208   static constexpr bool kQuickSkipOddFpRegisters = false;
209   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
210   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
211   static constexpr bool kGprFprLockstep = true;
212 
213   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
214   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
215   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)216   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
217     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
218   }
219 #elif defined(__i386__)
220   // The callee save frame is pointed to by SP.
221   // | argN        |  |
222   // | ...         |  |
223   // | arg4        |  |
224   // | arg3 spill  |  |  Caller's frame
225   // | arg2 spill  |  |
226   // | arg1 spill  |  |
227   // | Method*     | ---
228   // | Return      |
229   // | EBP,ESI,EDI |    callee saves
230   // | EBX         |    arg3
231   // | EDX         |    arg2
232   // | ECX         |    arg1
233   // | XMM3        |    float arg 4
234   // | XMM2        |    float arg 3
235   // | XMM1        |    float arg 2
236   // | XMM0        |    float arg 1
237   // | EAX/Method* |  <- sp
238   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
239   static constexpr bool kAlignPairRegister = false;
240   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
241   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
242   static constexpr bool kQuickSkipOddFpRegisters = false;
243   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
244   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
245   static constexpr bool kGprFprLockstep = false;
246   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
247   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
248   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)249   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
250     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
251   }
252 #elif defined(__x86_64__)
253   // The callee save frame is pointed to by SP.
254   // | argN            |  |
255   // | ...             |  |
256   // | reg. arg spills |  |  Caller's frame
257   // | Method*         | ---
258   // | Return          |
259   // | R15             |    callee save
260   // | R14             |    callee save
261   // | R13             |    callee save
262   // | R12             |    callee save
263   // | R9              |    arg5
264   // | R8              |    arg4
265   // | RSI/R6          |    arg1
266   // | RBP/R5          |    callee save
267   // | RBX/R3          |    callee save
268   // | RDX/R2          |    arg2
269   // | RCX/R1          |    arg3
270   // | XMM7            |    float arg 8
271   // | XMM6            |    float arg 7
272   // | XMM5            |    float arg 6
273   // | XMM4            |    float arg 5
274   // | XMM3            |    float arg 4
275   // | XMM2            |    float arg 3
276   // | XMM1            |    float arg 2
277   // | XMM0            |    float arg 1
278   // | Padding         |
279   // | RDI/Method*     |  <- sp
280   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
281   static constexpr bool kAlignPairRegister = false;
282   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
283   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
284   static constexpr bool kQuickSkipOddFpRegisters = false;
285   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
286   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
287   static constexpr bool kGprFprLockstep = false;
288   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
289   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
290   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)291   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
292     switch (gpr_index) {
293       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
294       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
295       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
296       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
297       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
298       default:
299       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
300       return 0;
301     }
302   }
303 #else
304 #error "Unsupported architecture"
305 #endif
306 
307  public:
308   // Special handling for proxy methods. Proxy methods are instance methods so the
309   // 'this' object is the 1st argument. They also have the same frame layout as the
310   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
311   // 1st GPR.
GetProxyThisObject(ArtMethod ** sp)312   static mirror::Object* GetProxyThisObject(ArtMethod** sp)
313       REQUIRES_SHARED(Locks::mutator_lock_) {
314     CHECK((*sp)->IsProxyMethod());
315     CHECK_GT(kNumQuickGprArgs, 0u);
316     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
317     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
318         GprIndexToGprOffset(kThisGprIndex);
319     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
320     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
321   }
322 
GetCallingMethod(ArtMethod ** sp)323   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
324     DCHECK((*sp)->IsCalleeSaveMethod());
325     return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs);
326   }
327 
GetOuterMethod(ArtMethod ** sp)328   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
329     DCHECK((*sp)->IsCalleeSaveMethod());
330     uint8_t* previous_sp =
331         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
332     return *reinterpret_cast<ArtMethod**>(previous_sp);
333   }
334 
GetCallingDexPc(ArtMethod ** sp)335   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
336     DCHECK((*sp)->IsCalleeSaveMethod());
337     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
338     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
339         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
340     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
341     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
342     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
343 
344     if (current_code->IsOptimized()) {
345       CodeInfo code_info = current_code->GetOptimizedCodeInfo();
346       CodeInfoEncoding encoding = code_info.ExtractEncoding();
347       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
348       DCHECK(stack_map.IsValid());
349       if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
350         InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
351         return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
352                                            inline_info.GetDepth(encoding.inline_info.encoding)-1);
353       } else {
354         return stack_map.GetDexPc(encoding.stack_map.encoding);
355       }
356     } else {
357       return current_code->ToDexPc(*caller_sp, outer_pc);
358     }
359   }
360 
GetInvokeType(ArtMethod ** sp,InvokeType * invoke_type,uint32_t * dex_method_index)361   static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
362       REQUIRES_SHARED(Locks::mutator_lock_) {
363     DCHECK((*sp)->IsCalleeSaveMethod());
364     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
365     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
366         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
367     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
368     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
369     if (!current_code->IsOptimized()) {
370       return false;
371     }
372     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
373     CodeInfo code_info = current_code->GetOptimizedCodeInfo();
374     CodeInfoEncoding encoding = code_info.ExtractEncoding();
375     MethodInfo method_info = current_code->GetOptimizedMethodInfo();
376     InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
377     if (invoke.IsValid()) {
378       *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
379       *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
380       return true;
381     }
382     return false;
383   }
384 
385   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)386   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
387     DCHECK((*sp)->IsCalleeSaveMethod());
388     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
389     return *reinterpret_cast<uintptr_t*>(lr);
390   }
391 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)392   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
393                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
394           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
395           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
396           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
397           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
398               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
399           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
400           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
401     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
402                   "Number of Quick FPR arguments unexpected");
403     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
404                   "Double alignment unexpected");
405     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
406     // next register is even.
407     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
408                   "Number of Quick FPR arguments not even");
409     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
410   }
411 
~QuickArgumentVisitor()412   virtual ~QuickArgumentVisitor() {}
413 
414   virtual void Visit() = 0;
415 
GetParamPrimitiveType() const416   Primitive::Type GetParamPrimitiveType() const {
417     return cur_type_;
418   }
419 
GetParamAddress() const420   uint8_t* GetParamAddress() const {
421     if (!kQuickSoftFloatAbi) {
422       Primitive::Type type = GetParamPrimitiveType();
423       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
424         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
425           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
426             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
427           }
428         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
429           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
430         }
431         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
432       }
433     }
434     if (gpr_index_ < kNumQuickGprArgs) {
435       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
436     }
437     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
438   }
439 
IsSplitLongOrDouble() const440   bool IsSplitLongOrDouble() const {
441     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
442         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
443       return is_split_long_or_double_;
444     } else {
445       return false;  // An optimization for when GPR and FPRs are 64bit.
446     }
447   }
448 
IsParamAReference() const449   bool IsParamAReference() const {
450     return GetParamPrimitiveType() == Primitive::kPrimNot;
451   }
452 
IsParamALongOrDouble() const453   bool IsParamALongOrDouble() const {
454     Primitive::Type type = GetParamPrimitiveType();
455     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
456   }
457 
ReadSplitLongParam() const458   uint64_t ReadSplitLongParam() const {
459     // The splitted long is always available through the stack.
460     return *reinterpret_cast<uint64_t*>(stack_args_
461         + stack_index_ * kBytesStackArgLocation);
462   }
463 
IncGprIndex()464   void IncGprIndex() {
465     gpr_index_++;
466     if (kGprFprLockstep) {
467       fpr_index_++;
468     }
469   }
470 
IncFprIndex()471   void IncFprIndex() {
472     fpr_index_++;
473     if (kGprFprLockstep) {
474       gpr_index_++;
475     }
476   }
477 
VisitArguments()478   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
479     // (a) 'stack_args_' should point to the first method's argument
480     // (b) whatever the argument type it is, the 'stack_index_' should
481     //     be moved forward along with every visiting.
482     gpr_index_ = 0;
483     fpr_index_ = 0;
484     if (kQuickDoubleRegAlignedFloatBackFilled) {
485       fpr_double_index_ = 0;
486     }
487     stack_index_ = 0;
488     if (!is_static_) {  // Handle this.
489       cur_type_ = Primitive::kPrimNot;
490       is_split_long_or_double_ = false;
491       Visit();
492       stack_index_++;
493       if (kNumQuickGprArgs > 0) {
494         IncGprIndex();
495       }
496     }
497     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
498       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
499       switch (cur_type_) {
500         case Primitive::kPrimNot:
501         case Primitive::kPrimBoolean:
502         case Primitive::kPrimByte:
503         case Primitive::kPrimChar:
504         case Primitive::kPrimShort:
505         case Primitive::kPrimInt:
506           is_split_long_or_double_ = false;
507           Visit();
508           stack_index_++;
509           if (gpr_index_ < kNumQuickGprArgs) {
510             IncGprIndex();
511           }
512           break;
513         case Primitive::kPrimFloat:
514           is_split_long_or_double_ = false;
515           Visit();
516           stack_index_++;
517           if (kQuickSoftFloatAbi) {
518             if (gpr_index_ < kNumQuickGprArgs) {
519               IncGprIndex();
520             }
521           } else {
522             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
523               IncFprIndex();
524               if (kQuickDoubleRegAlignedFloatBackFilled) {
525                 // Double should not overlap with float.
526                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
527                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
528                 // Float should not overlap with double.
