1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "monitor.h"
18
19 #include <vector>
20
21 #include "android-base/stringprintf.h"
22
23 #include "art_method-inl.h"
24 #include "base/mutex.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "base/time_utils.h"
28 #include "class_linker.h"
29 #include "dex_file-inl.h"
30 #include "dex_instruction-inl.h"
31 #include "lock_word-inl.h"
32 #include "mirror/class-inl.h"
33 #include "mirror/object-inl.h"
34 #include "scoped_thread_state_change-inl.h"
35 #include "thread.h"
36 #include "thread_list.h"
37 #include "verifier/method_verifier.h"
38 #include "well_known_classes.h"
39
40 namespace art {
41
42 using android::base::StringPrintf;
43
44 static constexpr uint64_t kLongWaitMs = 100;
45
46 /*
47 * Every Object has a monitor associated with it, but not every Object is actually locked. Even
48 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
49 * or b) wait() is called on the Object.
50 *
51 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
52 * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us,
53 * though, because we have a full 32 bits to work with.
54 *
55 * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition
56 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
57 * a lock has been inflated it remains in the "fat" state indefinitely.
58 *
59 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
60 * in the LockWord value type.
61 *
62 * Monitors provide:
63 * - mutually exclusive access to resources
64 * - a way for multiple threads to wait for notification
65 *
66 * In effect, they fill the role of both mutexes and condition variables.
67 *
68 * Only one thread can own the monitor at any time. There may be several threads waiting on it
69 * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified
70 * at any given time.
71 */
72
73 uint32_t Monitor::lock_profiling_threshold_ = 0;
74
Init(uint32_t lock_profiling_threshold)75 void Monitor::Init(uint32_t lock_profiling_threshold) {
76 lock_profiling_threshold_ = lock_profiling_threshold;
77 }
78
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)79 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
80 : monitor_lock_("a monitor lock", kMonitorLock),
81 monitor_contenders_("monitor contenders", monitor_lock_),
82 num_waiters_(0),
83 owner_(owner),
84 lock_count_(0),
85 obj_(GcRoot<mirror::Object>(obj)),
86 wait_set_(nullptr),
87 hash_code_(hash_code),
88 locking_method_(nullptr),
89 locking_dex_pc_(0),
90 monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
91 #ifdef __LP64__
92 DCHECK(false) << "Should not be reached in 64b";
93 next_free_ = nullptr;
94 #endif
95 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
96 // with the owner unlocking the thin-lock.
97 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
98 // The identity hash code is set for the life time of the monitor.
99 }
100
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code,MonitorId id)101 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
102 MonitorId id)
103 : monitor_lock_("a monitor lock", kMonitorLock),
104 monitor_contenders_("monitor contenders", monitor_lock_),
105 num_waiters_(0),
106 owner_(owner),
107 lock_count_(0),
108 obj_(GcRoot<mirror::Object>(obj)),
109 wait_set_(nullptr),
110 hash_code_(hash_code),
111 locking_method_(nullptr),
112 locking_dex_pc_(0),
113 monitor_id_(id) {
114 #ifdef __LP64__
115 next_free_ = nullptr;
116 #endif
117 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
118 // with the owner unlocking the thin-lock.
119 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
120 // The identity hash code is set for the life time of the monitor.
121 }
122
GetHashCode()123 int32_t Monitor::GetHashCode() {
124 while (!HasHashCode()) {
125 if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
126 break;
127 }
128 }
129 DCHECK(HasHashCode());
130 return hash_code_.LoadRelaxed();
131 }
132
Install(Thread * self)133 bool Monitor::Install(Thread* self) {
134 MutexLock mu(self, monitor_lock_); // Uncontended mutex acquisition as monitor isn't yet public.
135 CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
136 // Propagate the lock state.
137 LockWord lw(GetObject()->GetLockWord(false));
138 switch (lw.GetState()) {
139 case LockWord::kThinLocked: {
140 CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
141 lock_count_ = lw.ThinLockCount();
142 break;
143 }
144 case LockWord::kHashCode: {
145 CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
146 break;
147 }
148 case LockWord::kFatLocked: {
149 // The owner_ is suspended but another thread beat us to install a monitor.
150 return false;
151 }
152 case LockWord::kUnlocked: {
153 LOG(FATAL) << "Inflating unlocked lock word";
154 break;
155 }
156 default: {
157 LOG(FATAL) << "Invalid monitor state " << lw.GetState();
158 return false;
159 }
160 }
161 LockWord fat(this, lw.GCState());
162 // Publish the updated lock word, which may race with other threads.
163 bool success = GetObject()->CasLockWordWeakRelease(lw, fat);
164 // Lock profiling.
165 if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
166 // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
167 // abort.
