1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
18 #define ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
19
20 #include "object_array.h"
21
22 #include <string>
23
24 #include "android-base/stringprintf.h"
25
26 #include "array-inl.h"
27 #include "class.h"
28 #include "gc/heap.h"
29 #include "object-inl.h"
30 #include "obj_ptr-inl.h"
31 #include "runtime.h"
32 #include "handle_scope-inl.h"
33 #include "thread.h"
34 #include "utils.h"
35
36 namespace art {
37 namespace mirror {
38
39 template<class T>
Alloc(Thread * self,ObjPtr<Class> object_array_class,int32_t length,gc::AllocatorType allocator_type)40 inline ObjectArray<T>* ObjectArray<T>::Alloc(Thread* self,
41 ObjPtr<Class> object_array_class,
42 int32_t length, gc::AllocatorType allocator_type) {
43 Array* array = Array::Alloc<true>(self,
44 object_array_class.Ptr(),
45 length,
46 ComponentSizeShiftWidth(kHeapReferenceSize),
47 allocator_type);
48 if (UNLIKELY(array == nullptr)) {
49 return nullptr;
50 }
51 DCHECK_EQ(array->GetClass()->GetComponentSizeShift(),
52 ComponentSizeShiftWidth(kHeapReferenceSize));
53 return array->AsObjectArray<T>();
54 }
55
56 template<class T>
Alloc(Thread * self,ObjPtr<Class> object_array_class,int32_t length)57 inline ObjectArray<T>* ObjectArray<T>::Alloc(Thread* self,
58 ObjPtr<Class> object_array_class,
59 int32_t length) {
60 return Alloc(self,
61 object_array_class,
62 length,
63 Runtime::Current()->GetHeap()->GetCurrentAllocator());
64 }
65
66 template<class T> template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
Get(int32_t i)67 inline T* ObjectArray<T>::Get(int32_t i) {
68 if (!CheckIsValidIndex(i)) {
69 DCHECK(Thread::Current()->IsExceptionPending());
70 return nullptr;
71 }
72 return GetFieldObject<T, kVerifyFlags, kReadBarrierOption>(OffsetOfElement(i));
73 }
74
75 template<class T> template<VerifyObjectFlags kVerifyFlags>
CheckAssignable(ObjPtr<T> object)76 inline bool ObjectArray<T>::CheckAssignable(ObjPtr<T> object) {
77 if (object != nullptr) {
78 Class* element_class = GetClass<kVerifyFlags>()->GetComponentType();
79 if (UNLIKELY(!object->InstanceOf(element_class))) {
80 ThrowArrayStoreException(object);
81 return false;
82 }
83 }
84 return true;
85 }
86
87 template<class T>
Set(int32_t i,ObjPtr<T> object)88 inline void ObjectArray<T>::Set(int32_t i, ObjPtr<T> object) {
89 if (Runtime::Current()->IsActiveTransaction()) {
90 Set<true>(i, object);
91 } else {
92 Set<false>(i, object);
93 }
94 }
95
96 template<class T>
97 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
Set(int32_t i,ObjPtr<T> object)98 inline void ObjectArray<T>::Set(int32_t i, ObjPtr<T> object) {
99 if (CheckIsValidIndex(i) && CheckAssignable<kVerifyFlags>(object)) {
100 SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object);
101 } else {
102 DCHECK(Thread::Current()->IsExceptionPending());
103 }
104 }
105
106 template<class T>
107 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
SetWithoutChecks(int32_t i,ObjPtr<T> object)108 inline void ObjectArray<T>::SetWithoutChecks(int32_t i, ObjPtr<T> object) {
109 DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
110 DCHECK(CheckAssignable<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(object));
111 SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object);
112 }
113
114 template<class T>
115 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
SetWithoutChecksAndWriteBarrier(int32_t i,ObjPtr<T> object)116 inline void ObjectArray<T>::SetWithoutChecksAndWriteBarrier(int32_t i, ObjPtr<T> object) {
117 DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
118 // TODO: enable this check. It fails when writing the image in ImageWriter::FixupObjectArray.
119 // DCHECK(CheckAssignable(object));
120 SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags>(
121 OffsetOfElement(i), object);
122 }
123
124 template<class T> template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
GetWithoutChecks(int32_t i)125 inline T* ObjectArray<T>::GetWithoutChecks(int32_t i) {
126 DCHECK(CheckIsValidIndex(i));
127 return GetFieldObject<T, kVerifyFlags, kReadBarrierOption>(OffsetOfElement(i));
128 }
129
130 template<class T>
AssignableMemmove(int32_t dst_pos,ObjPtr<ObjectArray<T>> src,int32_t src_pos,int32_t count)131 inline void ObjectArray<T>::AssignableMemmove(int32_t dst_pos,
132 ObjPtr<ObjectArray<T>> src,
133 int32_t src_pos,
134 int32_t count) {
135 if (kIsDebugBuild) {
136 for (int i = 0; i < count; ++i) {
137 // The get will perform the VerifyObject.