529                 if (fpr_index_ % 2 == 0) {
530                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
531                 }
532               } else if (kQuickSkipOddFpRegisters) {
533                 IncFprIndex();
534               }
535             }
536           }
537           break;
538         case Primitive::kPrimDouble:
539         case Primitive::kPrimLong:
540           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
541             if (cur_type_ == Primitive::kPrimLong &&
542 #if defined(__mips__) && !defined(__LP64__)
543                 (gpr_index_ == 0 || gpr_index_ == 2) &&
544 #else
545                 gpr_index_ == 0 &&
546 #endif
547                 kAlignPairRegister) {
548               // Currently, this is only for ARM and MIPS, where we align long parameters with
549               // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
550               // R2 (on ARM) or A2(T0) (on MIPS) instead.
551               IncGprIndex();
552             }
553             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
554                 ((gpr_index_ + 1) == kNumQuickGprArgs);
555             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
556               // We don't want to split this. Pass over this register.
557               gpr_index_++;
558               is_split_long_or_double_ = false;
559             }
560             Visit();
561             if (kBytesStackArgLocation == 4) {
562               stack_index_+= 2;
563             } else {
564               CHECK_EQ(kBytesStackArgLocation, 8U);
565               stack_index_++;
566             }
567             if (gpr_index_ < kNumQuickGprArgs) {
568               IncGprIndex();
569               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
570                 if (gpr_index_ < kNumQuickGprArgs) {
571                   IncGprIndex();
572                 }
573               }
574             }
575           } else {
576             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
577                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
578             Visit();
579             if (kBytesStackArgLocation == 4) {
580               stack_index_+= 2;
581             } else {
582               CHECK_EQ(kBytesStackArgLocation, 8U);
583               stack_index_++;
584             }
585             if (kQuickDoubleRegAlignedFloatBackFilled) {
586               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
587                 fpr_double_index_ += 2;
588                 // Float should not overlap with double.
589                 if (fpr_index_ % 2 == 0) {
590                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
591                 }
592               }
593             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
594               IncFprIndex();
595               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
596                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
597                   IncFprIndex();
598                 }
599               }
600             }
601           }
602           break;
603         default:
604           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
605       }
606     }
607   }
608 
609  protected:
610   const bool is_static_;
611   const char* const shorty_;
612   const uint32_t shorty_len_;
613 
614  private:
615   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
616   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
617   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
618   uint32_t gpr_index_;  // Index into spilled GPRs.
619   // Index into spilled FPRs.
620   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
621   // holds a higher register number.
622   uint32_t fpr_index_;
623   // Index into spilled FPRs for aligned double.
624   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
625   // terms of singles, may be behind fpr_index.
626   uint32_t fpr_double_index_;
627   uint32_t stack_index_;  // Index into arguments on the stack.
628   // The current type of argument during VisitArguments.
629   Primitive::Type cur_type_;
630   // Does a 64bit parameter straddle the register and stack arguments?
631   bool is_split_long_or_double_;
632 };
633 
634 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
635 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)636 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
637     REQUIRES_SHARED(Locks::mutator_lock_) {
638   return QuickArgumentVisitor::GetProxyThisObject(sp);
639 }
640 
641 // Visits arguments on the stack placing them into the shadow frame.
642 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
643  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)644   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
645                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
646       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
647 
648   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
649 
650  private:
651   ShadowFrame* const sf_;
652   uint32_t cur_reg_;
653 
654   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
655 };
656 
Visit()657 void BuildQuickShadowFrameVisitor::Visit() {
658   Primitive::Type type = GetParamPrimitiveType();
659   switch (type) {
660     case Primitive::kPrimLong:  // Fall-through.
661     case Primitive::kPrimDouble:
662       if (IsSplitLongOrDouble()) {
663         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
664       } else {
665         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
666       }
667       ++cur_reg_;
668       break;
669     case Primitive::kPrimNot: {
670         StackReference<mirror::Object>* stack_ref =
671             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
672         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
673       }
674       break;
675     case Primitive::kPrimBoolean:  // Fall-through.
676     case Primitive::kPrimByte:     // Fall-through.
677     case Primitive::kPrimChar:     // Fall-through.
678     case Primitive::kPrimShort:    // Fall-through.
679     case Primitive::kPrimInt:      // Fall-through.
680     case Primitive::kPrimFloat:
681       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
682       break;
683     case Primitive::kPrimVoid:
684       LOG(FATAL) << "UNREACHABLE";
685       UNREACHABLE();
686   }
687   ++cur_reg_;
688 }
689 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)690 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
691     REQUIRES_SHARED(Locks::mutator_lock_) {
692   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
693   // frame.
694   ScopedQuickEntrypointChecks sqec(self);
695 
696   if (UNLIKELY(!method->IsInvokable())) {
697     method->ThrowInvocationTimeError();
698     return 0;
699   }
700 
701   JValue tmp_value;
702   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
703       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
704   ManagedStack fragment;
705 
706   DCHECK(!method->IsNative()) << method->PrettyMethod();
707   uint32_t shorty_len = 0;
708   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
709   const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
710   DCHECK(code_item != nullptr) << method->PrettyMethod();
711   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
712 
713   JValue result;
714 
715   if (deopt_frame != nullptr) {
716     // Coming from partial-fragment deopt.
717 
718     if (kIsDebugBuild) {
719       // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
720       // of the call-stack) corresponds to the called method.
721       ShadowFrame* linked = deopt_frame;
722       while (linked->GetLink() != nullptr) {
723         linked = linked->GetLink();
724       }
725       CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
726           << ArtMethod::PrettyMethod(linked->GetMethod());
727     }
728 
729     if (VLOG_IS_ON(deopt)) {
730       // Print out the stack to verify that it was a partial-fragment deopt.
731       LOG(INFO) << "Continue-ing from deopt. Stack is:";
732       QuickExceptionHandler::DumpFramesWithType(self, true);
733     }
734 
735     ObjPtr<mirror::Throwable> pending_exception;
736     bool from_code = false;
737     self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
738 
739     // Push a transition back into managed code onto the linked list in thread.
740     self->PushManagedStackFragment(&fragment);
741 
742     // Ensure that the stack is still in order.
743     if (kIsDebugBuild) {
744       class DummyStackVisitor : public StackVisitor {
745        public:
746         explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
747             : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
748 
749         bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
750           // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
751           // logic. Just always say we want to continue.
752           return true;
753         }
754       };
755       DummyStackVisitor dsv(self);
756       dsv.WalkStack();
757     }
758 
759     // Restore the exception that was pending before deoptimization then interpret the
760     // deoptimized frames.
761     if (pending_exception != nullptr) {
762       self->SetException(pending_exception);
763     }
764     interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
765   } else {
766     const char* old_cause = self->StartAssertNoThreadSuspension(
767         "Building interpreter shadow frame");
768     uint16_t num_regs = code_item->registers_size_;
769     // No last shadow coming from quick.
770     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
771         CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
772     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
773     size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
774     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
775                                                       shadow_frame, first_arg_reg);
776     shadow_frame_builder.VisitArguments();
777     const bool needs_initialization =
778         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
779     // Push a transition back into managed code onto the linked list in thread.
780     self->PushManagedStackFragment(&fragment);
781     self->PushShadowFrame(shadow_frame);
782     self->EndAssertNoThreadSuspension(old_cause);
783 
784     if (needs_initialization) {
785       // Ensure static method's class is initialized.
786       StackHandleScope<1> hs(self);
787       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
788       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
789         DCHECK(Thread::Current()->IsExceptionPending())
790             << shadow_frame->GetMethod()->PrettyMethod();
791         self->PopManagedStackFragment(fragment);
792         return 0;
793       }
794     }
795 
796     result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
797   }
798 
799   // Pop transition.
800   self->PopManagedStackFragment(fragment);
801 
802   // Request a stack deoptimization if needed
803   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
804   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
805   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
806   // should be done and it knows the real return pc.
807   if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
808                Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
809     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
810       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
811                    << caller->PrettyMethod();
812     } else {
813       // Push the context of the deoptimization stack so we can restore the return value and the
814       // exception before executing the deoptimized frames.
815       self->PushDeoptimizationContext(
816           result, shorty[0] == 'L', /* from_code */ false, self->GetException());
817 
818       // Set special exception to cause deoptimization.
819       self->SetException(Thread::GetDeoptimizationException());
820     }
821   }
822 
823   // No need to restore the args since the method has already been run by the interpreter.
824   return result.GetJ();
825 }
826 
827 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
828 // to jobjects.
829 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
830  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)831   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
832                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
833       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
834 
835   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
836 
837   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
838 
839  private:
840   ScopedObjectAccessUnchecked* const soa_;
841   std::vector<jvalue>* const args_;
842   // References which we must update when exiting in case the GC moved the objects.
843   std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
844 
845   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
846 };
847 
Visit()848 void BuildQuickArgumentVisitor::Visit() {
849   jvalue val;
850   Primitive::Type type = GetParamPrimitiveType();
851   switch (type) {
852     case Primitive::kPrimNot: {
853       StackReference<mirror::Object>* stack_ref =
854           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
855       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
856       references_.push_back(std::make_pair(val.l, stack_ref));
857       break;
858     }
859     case Primitive::kPrimLong:  // Fall-through.
860     case Primitive::kPrimDouble:
861       if (IsSplitLongOrDouble()) {
862         val.j = ReadSplitLongParam();
863       } else {
864         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
865       }
866       break;
867     case Primitive::kPrimBoolean:  // Fall-through.