168 locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
169 }
170 return success;
171 }
172
~Monitor()173 Monitor::~Monitor() {
174 // Deflated monitors have a null object.
175 }
176
AppendToWaitSet(Thread * thread)177 void Monitor::AppendToWaitSet(Thread* thread) {
178 DCHECK(owner_ == Thread::Current());
179 DCHECK(thread != nullptr);
180 DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
181 if (wait_set_ == nullptr) {
182 wait_set_ = thread;
183 return;
184 }
185
186 // push_back.
187 Thread* t = wait_set_;
188 while (t->GetWaitNext() != nullptr) {
189 t = t->GetWaitNext();
190 }
191 t->SetWaitNext(thread);
192 }
193
RemoveFromWaitSet(Thread * thread)194 void Monitor::RemoveFromWaitSet(Thread *thread) {
195 DCHECK(owner_ == Thread::Current());
196 DCHECK(thread != nullptr);
197 if (wait_set_ == nullptr) {
198 return;
199 }
200 if (wait_set_ == thread) {
201 wait_set_ = thread->GetWaitNext();
202 thread->SetWaitNext(nullptr);
203 return;
204 }
205
206 Thread* t = wait_set_;
207 while (t->GetWaitNext() != nullptr) {
208 if (t->GetWaitNext() == thread) {
209 t->SetWaitNext(thread->GetWaitNext());
210 thread->SetWaitNext(nullptr);
211 return;
212 }
213 t = t->GetWaitNext();
214 }
215 }
216
SetObject(mirror::Object * object)217 void Monitor::SetObject(mirror::Object* object) {
218 obj_ = GcRoot<mirror::Object>(object);
219 }
220
221 // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
222
223 struct NthCallerWithDexPcVisitor FINAL : public StackVisitor {
NthCallerWithDexPcVisitorart::FINAL224 explicit NthCallerWithDexPcVisitor(Thread* thread, size_t frame)
225 REQUIRES_SHARED(Locks::mutator_lock_)
226 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
227 method_(nullptr),
228 dex_pc_(0),
229 current_frame_number_(0),
230 wanted_frame_number_(frame) {}
VisitFrameart::FINAL231 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
232 ArtMethod* m = GetMethod();
233 if (m == nullptr || m->IsRuntimeMethod()) {
234 // Runtime method, upcall, or resolution issue. Skip.
235 return true;
236 }
237
238 // Is this the requested frame?
239 if (current_frame_number_ == wanted_frame_number_) {
240 method_ = m;
241 dex_pc_ = GetDexPc(false /* abort_on_error*/);
242 return false;
243 }
244
245 // Look for more.
246 current_frame_number_++;
247 return true;
248 }
249
250 ArtMethod* method_;
251 uint32_t dex_pc_;
252
253 private:
254 size_t current_frame_number_;
255 const size_t wanted_frame_number_;
256 };
257
258 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
259 // potential tracing points.
AtraceMonitorLock(Thread * self,mirror::Object * obj,bool is_wait)260 void Monitor::AtraceMonitorLock(Thread* self, mirror::Object* obj, bool is_wait) {
261 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATRACE_ENABLED())) {
262 AtraceMonitorLockImpl(self, obj, is_wait);
263 }
264 }
265
AtraceMonitorLockImpl(Thread * self,mirror::Object * obj,bool is_wait)266 void Monitor::AtraceMonitorLockImpl(Thread* self, mirror::Object* obj, bool is_wait) {
267 // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
268 // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
269 // stack walk than if !is_wait.
270 NthCallerWithDexPcVisitor visitor(self, is_wait ? 1U : 0U);
271 visitor.WalkStack(false);
272 const char* prefix = is_wait ? "Waiting on " : "Locking ";
273
274 const char* filename;
275 int32_t line_number;
276 TranslateLocation(visitor.method_, visitor.dex_pc_, &filename, &line_number);
277
278 // It would be nice to have a stable "ID" for the object here. However, the only stable thing
279 // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
280 // times when it is unsafe to make that call (see stack dumping for an explanation). More
281 // importantly, we would have to give up on thin-locking when adding systrace locks, as the
282 // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
283 //
284 // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
285 // also do not have to be stable, as the monitor may be deflated.