138 src->GetWithoutChecks(src_pos + i);
139 }
140 }
141 // Perform the memmove using int memmove then perform the write barrier.
142 static_assert(sizeof(HeapReference<T>) == sizeof(uint32_t),
143 "art::mirror::HeapReference<T> and uint32_t have different sizes.");
144 // TODO: Optimize this later?
145 // We can't use memmove since it does not handle read barriers and may do by per byte copying.
146 // See b/32012820.
147 const bool copy_forward = (src != this) || (dst_pos < src_pos) || (dst_pos - src_pos >= count);
148 if (copy_forward) {
149 // Forward copy.
150 bool baker_non_gray_case = false;
151 if (kUseReadBarrier && kUseBakerReadBarrier) {
152 uintptr_t fake_address_dependency;
153 if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
154 baker_non_gray_case = true;
155 DCHECK_EQ(fake_address_dependency, 0U);
156 src.Assign(reinterpret_cast<ObjectArray<T>*>(
157 reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
158 for (int i = 0; i < count; ++i) {
159 // We can skip the RB here because 'src' isn't gray.
160 T* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
161 src_pos + i);
162 SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
163 }
164 }
165 }
166 if (!baker_non_gray_case) {
167 for (int i = 0; i < count; ++i) {
168 // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
169 T* obj = src->GetWithoutChecks(src_pos + i);
170 SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
171 }
172 }
173 } else {
174 // Backward copy.
175 bool baker_non_gray_case = false;
176 if (kUseReadBarrier && kUseBakerReadBarrier) {
177 uintptr_t fake_address_dependency;
178 if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
179 baker_non_gray_case = true;
180 DCHECK_EQ(fake_address_dependency, 0U);
181 src.Assign(reinterpret_cast<ObjectArray<T>*>(
182 reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
183 for (int i = count - 1; i >= 0; --i) {
184 // We can skip the RB here because 'src' isn't gray.
185 T* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
186 src_pos + i);
187 SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
188 }
189 }
190 }
191 if (!baker_non_gray_case) {
192 for (int i = count - 1; i >= 0; --i) {
193 // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
194 T* obj = src->GetWithoutChecks(src_pos + i);
195 SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
196 }
197 }
198 }
199 Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count);
200 if (kIsDebugBuild) {
201 for (int i = 0; i < count; ++i) {
202 // The get will perform the VerifyObject.
203 GetWithoutChecks(dst_pos + i);
204 }
205 }
206 }
207
208 template<class T>
AssignableMemcpy(int32_t dst_pos,ObjPtr<ObjectArray<T>> src,int32_t src_pos,int32_t count)209 inline void ObjectArray<T>::AssignableMemcpy(int32_t dst_pos,
210 ObjPtr<ObjectArray<T>> src,
211 int32_t src_pos,
212 int32_t count) {
213 if (kIsDebugBuild) {
214 for (int i = 0; i < count; ++i) {
215 // The get will perform the VerifyObject.
216 src->GetWithoutChecks(src_pos + i);
217 }
218 }
219 // Perform the memmove using int memcpy then perform the write barrier.
220 static_assert(sizeof(HeapReference<T>) == sizeof(uint32_t),
221 "art::mirror::HeapReference<T> and uint32_t have different sizes.");
222 // TODO: Optimize this later?
223 // We can't use memmove since it does not handle read barriers and may do by per byte copying.
224 // See b/32012820.
225 bool baker_non_gray_case = false;
226 if (kUseReadBarrier && kUseBakerReadBarrier) {
227 uintptr_t fake_address_dependency;
228 if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
229 baker_non_gray_case = true;
230 DCHECK_EQ(fake_address_dependency, 0U);
231 src.Assign(reinterpret_cast<ObjectArray<T>*>(
232 reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
233 for (int i = 0; i < count; ++i) {
234 // We can skip the RB here because 'src' isn't gray.
235 Object* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
236 src_pos + i);
237 SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
238 }
239 }
240 }
241 if (!baker_non_gray_case) {
242 for (int i = 0; i < count; ++i) {
243 // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
244 T* obj = src->GetWithoutChecks(src_pos + i);
245 SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
246 }
247 }
248 Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count);
249 if (kIsDebugBuild) {
250 for (int i = 0; i < count; ++i) {
251 // The get will perform the VerifyObject.
252 GetWithoutChecks(dst_pos + i);
253 }
254 }
255 }
256
257 template<class T>
258 template<bool kTransactionActive>
AssignableCheckingMemcpy(int32_t dst_pos,ObjPtr<ObjectArray<T>> src,int32_t src_pos,int32_t count,bool throw_exception)259 inline void ObjectArray<T>::AssignableCheckingMemcpy(int32_t dst_pos,
260 ObjPtr<ObjectArray<T>> src,
261 int32_t src_pos,
262 int32_t count,
263 bool throw_exception) {
264 DCHECK_NE(this, src)
265 << "This case should be handled with memmove that handles overlaps correctly";
266 // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that
267 // we know is assignable to the destination array's component type.