868     case Primitive::kPrimByte:     // Fall-through.
869     case Primitive::kPrimChar:     // Fall-through.
870     case Primitive::kPrimShort:    // Fall-through.
871     case Primitive::kPrimInt:      // Fall-through.
872     case Primitive::kPrimFloat:
873       val.i = *reinterpret_cast<jint*>(GetParamAddress());
874       break;
875     case Primitive::kPrimVoid:
876       LOG(FATAL) << "UNREACHABLE";
877       UNREACHABLE();
878   }
879   args_->push_back(val);
880 }
881 
FixupReferences()882 void BuildQuickArgumentVisitor::FixupReferences() {
883   // Fixup any references which may have changed.
884   for (const auto& pair : references_) {
885     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
886     soa_->Env()->DeleteLocalRef(pair.first);
887   }
888 }
889 
890 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
891 // which is responsible for recording callee save registers. We explicitly place into jobjects the
892 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
893 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)894 extern "C" uint64_t artQuickProxyInvokeHandler(
895     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
896     REQUIRES_SHARED(Locks::mutator_lock_) {
897   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
898   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
899   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
900   const char* old_cause =
901       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
902   // Register the top of the managed stack, making stack crawlable.
903   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
904   self->VerifyStack();
905   // Start new JNI local reference state.
906   JNIEnvExt* env = self->GetJniEnv();
907   ScopedObjectAccessUnchecked soa(env);
908   ScopedJniEnvLocalRefState env_state(env);
909   // Create local ref. copies of proxy method and the receiver.
910   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
911 
912   // Placing arguments into args vector and remove the receiver.
913   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
914   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
915                                        << non_proxy_method->PrettyMethod();
916   std::vector<jvalue> args;
917   uint32_t shorty_len = 0;
918   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
919   BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
920 
921   local_ref_visitor.VisitArguments();
922   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
923   args.erase(args.begin());
924 
925   // Convert proxy method into expected interface method.
926   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
927   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
928   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
929   self->EndAssertNoThreadSuspension(old_cause);
930   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
931   DCHECK(!Runtime::Current()->IsActiveTransaction());
932   jobject interface_method_jobj = soa.AddLocalReference<jobject>(
933       mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
934                                                                       interface_method));
935 
936   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
937   // that performs allocations.
938   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
939   // Restore references which might have moved.
940   local_ref_visitor.FixupReferences();
941   return result.GetJ();
942 }
943 
944 // Read object references held in arguments from quick frames and place in a JNI local references,
945 // so they don't get garbage collected.
946 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
947  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)948   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
949                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
950       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
951 
952   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
953 
954   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
955 
956  private:
957   ScopedObjectAccessUnchecked* const soa_;
958   // References which we must update when exiting in case the GC moved the objects.
959   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
960 
961   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
962 };
963 
Visit()964 void RememberForGcArgumentVisitor::Visit() {
965   if (IsParamAReference()) {
966     StackReference<mirror::Object>* stack_ref =
967         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
968     jobject reference =
969         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
970     references_.push_back(std::make_pair(reference, stack_ref));
971   }
972 }
973 
FixupReferences()974 void RememberForGcArgumentVisitor::FixupReferences() {
975   // Fixup any references which may have changed.
976   for (const auto& pair : references_) {
977     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
978     soa_->Env()->DeleteLocalRef(pair.first);
979   }
980 }
981 
982 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)983 extern "C" const void* artQuickResolutionTrampoline(
984     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
985     REQUIRES_SHARED(Locks::mutator_lock_) {
986   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
987   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
988   // does not have the same stack layout as the callee-save method).
989   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
990   // Start new JNI local reference state
991   JNIEnvExt* env = self->GetJniEnv();
992   ScopedObjectAccessUnchecked soa(env);
993   ScopedJniEnvLocalRefState env_state(env);
994   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
995 
996   // Compute details about the called method (avoid GCs)
997   ClassLinker* linker = Runtime::Current()->GetClassLinker();
998   InvokeType invoke_type;
999   MethodReference called_method(nullptr, 0);
1000   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1001   ArtMethod* caller = nullptr;
1002   if (!called_method_known_on_entry) {
1003     caller = QuickArgumentVisitor::GetCallingMethod(sp);
1004     called_method.dex_file = caller->GetDexFile();
1005 
1006     InvokeType stack_map_invoke_type;
1007     uint32_t stack_map_dex_method_idx;
1008     const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1009                                                                      &stack_map_invoke_type,
1010                                                                      &stack_map_dex_method_idx);
1011     // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1012     // code.
1013     if (!found_stack_map || kIsDebugBuild) {
1014       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1015       const DexFile::CodeItem* code;
1016       code = caller->GetCodeItem();
1017       CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1018       const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1019       Instruction::Code instr_code = instr->Opcode();
1020       bool is_range;
1021       switch (instr_code) {
1022         case Instruction::INVOKE_DIRECT:
1023           invoke_type = kDirect;
1024           is_range = false;
1025           break;
1026         case Instruction::INVOKE_DIRECT_RANGE:
1027           invoke_type = kDirect;
1028           is_range = true;
1029           break;
1030         case Instruction::INVOKE_STATIC:
1031           invoke_type = kStatic;
1032           is_range = false;
1033           break;
1034         case Instruction::INVOKE_STATIC_RANGE:
1035           invoke_type = kStatic;
1036           is_range = true;
1037           break;
1038         case Instruction::INVOKE_SUPER:
1039           invoke_type = kSuper;
1040           is_range = false;
1041           break;
1042         case Instruction::INVOKE_SUPER_RANGE:
1043           invoke_type = kSuper;
1044           is_range = true;
1045           break;
1046         case Instruction::INVOKE_VIRTUAL:
1047           invoke_type = kVirtual;
1048           is_range = false;
1049           break;
1050         case Instruction::INVOKE_VIRTUAL_RANGE:
1051           invoke_type = kVirtual;
1052           is_range = true;
1053           break;
1054         case Instruction::INVOKE_INTERFACE:
1055           invoke_type = kInterface;
1056           is_range = false;
1057           break;
1058         case Instruction::INVOKE_INTERFACE_RANGE:
1059           invoke_type = kInterface;
1060           is_range = true;
1061           break;
1062         default:
1063           LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1064           UNREACHABLE();
1065       }
1066       called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1067       // Check that the invoke matches what we expected, note that this path only happens for debug
1068       // builds.
1069       if (found_stack_map) {
1070         DCHECK_EQ(stack_map_invoke_type, invoke_type);
1071         if (invoke_type != kSuper) {
1072           // Super may be sharpened.
1073           DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index)
1074               << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1075               << called_method.dex_file->PrettyMethod(called_method.dex_method_index);
1076         }
1077       } else {
1078         VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1079                   << called_method.dex_method_index;
1080       }
1081     } else {
1082       invoke_type = stack_map_invoke_type;
1083       called_method.dex_method_index = stack_map_dex_method_idx;
1084     }
1085   } else {
1086     invoke_type = kStatic;
1087     called_method.dex_file = called->GetDexFile();
1088     called_method.dex_method_index = called->GetDexMethodIndex();
1089   }
1090   uint32_t shorty_len;
1091   const char* shorty =
1092       called_method.dex_file->GetMethodShorty(
1093           called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1094   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1095   visitor.VisitArguments();
1096   self->EndAssertNoThreadSuspension(old_cause);
1097   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1098   // Resolve method filling in dex cache.
1099   if (!called_method_known_on_entry) {
1100     StackHandleScope<1> hs(self);
1101     mirror::Object* dummy = nullptr;
1102     HandleWrapper<mirror::Object> h_receiver(
1103         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1104     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1105     called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1106         self, called_method.dex_method_index, caller, invoke_type);
1107   }
1108   const void* code = nullptr;
1109   if (LIKELY(!self->IsExceptionPending())) {
1110     // Incompatible class change should have been handled in resolve method.
1111     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1112         << called->PrettyMethod() << " " << invoke_type;
1113     if (virtual_or_interface || invoke_type == kSuper) {
1114       // Refine called method based on receiver for kVirtual/kInterface, and
1115       // caller for kSuper.
1116       ArtMethod* orig_called = called;
1117       if (invoke_type == kVirtual) {
1118         CHECK(receiver != nullptr) << invoke_type;
1119         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1120       } else if (invoke_type == kInterface) {
1121         CHECK(receiver != nullptr) << invoke_type;
1122         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1123       } else {
1124         DCHECK_EQ(invoke_type, kSuper);
1125         CHECK(caller != nullptr) << invoke_type;
1126         StackHandleScope<2> hs(self);
1127         Handle<mirror::DexCache> dex_cache(
1128             hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1129         Handle<mirror::ClassLoader> class_loader(
1130             hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1131         // TODO Maybe put this into a mirror::Class function.
1132         mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1133             called_method.dex_method_index, dex_cache, class_loader);
1134         if (ref_class->IsInterface()) {
1135           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1136         } else {
1137           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1138               called->GetMethodIndex(), kRuntimePointerSize);
1139         }
1140       }
1141 
1142       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1143                                << mirror::Object::PrettyTypeOf(receiver) << " "
1144                                << invoke_type << " " << orig_called->GetVtableIndex();
1145 
1146       // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1147       // of the sharpened method avoiding dirtying the dex cache if possible.
1148       // Note, called_method.dex_method_index references the dex method before the
1149       // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1150       // about the name and signature.
1151       uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1152       if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
1153         // Calling from one dex file to another, need to compute the method index appropriate to
1154         // the caller's dex file. Since we get here only if the original called was a runtime
1155         // method, we've got the correct dex_file and a dex_method_idx from above.
1156         DCHECK(!called_method_known_on_entry);
1157         DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1158         const DexFile* caller_dex_file = called_method.dex_file;
1159         uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1160         update_dex_cache_method_index =
1161             called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1162                                                      caller_method_name_and_sig_index);
1163       }
1164       if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1165           (caller->GetDexCacheResolvedMethod(
1166               update_dex_cache_method_index, kRuntimePointerSize) != called)) {
1167         caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
1168                                           called,
1169                                           kRuntimePointerSize);
1170       }
1171     } else if (invoke_type == kStatic) {
1172       const auto called_dex_method_idx = called->GetDexMethodIndex();
1173       // For static invokes, we may dispatch to the static method in the superclass but resolve
1174       // using the subclass. To prevent getting slow paths on each invoke, we force set the
1175       // resolved method for the super class dex method index if we are in the same dex file.
1176       // b/19175856
1177       if (called->GetDexFile() == called_method.dex_file &&
1178           called_method.dex_method_index != called_dex_method_idx) {
1179         called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
1180                                                  called,
1181                                                  kRuntimePointerSize);
1182       }
1183     }
1184 
1185     // Ensure that the called method's class is initialized.
1186     StackHandleScope<1> hs(soa.Self());
1187     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1188     linker->EnsureInitialized(soa.Self(), called_class, true, true);
1189     if (LIKELY(called_class->IsInitialized())) {
1190       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1191         // If we are single-stepping or the called method is deoptimized (by a
1192         // breakpoint, for example), then we have to execute the called method
1193         // with the interpreter.
1194         code = GetQuickToInterpreterBridge();
1195       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1196         // If the caller is deoptimized (by a breakpoint, for example), we have to
1197         // continue its execution with interpreter when returning from the called
1198         // method. Because we do not want to execute the called method with the
1199         // interpreter, we wrap its execution into the instrumentation stubs.
1200         // When the called method returns, it will execute the instrumentation
1201         // exit hook that will determine the need of the interpreter with a call
1202         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1203         // it is needed.
1204         code = GetQuickInstrumentationEntryPoint();
1205       } else {
1206         code = called->GetEntryPointFromQuickCompiledCode();
1207       }
1208     } else if (called_class->IsInitializing()) {
1209       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1210         // If we are single-stepping or the called method is deoptimized (by a
1211         // breakpoint, for example), then we have to execute the called method
1212         // with the interpreter.
1213         code = GetQuickToInterpreterBridge();
1214       } else if (invoke_type == kStatic) {
1215         // Class is still initializing, go to oat and grab code (trampoline must be left in place
1216         // until class is initialized to stop races between threads).
1217         code = linker->GetQuickOatCodeFor(called);
1218       } else {
1219         // No trampoline for non-static methods.
1220         code = called->GetEntryPointFromQuickCompiledCode();
1221       }
1222     } else {
1223       DCHECK(called_class->IsErroneous());
1224     }
1225   }
1226   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1227   // Fixup any locally saved objects may have moved during a GC.
1228   visitor.FixupReferences();
1229   // Place called method in callee-save frame to be placed as first argument to quick method.
1230   *sp = called;
1231 
1232   return code;
1233 }
1234 
1235 /*
1236  * This class uses a couple of observations to unite the different calling conventions through
1237  * a few constants.
1238  *
1239  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1240  *    possible alignment.
1241  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1242  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1243  *    when we have to split things
1244  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1245  *    and we can use Int handling directly.
1246  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1247  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1248  *    extension should be compatible with Aarch64, which mandates copying the available bits
1249  *    into LSB and leaving the rest unspecified.
1250  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1251  *    the stack.
1252  * 6) There is only little endian.
1253  *
1254  *
1255  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1256  * follows:
1257  *
1258  * void PushGpr(uintptr_t):   Add a value for the next GPR
1259  *
1260  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1261  *                            padding, that is, think the architecture is 32b and aligns 64b.
1262  *
1263  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1264  *                            split this if necessary. The current state will have aligned, if
1265  *                            necessary.
1266  *
1267  * void PushStack(uintptr_t): Push a value to the stack.
1268  *
1269  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1270  *                                          as this might be important for null initialization.
1271  *                                          Must return the jobject, that is, the reference to the
1272  *                                          entry in the HandleScope (nullptr if necessary).
1273  *
1274  */
1275 template<class T> class BuildNativeCallFrameStateMachine {
1276  public:
1277 #if defined(__arm__)
1278   // TODO: These are all dummy values!
1279   static constexpr bool kNativeSoftFloatAbi = true;
1280   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1281   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1282 
1283   static constexpr size_t kRegistersNeededForLong = 2;
1284   static constexpr size_t kRegistersNeededForDouble = 2;
1285   static constexpr bool kMultiRegistersAligned = true;
1286   static constexpr bool kMultiFPRegistersWidened = false;
1287   static constexpr bool kMultiGPRegistersWidened = false;
1288   static constexpr bool kAlignLongOnStack = true;
1289   static constexpr bool kAlignDoubleOnStack = true;
1290 #elif defined(__aarch64__)
1291   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1292   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1293   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1294 
1295   static constexpr size_t kRegistersNeededForLong = 1;
1296   static constexpr size_t kRegistersNeededForDouble = 1;
1297   static constexpr bool kMultiRegistersAligned = false;
1298   static constexpr bool kMultiFPRegistersWidened = false;
1299   static constexpr bool kMultiGPRegistersWidened = false;
1300   static constexpr bool kAlignLongOnStack = false;
1301   static constexpr bool kAlignDoubleOnStack = false;
1302 #elif defined(__mips__) && !defined(__LP64__)
1303   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1304   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1305   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1306 
1307   static constexpr size_t kRegistersNeededForLong = 2;
1308   static constexpr size_t kRegistersNeededForDouble = 2;
1309   static constexpr bool kMultiRegistersAligned = true;
1310   static constexpr bool kMultiFPRegistersWidened = true;
1311   static constexpr bool kMultiGPRegistersWidened = false;
1312   static constexpr bool kAlignLongOnStack = true;
1313   static constexpr bool kAlignDoubleOnStack = true;
1314 #elif defined(__mips__) && defined(__LP64__)
1315   // Let the code prepare GPRs only and we will load the FPRs with same data.
1316   static constexpr bool kNativeSoftFloatAbi = true;
1317   static constexpr size_t kNumNativeGprArgs = 8;
1318   static constexpr size_t kNumNativeFprArgs = 0;
1319 
1320   static constexpr size_t kRegistersNeededForLong = 1;
1321   static constexpr size_t kRegistersNeededForDouble = 1;
1322   static constexpr bool kMultiRegistersAligned = false;
1323   static constexpr bool kMultiFPRegistersWidened = false;
1324   static constexpr bool kMultiGPRegistersWidened = true;
1325   static constexpr bool kAlignLongOnStack = false;
1326   static constexpr bool kAlignDoubleOnStack = false;
1327 #elif defined(__i386__)
1328   // TODO: Check these!
1329   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1330   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1331   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1332 
1333   static constexpr size_t kRegistersNeededForLong = 2;
1334   static constexpr size_t kRegistersNeededForDouble = 2;
1335   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1336   static constexpr bool kMultiFPRegistersWidened = false;
1337   static constexpr bool kMultiGPRegistersWidened = false;
1338   static constexpr bool kAlignLongOnStack = false;
1339   static constexpr bool kAlignDoubleOnStack = false;
1340 #elif defined(__x86_64__)
1341   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1342   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1343   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1344 
1345   static constexpr size_t kRegistersNeededForLong = 1;
1346   static constexpr size_t kRegistersNeededForDouble = 1;
1347   static constexpr bool kMultiRegistersAligned = false;
1348   static constexpr bool kMultiFPRegistersWidened = false;
1349   static constexpr bool kMultiGPRegistersWidened = false;
1350   static constexpr bool kAlignLongOnStack = false;
1351   static constexpr bool kAlignDoubleOnStack = false;
1352 #else
1353 #error "Unsupported architecture"
1354 #endif
1355 
1356  public:
BuildNativeCallFrameStateMachine(T * delegate)1357   explicit BuildNativeCallFrameStateMachine(T* delegate)
1358       : gpr_index_(kNumNativeGprArgs),
1359         fpr_index_(kNumNativeFprArgs),
1360         stack_entries_(0),
1361         delegate_(delegate) {
1362     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1363     // the next register is even; counting down is just to make the compiler happy...