268 Class* dst_class = GetClass()->GetComponentType();
269 Class* lastAssignableElementClass = dst_class;
270
271 T* o = nullptr;
272 int i = 0;
273 bool baker_non_gray_case = false;
274 if (kUseReadBarrier && kUseBakerReadBarrier) {
275 uintptr_t fake_address_dependency;
276 if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
277 baker_non_gray_case = true;
278 DCHECK_EQ(fake_address_dependency, 0U);
279 src.Assign(reinterpret_cast<ObjectArray<T>*>(
280 reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
281 for (; i < count; ++i) {
282 // The follow get operations force the objects to be verified.
283 // We can skip the RB here because 'src' isn't gray.
284 o = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
285 src_pos + i);
286 if (o == nullptr) {
287 // Null is always assignable.
288 SetWithoutChecks<kTransactionActive>(dst_pos + i, nullptr);
289 } else {
290 // TODO: use the underlying class reference to avoid uncompression when not necessary.
291 Class* o_class = o->GetClass();
292 if (LIKELY(lastAssignableElementClass == o_class)) {
293 SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
294 } else if (LIKELY(dst_class->IsAssignableFrom(o_class))) {
295 lastAssignableElementClass = o_class;
296 SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
297 } else {
298 // Can't put this element into the array, break to perform write-barrier and throw
299 // exception.
300 break;
301 }
302 }
303 }
304 }
305 }
306 if (!baker_non_gray_case) {
307 for (; i < count; ++i) {
308 // The follow get operations force the objects to be verified.
309 // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
310 o = src->GetWithoutChecks(src_pos + i);
311 if (o == nullptr) {
312 // Null is always assignable.
313 SetWithoutChecks<kTransactionActive>(dst_pos + i, nullptr);
314 } else {
315 // TODO: use the underlying class reference to avoid uncompression when not necessary.
316 Class* o_class = o->GetClass();
317 if (LIKELY(lastAssignableElementClass == o_class)) {
318 SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
319 } else if (LIKELY(dst_class->IsAssignableFrom(o_class))) {
320 lastAssignableElementClass = o_class;
321 SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
322 } else {
323 // Can't put this element into the array, break to perform write-barrier and throw
324 // exception.
325 break;
326 }
327 }
328 }
329 }
330 Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count);
331 if (UNLIKELY(i != count)) {
332 std::string actualSrcType(mirror::Object::PrettyTypeOf(o));
333 std::string dstType(PrettyTypeOf());
334 Thread* self = Thread::Current();
335 std::string msg = android::base::StringPrintf(
336 "source[%d] of type %s cannot be stored in destination array of type %s",
337 src_pos + i,
338 actualSrcType.c_str(),
339 dstType.c_str());
340 if (throw_exception) {
341 self->ThrowNewException("Ljava/lang/ArrayStoreException;", msg.c_str());
342 } else {
343 LOG(FATAL) << msg;
344 }
345 }
346 }
347
348 template<class T>
CopyOf(Thread * self,int32_t new_length)349 inline ObjectArray<T>* ObjectArray<T>::CopyOf(Thread* self, int32_t new_length) {
350 DCHECK_GE(new_length, 0);
351 // We may get copied by a compacting GC.
352 StackHandleScope<1> hs(self);
353 Handle<ObjectArray<T>> h_this(hs.NewHandle(this));
354 gc::Heap* heap = Runtime::Current()->GetHeap();
355 gc::AllocatorType allocator_type = heap->IsMovableObject(this) ? heap->GetCurrentAllocator() :
356 heap->GetCurrentNonMovingAllocator();
357 ObjectArray<T>* new_array = Alloc(self, GetClass(), new_length, allocator_type);
358 if (LIKELY(new_array != nullptr)) {
359 new_array->AssignableMemcpy(0, h_this.Get(), 0, std::min(h_this->GetLength(), new_length));
360 }
361 return new_array;
362 }
363
364 template<class T>
OffsetOfElement(int32_t i)365 inline MemberOffset ObjectArray<T>::OffsetOfElement(int32_t i) {
366 return MemberOffset(DataOffset(kHeapReferenceSize).Int32Value() + (i * kHeapReferenceSize));
367 }
368
369 template<class T> template<typename Visitor>
VisitReferences(const Visitor & visitor)370 inline void ObjectArray<T>::VisitReferences(const Visitor& visitor) {
371 const size_t length = static_cast<size_t>(GetLength());
372 for (size_t i = 0; i < length; ++i) {
373 visitor(this, OffsetOfElement(i), false);
374 }
375 }
376
377 } // namespace mirror
378 } // namespace art
379
380 #endif // ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
381