1364     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1365     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1366   }
1367 
~BuildNativeCallFrameStateMachine()1368   virtual ~BuildNativeCallFrameStateMachine() {}
1369 
HavePointerGpr() const1370   bool HavePointerGpr() const {
1371     return gpr_index_ > 0;
1372   }
1373 
AdvancePointer(const void * val)1374   void AdvancePointer(const void* val) {
1375     if (HavePointerGpr()) {
1376       gpr_index_--;
1377       PushGpr(reinterpret_cast<uintptr_t>(val));
1378     } else {
1379       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1380       PushStack(reinterpret_cast<uintptr_t>(val));
1381       gpr_index_ = 0;
1382     }
1383   }
1384 
HaveHandleScopeGpr() const1385   bool HaveHandleScopeGpr() const {
1386     return gpr_index_ > 0;
1387   }
1388 
AdvanceHandleScope(mirror::Object * ptr)1389   void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1390     uintptr_t handle = PushHandle(ptr);
1391     if (HaveHandleScopeGpr()) {
1392       gpr_index_--;
1393       PushGpr(handle);
1394     } else {
1395       stack_entries_++;
1396       PushStack(handle);
1397       gpr_index_ = 0;
1398     }
1399   }
1400 
HaveIntGpr() const1401   bool HaveIntGpr() const {
1402     return gpr_index_ > 0;
1403   }
1404 
AdvanceInt(uint32_t val)1405   void AdvanceInt(uint32_t val) {
1406     if (HaveIntGpr()) {
1407       gpr_index_--;
1408       if (kMultiGPRegistersWidened) {
1409         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1410         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1411       } else {
1412         PushGpr(val);
1413       }
1414     } else {
1415       stack_entries_++;
1416       if (kMultiGPRegistersWidened) {
1417         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1418         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1419       } else {
1420         PushStack(val);
1421       }
1422       gpr_index_ = 0;
1423     }
1424   }
1425 
HaveLongGpr() const1426   bool HaveLongGpr() const {
1427     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1428   }
1429 
LongGprNeedsPadding() const1430   bool LongGprNeedsPadding() const {
1431     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1432         kAlignLongOnStack &&                  // and when it needs alignment
1433         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1434   }
1435 
LongStackNeedsPadding() const1436   bool LongStackNeedsPadding() const {
1437     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1438         kAlignLongOnStack &&                  // and when it needs 8B alignment
1439         (stack_entries_ & 1) == 1;            // counter is odd
1440   }
1441 
AdvanceLong(uint64_t val)1442   void AdvanceLong(uint64_t val) {
1443     if (HaveLongGpr()) {
1444       if (LongGprNeedsPadding()) {
1445         PushGpr(0);
1446         gpr_index_--;
1447       }
1448       if (kRegistersNeededForLong == 1) {
1449         PushGpr(static_cast<uintptr_t>(val));
1450       } else {
1451         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1452         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1453       }
1454       gpr_index_ -= kRegistersNeededForLong;
1455     } else {
1456       if (LongStackNeedsPadding()) {
1457         PushStack(0);
1458         stack_entries_++;
1459       }
1460       if (kRegistersNeededForLong == 1) {
1461         PushStack(static_cast<uintptr_t>(val));
1462         stack_entries_++;
1463       } else {
1464         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1465         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1466         stack_entries_ += 2;
1467       }
1468       gpr_index_ = 0;
1469     }
1470   }
1471 
HaveFloatFpr() const1472   bool HaveFloatFpr() const {
1473     return fpr_index_ > 0;
1474   }
1475 
AdvanceFloat(float val)1476   void AdvanceFloat(float val) {
1477     if (kNativeSoftFloatAbi) {
1478       AdvanceInt(bit_cast<uint32_t, float>(val));
1479     } else {
1480       if (HaveFloatFpr()) {
1481         fpr_index_--;
1482         if (kRegistersNeededForDouble == 1) {
1483           if (kMultiFPRegistersWidened) {
1484             PushFpr8(bit_cast<uint64_t, double>(val));
1485           } else {
1486             // No widening, just use the bits.
1487             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1488           }
1489         } else {
1490           PushFpr4(val);
1491         }
1492       } else {
1493         stack_entries_++;
1494         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1495           // Need to widen before storing: Note the "double" in the template instantiation.
1496           // Note: We need to jump through those hoops to make the compiler happy.
1497           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1498           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1499         } else {
1500           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1501         }
1502         fpr_index_ = 0;
1503       }
1504     }
1505   }
1506 
HaveDoubleFpr() const1507   bool HaveDoubleFpr() const {
1508     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1509   }
1510 
DoubleFprNeedsPadding() const1511   bool DoubleFprNeedsPadding() const {
1512     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1513         kAlignDoubleOnStack &&                  // and when it needs alignment
1514         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1515   }
1516 
DoubleStackNeedsPadding() const1517   bool DoubleStackNeedsPadding() const {
1518     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1519         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1520         (stack_entries_ & 1) == 1;              // counter is odd
1521   }
1522 
AdvanceDouble(uint64_t val)1523   void AdvanceDouble(uint64_t val) {
1524     if (kNativeSoftFloatAbi) {
1525       AdvanceLong(val);
1526     } else {
1527       if (HaveDoubleFpr()) {
1528         if (DoubleFprNeedsPadding()) {
1529           PushFpr4(0);
1530           fpr_index_--;
1531         }
1532         PushFpr8(val);
1533         fpr_index_ -= kRegistersNeededForDouble;
1534       } else {
1535         if (DoubleStackNeedsPadding()) {
1536           PushStack(0);
1537           stack_entries_++;
1538         }
1539         if (kRegistersNeededForDouble == 1) {
1540           PushStack(static_cast<uintptr_t>(val));
1541           stack_entries_++;
1542         } else {
1543           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1544           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1545           stack_entries_ += 2;
1546         }
1547         fpr_index_ = 0;
1548       }
1549     }
1550   }
1551 
GetStackEntries() const1552   uint32_t GetStackEntries() const {
1553     return stack_entries_;
1554   }
1555 
GetNumberOfUsedGprs() const1556   uint32_t GetNumberOfUsedGprs() const {
1557     return kNumNativeGprArgs - gpr_index_;
1558   }
1559 
GetNumberOfUsedFprs() const1560   uint32_t GetNumberOfUsedFprs() const {
1561     return kNumNativeFprArgs - fpr_index_;
1562   }
1563 
1564  private:
PushGpr(uintptr_t val)1565   void PushGpr(uintptr_t val) {
1566     delegate_->PushGpr(val);
1567   }
PushFpr4(float val)1568   void PushFpr4(float val) {
1569     delegate_->PushFpr4(val);
1570   }
PushFpr8(uint64_t val)1571   void PushFpr8(uint64_t val) {
1572     delegate_->PushFpr8(val);
1573   }
PushStack(uintptr_t val)1574   void PushStack(uintptr_t val) {
1575     delegate_->PushStack(val);
1576   }
PushHandle(mirror::Object * ref)1577   uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1578     return delegate_->PushHandle(ref);
1579   }
1580 
1581   uint32_t gpr_index_;      // Number of free GPRs
1582   uint32_t fpr_index_;      // Number of free FPRs
1583   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1584                             // extended
1585   T* const delegate_;             // What Push implementation gets called
1586 };
1587 
1588 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1589 // in subclasses.
1590 //
1591 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1592 // them with handles.
1593 class ComputeNativeCallFrameSize {
1594  public:
ComputeNativeCallFrameSize()1595   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1596 
~ComputeNativeCallFrameSize()1597   virtual ~ComputeNativeCallFrameSize() {}
1598 
GetStackSize() const1599   uint32_t GetStackSize() const {
1600     return num_stack_entries_ * sizeof(uintptr_t);
1601   }
1602 
LayoutCallStack(uint8_t * sp8) const1603   uint8_t* LayoutCallStack(uint8_t* sp8) const {
1604     sp8 -= GetStackSize();
1605     // Align by kStackAlignment.
1606     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1607     return sp8;
1608   }
1609 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1610   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1611       const {
1612     // Assumption is OK right now, as we have soft-float arm
1613     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1614     sp8 -= fregs * sizeof(uintptr_t);
1615     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1616     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1617     sp8 -= iregs * sizeof(uintptr_t);
1618     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1619     return sp8;
1620   }
1621 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1622   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1623                             uint32_t** start_fpr) const {
1624     // Native call stack.
1625     sp8 = LayoutCallStack(sp8);
1626     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1627 
1628     // Put fprs and gprs below.
1629     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1630 
1631     // Return the new bottom.
1632     return sp8;
1633   }
1634 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1635   virtual void WalkHeader(
1636       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1637       REQUIRES_SHARED(Locks::mutator_lock_) {
1638   }
1639 
Walk(const char * shorty,uint32_t shorty_len)1640   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1641     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1642 
1643     WalkHeader(&sm);
1644 
1645     for (uint32_t i = 1; i < shorty_len; ++i) {
1646       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1647       switch (cur_type_) {
1648         case Primitive::kPrimNot:
1649           // TODO: fix abuse of mirror types.
1650           sm.AdvanceHandleScope(
1651               reinterpret_cast<mirror::Object*>(0x12345678));
1652           break;
1653 
1654         case Primitive::kPrimBoolean:
1655         case Primitive::kPrimByte:
1656         case Primitive::kPrimChar:
1657         case Primitive::kPrimShort:
1658         case Primitive::kPrimInt:
1659           sm.AdvanceInt(0);
1660           break;
1661         case Primitive::kPrimFloat:
1662           sm.AdvanceFloat(0);
1663           break;
1664         case Primitive::kPrimDouble:
1665           sm.AdvanceDouble(0);
1666           break;
1667         case Primitive::kPrimLong:
1668           sm.AdvanceLong(0);
1669           break;
1670         default:
1671           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1672           UNREACHABLE();
1673       }
1674     }
1675 
1676     num_stack_entries_ = sm.GetStackEntries();
1677   }
1678 
PushGpr(uintptr_t)1679   void PushGpr(uintptr_t /* val */) {
1680     // not optimizing registers, yet
1681   }
1682 
PushFpr4(float)1683   void PushFpr4(float /* val */) {
1684     // not optimizing registers, yet
1685   }
1686 
PushFpr8(uint64_t)1687   void PushFpr8(uint64_t /* val */) {
1688     // not optimizing registers, yet
1689   }
1690 
PushStack(uintptr_t)1691   void PushStack(uintptr_t /* val */) {
1692     // counting is already done in the superclass
1693   }
1694 
PushHandle(mirror::Object *)1695   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1696     return reinterpret_cast<uintptr_t>(nullptr);
1697   }
1698 
1699  protected:
1700   uint32_t num_stack_entries_;
1701 };
1702 
1703 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1704  public:
ComputeGenericJniFrameSize(bool critical_native)1705   explicit ComputeGenericJniFrameSize(bool critical_native)
1706     : num_handle_scope_references_(0), critical_native_(critical_native) {}
1707 
1708   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1709   // is at *m = sp. Will update to point to the bottom of the save frame.
1710   //
1711   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1712   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1713       REQUIRES_SHARED(Locks::mutator_lock_) {
1714     ArtMethod* method = **m;
1715 
1716     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1717 
1718     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1719 
1720     // First, fix up the layout of the callee-save frame.
1721     // We have to squeeze in the HandleScope, and relocate the method pointer.
1722 
1723     // "Free" the slot for the method.
1724     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1725 
1726     // Under the callee saves put handle scope and new method stack reference.
1727     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1728     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1729 
1730     sp8 -= scope_and_method;
1731     // Align by kStackAlignment.
1732     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1733 
1734     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1735     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1736                                         num_handle_scope_references_);
1737 
1738     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1739     uint8_t* method_pointer = sp8;
1740     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1741     *new_method_ref = method;
1742     *m = new_method_ref;
1743   }
1744 
1745   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const1746   void LayoutCookie(uint8_t** sp) const {
1747     // Reference cookie and padding
1748     *sp -= 8;
1749   }
1750 
1751   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1752   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1753   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1754       REQUIRES_SHARED(Locks::mutator_lock_) {
1755     // First, fix up the layout of the callee-save frame.
1756     // We have to squeeze in the HandleScope, and relocate the method pointer.
1757     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1758 
1759     // The bottom of the callee-save frame is now where the method is, *m.
1760     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1761 
1762     // Add space for cookie.
1763     LayoutCookie(&sp8);
1764 
1765     return sp8;
1766   }
1767 
1768   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1769   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1770                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1771                          uint32_t** start_fpr)
1772       REQUIRES_SHARED(Locks::mutator_lock_) {
1773     Walk(shorty, shorty_len);
1774 
1775     // JNI part.
1776     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1777 
1778     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1779 
1780     // Return the new bottom.
1781     return sp8;
1782   }
1783 
1784   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1785 
1786   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1787   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1788       REQUIRES_SHARED(Locks::mutator_lock_);
1789 
1790  private:
1791   uint32_t num_handle_scope_references_;
1792   const bool critical_native_;
1793 };
1794 
PushHandle(mirror::Object *)1795 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1796   num_handle_scope_references_++;
1797   return reinterpret_cast<uintptr_t>(nullptr);
1798 }
1799 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1800 void ComputeGenericJniFrameSize::WalkHeader(
1801     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1802   // First 2 parameters are always excluded for @CriticalNative.
1803   if (UNLIKELY(critical_native_)) {
1804     return;
1805   }
1806 
1807   // JNIEnv
1808   sm->AdvancePointer(nullptr);
1809 
1810   // Class object or this as first argument
1811   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1812 }
1813 
1814 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1815 // the template requirements of BuildGenericJniFrameStateMachine.
1816 class FillNativeCall {
1817  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1818   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1819       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1820 
~FillNativeCall()1821   virtual ~FillNativeCall() {}
1822 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1823   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1824     cur_gpr_reg_ = gpr_regs;
1825     cur_fpr_reg_ = fpr_regs;
1826     cur_stack_arg_ = stack_args;
1827   }
1828 
PushGpr(uintptr_t val)1829   void PushGpr(uintptr_t val) {
1830     *cur_gpr_reg_ = val;
1831     cur_gpr_reg_++;
1832   }
1833 
PushFpr4(float val)1834   void PushFpr4(float val) {
1835     *cur_fpr_reg_ = val;
1836     cur_fpr_reg_++;
1837   }
1838 
PushFpr8(uint64_t val)1839   void PushFpr8(uint64_t val) {
1840     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1841     *tmp = val;
1842     cur_fpr_reg_ += 2;
1843   }
1844 
PushStack(uintptr_t val)1845   void PushStack(uintptr_t val) {
1846     *cur_stack_arg_ = val;
1847     cur_stack_arg_++;
1848   }
1849 
PushHandle(mirror::Object *)1850   virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1851     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1852     UNREACHABLE();
1853   }
1854 
1855  private:
1856   uintptr_t* cur_gpr_reg_;
1857   uint32_t* cur_fpr_reg_;
1858   uintptr_t* cur_stack_arg_;
1859 };
1860 
1861 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1862 // of transitioning into native code.
1863 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1864  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)1865   BuildGenericJniFrameVisitor(Thread* self,
1866                               bool is_static,
1867                               bool critical_native,
1868                               const char* shorty,
1869                               uint32_t shorty_len,
1870                               ArtMethod*** sp)
1871      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1872        jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1873        sm_(&jni_call_) {
1874     ComputeGenericJniFrameSize fsc(critical_native);
1875     uintptr_t* start_gpr_reg;
1876     uint32_t* start_fpr_reg;
1877     uintptr_t* start_stack_arg;
1878     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1879                                              &handle_scope_,
1880                                              &start_stack_arg,
1881                                              &start_gpr_reg, &start_fpr_reg);
1882 
1883     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1884 
1885     // First 2 parameters are always excluded for CriticalNative methods.
1886     if (LIKELY(!critical_native)) {
1887       // jni environment is always first argument
1888       sm_.AdvancePointer(self->GetJniEnv());
1889 
1890       if (is_static) {
1891         sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1892       }  // else "this" reference is already handled by QuickArgumentVisitor.
1893     }
1894   }
1895 
1896   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1897 
1898   void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1899 
GetFirstHandleScopeEntry()1900   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1901     return handle_scope_->GetHandle(0).GetReference();
1902   }
1903 
GetFirstHandleScopeJObject() const1904   jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1905     return handle_scope_->GetHandle(0).ToJObject();
1906   }
1907 
GetBottomOfUsedArea() const1908   void* GetBottomOfUsedArea() const {
1909     return bottom_of_used_area_;
1910   }
1911 
1912  private:
1913   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1914   class FillJniCall FINAL : public FillNativeCall {
1915    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope,bool critical_native)1916     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1917                 HandleScope* handle_scope, bool critical_native)
1918       : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1919                        handle_scope_(handle_scope),
1920         cur_entry_(0),
1921         critical_native_(critical_native) {}
1922 
1923     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
1924 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1925     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1926       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1927       handle_scope_ = scope;
1928       cur_entry_ = 0U;
1929     }
1930 
ResetRemainingScopeSlots()1931     void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
1932       // Initialize padding entries.
1933       size_t expected_slots = handle_scope_->NumberOfReferences();
1934       while (cur_entry_ < expected_slots) {
1935         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1936       }
1937 
1938       if (!critical_native_) {
1939         // Non-critical natives have at least the self class (jclass) or this (jobject).
1940         DCHECK_NE(cur_entry_, 0U);
1941       }
1942     }
1943 
CriticalNative() const1944     bool CriticalNative() const {
1945       return critical_native_;
1946     }
1947 
1948    private:
1949     HandleScope* handle_scope_;
1950     size_t cur_entry_;
1951     const bool critical_native_;
1952   };
1953 
1954   HandleScope* handle_scope_;
1955   FillJniCall jni_call_;
1956   void* bottom_of_used_area_;
1957 
1958   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1959 
1960   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1961 };
1962 
PushHandle(mirror::Object * ref)1963 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1964   uintptr_t tmp;
1965   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1966   h.Assign(ref);
1967   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1968   cur_entry_++;
1969   return tmp;
1970 }
1971 
Visit()1972 void BuildGenericJniFrameVisitor::Visit() {
1973   Primitive::Type type = GetParamPrimitiveType();
1974   switch (type) {
1975     case Primitive::kPrimLong: {
1976       jlong long_arg;
1977       if (IsSplitLongOrDouble()) {
1978         long_arg = ReadSplitLongParam();
1979       } else {
1980         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1981       }
1982       sm_.AdvanceLong(long_arg);
1983       break;
1984     }
1985     case Primitive::kPrimDouble: {
1986       uint64_t double_arg;
1987       if (IsSplitLongOrDouble()) {
1988         // Read into union so that we don't case to a double.
1989         double_arg = ReadSplitLongParam();
1990       } else {
1991         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1992       }
1993       sm_.AdvanceDouble(double_arg);
1994       break;
1995     }
1996     case Primitive::kPrimNot: {
1997       StackReference<mirror::Object>* stack_ref =
1998           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1999       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2000       break;
2001     }
2002     case Primitive::kPrimFloat:
2003       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2004       break;
2005     case Primitive::kPrimBoolean:  // Fall-through.
2006     case Primitive::kPrimByte:     // Fall-through.
2007     case Primitive::kPrimChar:     // Fall-through.
2008     case Primitive::kPrimShort:    // Fall-through.
2009     case Primitive::kPrimInt:      // Fall-through.
2010       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2011       break;
2012     case Primitive::kPrimVoid:
2013       LOG(FATAL) << "UNREACHABLE";
2014       UNREACHABLE();
2015   }
2016 }
2017 
FinalizeHandleScope(Thread * self)2018 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2019   // Clear out rest of the scope.
2020   jni_call_.ResetRemainingScopeSlots();
2021   if (!jni_call_.CriticalNative()) {
2022     // Install HandleScope.
2023     self->PushHandleScope(handle_scope_);
2024   }
2025 }
2026 
2027 #if defined(__arm__) || defined(__aarch64__)
2028 extern "C" const void* artFindNativeMethod();
2029 #else
2030 extern "C" const void* artFindNativeMethod(Thread* self);
2031 #endif
2032 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,bool fast_native ATTRIBUTE_UNUSED,jobject l,jobject lock)2033 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2034                                             uint32_t cookie,
2035                                             bool fast_native ATTRIBUTE_UNUSED,
2036                                             jobject l,
2037                                             jobject lock) {
2038   // TODO: add entrypoints for @FastNative returning objects.
2039   if (lock != nullptr) {
2040     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2041   } else {
2042     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2043   }
2044 }
2045 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,bool fast_native,jobject lock)2046 static void artQuickGenericJniEndJNINonRef(Thread* self,
2047                                            uint32_t cookie,
2048                                            bool fast_native,
2049                                            jobject lock) {
2050   if (lock != nullptr) {
2051     JniMethodEndSynchronized(cookie, lock, self);
2052     // Ignore "fast_native" here because synchronized functions aren't very fast.
2053   } else {
2054     if (UNLIKELY(fast_native)) {
2055       JniMethodFastEnd(cookie, self);
2056     } else {
2057       JniMethodEnd(cookie, self);
2058     }
2059   }
2060 }
2061 
2062 /*
2063  * Initializes an alloca region assumed to be directly below sp for a native call:
2064  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2065  * The final element on the stack is a pointer to the native code.
2066  *
2067  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2068  * We need to fix this, as the handle scope needs to go into the callee-save frame.
2069  *
2070  * The return of this function denotes:
2071  * 1) How many bytes of the alloca can be released, if the value is non-negative.
2072  * 2) An error, if the value is negative.
2073  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)2074 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2075     REQUIRES_SHARED(Locks::mutator_lock_) {
2076   ArtMethod* called = *sp;
2077   DCHECK(called->IsNative()) << called->PrettyMethod(true);
2078   // Fix up a callee-save frame at the bottom of the stack (at `*sp`,
2079   // above the alloca region) while we check for optimization
2080   // annotations, thus allowing stack walking until the completion of
2081   // the JNI frame creation.
2082   //
2083   // Note however that the Generic JNI trampoline does not expect
2084   // exception being thrown at that stage.
2085   *sp = Runtime::Current()->GetCalleeSaveMethod(Runtime::CalleeSaveType::kSaveRefsAndArgs);
2086   self->SetTopOfStack(sp);
2087   uint32_t shorty_len = 0;
2088   const char* shorty = called->GetShorty(&shorty_len);
2089   // Optimization annotations lookup does not try to resolve classes,
2090   // as this may throw an exception, which is not supported by the
2091   // Generic JNI trampoline at this stage; instead, method's
2092   // annotations' classes are looked up in the bootstrap class
2093   // loader's resolved types (which won't trigger an exception).
2094   bool critical_native = called->IsAnnotatedWithCriticalNative();
2095   // ArtMethod::IsAnnotatedWithCriticalNative should not throw
2096   // an exception; clear it if it happened anyway.
2097   // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
2098   if (self->IsExceptionPending()) {
2099     self->ClearException();
2100   }
2101   bool fast_native = called->IsAnnotatedWithFastNative();
2102   // ArtMethod::IsAnnotatedWithFastNative should not throw
2103   // an exception; clear it if it happened anyway.
2104   // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
2105   if (self->IsExceptionPending()) {
2106     self->ClearException();
2107   }
2108   bool normal_native = !critical_native && !fast_native;
2109   // Restore the initial ArtMethod pointer at `*sp`.
2110   *sp = called;
2111 
2112   // Run the visitor and update sp.
2113   BuildGenericJniFrameVisitor visitor(self,
2114                                       called->IsStatic(),
2115                                       critical_native,
2116                                       shorty,
2117                                       shorty_len,
2118                                       &sp);
2119   {
2120     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2121     visitor.VisitArguments();
2122     // FinalizeHandleScope pushes the handle scope on the thread.
2123     visitor.FinalizeHandleScope(self);
2124   }
2125 
2126   // Fix up managed-stack things in Thread.
2127   self->SetTopOfStack(sp);
2128 
2129   self->VerifyStack();
2130 
2131   uint32_t cookie;
2132   uint32_t* sp32;
2133   // Skip calling JniMethodStart for @CriticalNative.
2134   if (LIKELY(!critical_native)) {
2135     // Start JNI, save the cookie.
2136     if (called->IsSynchronized()) {
2137       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2138       cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2139       if (self->IsExceptionPending()) {
2140         self->PopHandleScope();
2141         // A negative value denotes an error.
2142         return GetTwoWordFailureValue();
2143       }
2144     } else {
2145       if (fast_native) {
2146         cookie = JniMethodFastStart(self);
2147       } else {
2148         DCHECK(normal_native);
2149         cookie = JniMethodStart(self);
2150       }
2151     }
2152     sp32 = reinterpret_cast<uint32_t*>(sp);
2153     *(sp32 - 1) = cookie;
2154   }
2155 
2156   // Retrieve the stored native code.
2157   void const* nativeCode = called->GetEntryPointFromJni();
2158 
2159   // There are two cases for the content of nativeCode:
2160   // 1) Pointer to the native function.
2161   // 2) Pointer to the trampoline for native code binding.
2162   // In the second case, we need to execute the binding and continue with the actual native function
2163   // pointer.
2164   DCHECK(nativeCode != nullptr);
2165   if (nativeCode == GetJniDlsymLookupStub()) {
2166 #if defined(__arm__) || defined(__aarch64__)
2167     nativeCode = artFindNativeMethod();
2168 #else
2169     nativeCode = artFindNativeMethod(self);
2170 #endif
2171 
2172     if (nativeCode == nullptr) {
2173       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2174 
2175       // @CriticalNative calls do not need to call back into JniMethodEnd.
2176       if (LIKELY(!critical_native)) {
2177         // End JNI, as the assembly will move to deliver the exception.
2178         jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2179         if (shorty[0] == 'L') {
2180           artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2181         } else {
2182           artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2183         }
2184       }
2185 
2186       return GetTwoWordFailureValue();
2187     }
2188     // Note that the native code pointer will be automatically set by artFindNativeMethod().
2189   }
2190 
2191 #if defined(__mips__) && !defined(__LP64__)
2192   // On MIPS32 if the first two arguments are floating-point, we need to know their types
2193   // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2194   // and load into floating-point registers.
2195   // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2196   // view):
2197   // (1)
2198   //  |     DOUBLE    |     DOUBLE    | other args, if any
2199   //  |  F12  |  F13  |  F14  |  F15  |
2200   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2201   // (2)
2202   //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2203   //  |  F12  |  F13  |  F14  |       |
2204   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2205   // (3)
2206   //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2207   //  |  F12  |       |  F14  |  F15  |
2208   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2209   // (4)
2210   //  | FLOAT | FLOAT | other args, if any
2211   //  |  F12  |  F14  |
2212   //  |  SP+0 |  SP+4 | SP+8
2213   // As you can see, only the last case (4) is special. In all others we can just
2214   // load F12/F13 and F14/F15 in the same manner.
2215   // Set bit 0 of the native code address to 1 in this case (valid code addresses
2216   // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2217   if (nativeCode != nullptr &&
2218       shorty != nullptr &&
2219       shorty_len >= 3 &&
2220       shorty[1] == 'F' &&
2221       shorty[2] == 'F') {
2222     nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2223   }
2224 #endif
2225 
2226   // Return native code addr(lo) and bottom of alloca address(hi).
2227   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2228                                 reinterpret_cast<uintptr_t>(nativeCode));
2229 }
2230 
2231 // Defined in quick_jni_entrypoints.cc.
2232 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2233                                     jvalue result, uint64_t result_f, ArtMethod* called,
2234                                     HandleScope* handle_scope);
2235 /*
2236  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2237  * unlocking.
2238  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2239 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2240                                                     jvalue result,
2241                                                     uint64_t result_f) {
2242   // We're here just back from a native call. We don't have the shared mutator lock at this point
2243   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2244   // anything that requires a mutator lock before that would cause problems as GC may have the
2245   // exclusive mutator lock and may be moving objects, etc.
2246   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2247   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2248   ArtMethod* called = *sp;
2249   uint32_t cookie = *(sp32 - 1);
2250   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2251   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2252 }
2253 
2254 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2255 // for the method pointer.
2256 //
2257 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2258 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2259 
2260 template<InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2261 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2262                                      ObjPtr<mirror::Object> this_object,
2263                                      Thread* self,
2264                                      ArtMethod** sp) {
2265   ScopedQuickEntrypointChecks sqec(self);
2266   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2267   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2268   ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2269   if (UNLIKELY(method == nullptr)) {
2270     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2271     uint32_t shorty_len;
2272     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2273     {
2274       // Remember the args in case a GC happens in FindMethodFromCode.
2275       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2276       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2277       visitor.VisitArguments();
2278       method = FindMethodFromCode<type, access_check>(method_idx,
2279                                                       &this_object,
2280                                                       caller_method,
2281                                                       self);
2282       visitor.FixupReferences();
2283     }
2284 
2285     if (UNLIKELY(method == nullptr)) {
2286       CHECK(self->IsExceptionPending());
2287       return GetTwoWordFailureValue();  // Failure.
2288     }
2289   }
2290   DCHECK(!self->IsExceptionPending());
2291   const void* code = method->GetEntryPointFromQuickCompiledCode();
2292 
2293   // When we return, the caller will branch to this address, so it had better not be 0!
2294   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2295                           << " location: "
2296                           << method->GetDexFile()->GetLocation();
2297 
2298   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2299                                 reinterpret_cast<uintptr_t>(method));
2300 }
2301 
2302 // Explicit artInvokeCommon template function declarations to please analysis tool.
2303 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2304   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2305   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2306       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2307 
2308 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2309 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2310 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2311 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2312 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2313 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2314 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2315 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2316 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2317 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2318 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2319 
2320 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2321 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2322     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2323     REQUIRES_SHARED(Locks::mutator_lock_) {
2324   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2325 }
2326 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2327 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2328     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2329     REQUIRES_SHARED(Locks::mutator_lock_) {
2330   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2331 }
2332 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2333 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2334     uint32_t method_idx,
2335     mirror::Object* this_object ATTRIBUTE_UNUSED,
2336     Thread* self,
2337     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2338   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2339   // it doesn't cause ObjPtr alignment failure check.
2340   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2341 }
2342 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2343 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2344     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2345     REQUIRES_SHARED(Locks::mutator_lock_) {
2346   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2347 }
2348 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2349 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2350     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2351     REQUIRES_SHARED(Locks::mutator_lock_) {
2352   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2353 }
2354 
2355 // Determine target of interface dispatch. The interface method and this object are known non-null.
2356 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2357 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2358                                                       mirror::Object* raw_this_object,
2359                                                       Thread* self,
2360                                                       ArtMethod** sp)
2361     REQUIRES_SHARED(Locks::mutator_lock_) {
2362   CHECK(interface_method != nullptr);
2363   ObjPtr<mirror::Object> this_object(raw_this_object);
2364   ScopedQuickEntrypointChecks sqec(self);
2365   StackHandleScope<1> hs(self);
2366   Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2367 
2368   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2369   ArtMethod* method = nullptr;
2370   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2371 
2372   if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2373     // If the interface method is already resolved, look whether we have a match in the
2374     // ImtConflictTable.
2375     ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method),
2376                                           kRuntimePointerSize);
2377     if (LIKELY(conflict_method->IsRuntimeMethod())) {
2378       ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2379       DCHECK(current_table != nullptr);
2380       method = current_table->Lookup(interface_method, kRuntimePointerSize);
2381     } else {
2382       // It seems we aren't really a conflict method!
2383       method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2384     }
2385     if (method != nullptr) {
2386       return GetTwoWordSuccessValue(
2387           reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2388           reinterpret_cast<uintptr_t>(method));
2389     }
2390 
2391     // No match, use the IfTable.
2392     method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2393     if (UNLIKELY(method == nullptr)) {
2394       ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2395           interface_method, this_object, caller_method);
2396       return GetTwoWordFailureValue();  // Failure.
2397     }
2398   } else {
2399     // The interface method is unresolved, so look it up in the dex file of the caller.
2400     DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2401 
2402     // Fetch the dex_method_idx of the target interface method from the caller.
2403     uint32_t dex_method_idx;
2404     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2405     const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2406     DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2407     const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2408     Instruction::Code instr_code = instr->Opcode();
2409     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2410            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2411         << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2412     if (instr_code == Instruction::INVOKE_INTERFACE) {
2413       dex_method_idx = instr->VRegB_35c();
2414     } else {
2415       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2416       dex_method_idx = instr->VRegB_3rc();
2417     }
2418 
2419     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2420         ->GetDexFile();
2421     uint32_t shorty_len;
2422     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2423                                                    &shorty_len);
2424     {
2425       // Remember the args in case a GC happens in FindMethodFromCode.
2426       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2427       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2428       visitor.VisitArguments();
2429       method = FindMethodFromCode<kInterface, false>(dex_method_idx,
2430                                                      &this_object,
2431                                                      caller_method,
2432                                                      self);
2433       visitor.FixupReferences();
2434     }
2435 
2436     if (UNLIKELY(method == nullptr)) {
2437       CHECK(self->IsExceptionPending());
2438       return GetTwoWordFailureValue();  // Failure.
2439     }
2440     interface_method =
2441         caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
2442     DCHECK(!interface_method->IsRuntimeMethod());
2443   }
2444 
2445   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2446   // We create a new table with the new pair { interface_method, method }.
2447   uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2448   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2449   if (conflict_method->IsRuntimeMethod()) {
2450     ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2451         cls.Get(),
2452         conflict_method,
2453         interface_method,
2454         method,
2455         /*force_new_conflict_method*/false);
2456     if (new_conflict_method != conflict_method) {
2457       // Update the IMT if we create a new conflict method. No fence needed here, as the
2458       // data is consistent.
2459       imt->Set(imt_index,
2460                new_conflict_method,
2461                kRuntimePointerSize);
2462     }
2463   }
2464 
2465   const void* code = method->GetEntryPointFromQuickCompiledCode();
2466 
2467   // When we return, the caller will branch to this address, so it had better not be 0!
2468   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2469                           << " location: " << method->GetDexFile()->GetLocation();
2470 
2471   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2472                                 reinterpret_cast<uintptr_t>(method));
2473 }
2474 
2475 // Returns shorty type so the caller can determine how to put |result|
2476 // into expected registers. The shorty type is static so the compiler
2477 // could call different flavors of this code path depending on the
2478 // shorty type though this would require different entry points for
2479 // each type.
artInvokePolymorphic(JValue * result,mirror::Object * raw_method_handle,Thread * self,ArtMethod ** sp)2480 extern "C" uintptr_t artInvokePolymorphic(
2481     JValue* result,
2482     mirror::Object* raw_method_handle,
2483     Thread* self,
2484     ArtMethod** sp)
2485     REQUIRES_SHARED(Locks::mutator_lock_) {
2486   ScopedQuickEntrypointChecks sqec(self);
2487   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2488 
2489   // Start new JNI local reference state
2490   JNIEnvExt* env = self->GetJniEnv();
2491   ScopedObjectAccessUnchecked soa(env);
2492   ScopedJniEnvLocalRefState env_state(env);
2493   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2494 
2495   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2496   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2497   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2498   const DexFile::CodeItem* code = caller_method->GetCodeItem();
2499   const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
2500   DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2501          inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2502   const DexFile* dex_file = caller_method->GetDexFile();
2503   const uint32_t proto_idx = inst->VRegH();
2504   const char* shorty = dex_file->GetShorty(proto_idx);
2505   const size_t shorty_length = strlen(shorty);
2506   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2507   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2508   gc_visitor.VisitArguments();
2509 
2510   // Wrap raw_method_handle in a Handle for safety.
2511   StackHandleScope<5> hs(self);
2512   Handle<mirror::MethodHandle> method_handle(
2513       hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle))));
2514   raw_method_handle = nullptr;
2515   self->EndAssertNoThreadSuspension(old_cause);
2516 
2517   // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
2518   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2519   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self,
2520                                                                                    inst->VRegB(),
2521                                                                                    caller_method,
2522                                                                                    kVirtual);
2523   DCHECK((resolved_method ==
2524           jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
2525          (resolved_method ==
2526           jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
2527   if (UNLIKELY(method_handle.IsNull())) {
2528     ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2529     return static_cast<uintptr_t>('V');
2530   }
2531 
2532   Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
2533   Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
2534       *dex_file, proto_idx,
2535       hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
2536       hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
2537   // This implies we couldn't resolve one or more types in this method handle.
2538   if (UNLIKELY(method_type.IsNull())) {
2539     CHECK(self->IsExceptionPending());
2540     return static_cast<uintptr_t>('V');
2541   }
2542 
2543   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
2544   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2545 
2546   // Fix references before constructing the shadow frame.
2547   gc_visitor.FixupReferences();
2548 
2549   // Construct shadow frame placing arguments consecutively from |first_arg|.
2550   const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2551   const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
2552   const size_t first_arg = 0;
2553   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2554       CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2555   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2556   ScopedStackedShadowFramePusher
2557       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2558   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2559                                                     kMethodIsStatic,
2560                                                     shorty,
2561                                                     strlen(shorty),
2562                                                     shadow_frame,
2563                                                     first_arg);
2564   shadow_frame_builder.VisitArguments();
2565 
2566   // Push a transition back into managed code onto the linked list in thread.
2567   ManagedStack fragment;
2568   self->PushManagedStackFragment(&fragment);
2569 
2570   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2571   // consecutive order.
2572   uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
2573   uint32_t first_callee_arg = first_arg + 1;
2574   if (!DoInvokePolymorphic<true /* is_range */>(self,
2575                                                 resolved_method,
2576                                                 *shadow_frame,
2577                                                 method_handle,
2578                                                 method_type,
2579                                                 unused_args,
2580                                                 first_callee_arg,
2581                                                 result)) {
2582     DCHECK(self->IsExceptionPending());
2583   }
2584 
2585   // Pop transition record.
2586   self->PopManagedStackFragment(fragment);
2587 
2588   return static_cast<uintptr_t>(shorty[0]);
2589 }
2590 
2591 }  // namespace art
2592