286 std::string tmp = StringPrintf("%s %d at %s:%d",
287 prefix,
288 (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj))),
289 (filename != nullptr ? filename : "null"),
290 line_number);
291 ATRACE_BEGIN(tmp.c_str());
292 }
293
AtraceMonitorUnlock()294 void Monitor::AtraceMonitorUnlock() {
295 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
296 ATRACE_END();
297 }
298 }
299
PrettyContentionInfo(const std::string & owner_name,pid_t owner_tid,ArtMethod * owners_method,uint32_t owners_dex_pc,size_t num_waiters)300 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
301 pid_t owner_tid,
302 ArtMethod* owners_method,
303 uint32_t owners_dex_pc,
304 size_t num_waiters) {
305 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
306 const char* owners_filename;
307 int32_t owners_line_number = 0;
308 if (owners_method != nullptr) {
309 TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
310 }
311 std::ostringstream oss;
312 oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
313 if (owners_method != nullptr) {
314 oss << " at " << owners_method->PrettyMethod();
315 oss << "(" << owners_filename << ":" << owners_line_number << ")";
316 }
317 oss << " waiters=" << num_waiters;
318 return oss.str();
319 }
320
TryLockLocked(Thread * self)321 bool Monitor::TryLockLocked(Thread* self) {
322 if (owner_ == nullptr) { // Unowned.
323 owner_ = self;
324 CHECK_EQ(lock_count_, 0);
325 // When debugging, save the current monitor holder for future
326 // acquisition failures to use in sampled logging.
327 if (lock_profiling_threshold_ != 0) {
328 locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
329 }
330 } else if (owner_ == self) { // Recursive.
331 lock_count_++;
332 } else {
333 return false;
334 }
335 AtraceMonitorLock(self, GetObject(), false /* is_wait */);
336 return true;
337 }
338
TryLock(Thread * self)339 bool Monitor::TryLock(Thread* self) {
340 MutexLock mu(self, monitor_lock_);
341 return TryLockLocked(self);
342 }
343
Lock(Thread * self)344 void Monitor::Lock(Thread* self) {
345 MutexLock mu(self, monitor_lock_);
346 while (true) {
347 if (TryLockLocked(self)) {
348 return;
349 }
350 // Contended.
351 const bool log_contention = (lock_profiling_threshold_ != 0);
352 uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
353 ArtMethod* owners_method = locking_method_;
354 uint32_t owners_dex_pc = locking_dex_pc_;
355 // Do this before releasing the lock so that we don't get deflated.
356 size_t num_waiters = num_waiters_;
357 ++num_waiters_;
358
359 // If systrace logging is enabled, first look at the lock owner. Acquiring the monitor's
360 // lock and then re-acquiring the mutator lock can deadlock.
361 bool started_trace = false;
362 if (ATRACE_ENABLED()) {
363 if (owner_ != nullptr) { // Did the owner_ give the lock up?
364 std::ostringstream oss;
365 std::string name;
366 owner_->GetThreadName(name);
367 oss << PrettyContentionInfo(name,
368 owner_->GetTid(),
369 owners_method,
370 owners_dex_pc,
371 num_waiters);
372 // Add info for contending thread.
373 uint32_t pc;
374 ArtMethod* m = self->GetCurrentMethod(&pc);
375 const char* filename;
376 int32_t line_number;
377 TranslateLocation(m, pc, &filename, &line_number);
378 oss << " blocking from "
379 << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null")
380 << ":" << line_number << ")";
381 ATRACE_BEGIN(oss.str().c_str());
382 started_trace = true;
383 }
384 }
385
386 monitor_lock_.Unlock(self); // Let go of locks in order.
387 self->SetMonitorEnterObject(GetObject());
388 {
389 ScopedThreadSuspension tsc(self, kBlocked); // Change to blocked and give up mutator_lock_.
390 uint32_t original_owner_thread_id = 0u;
391 {
392 // Reacquire monitor_lock_ without mutator_lock_ for Wait.
393 MutexLock mu2(self, monitor_lock_);
394 if (owner_ != nullptr) { // Did the owner_ give the lock up?
395 original_owner_thread_id = owner_->GetThreadId();
396 monitor_contenders_.Wait(self); // Still contended so wait.
397 }
398 }
399 if (original_owner_thread_id != 0u) {
400 // Woken from contention.
401 if (log_contention) {
402 uint32_t original_owner_tid = 0;
403 std::string original_owner_name;
404 {
405 MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_);
406 // Re-find the owner in case the thread got killed.
407 Thread* original_owner = Runtime::Current()->GetThreadList()->FindThreadByThreadId(
408 original_owner_thread_id);
409 // Do not do any work that requires the mutator lock.
410 if (original_owner != nullptr) {
411 original_owner_tid = original_owner->GetTid();
412 original_owner->GetThreadName(original_owner_name);
413 }
414 }
415
416 if (original_owner_tid != 0u) {
417 uint64_t wait_ms = MilliTime() - wait_start_ms;
418 uint32_t sample_percent;
419 if (wait_ms >= lock_profiling_threshold_) {
420 sample_percent = 100;
421 } else {
422 sample_percent = 100 * wait_ms / lock_profiling_threshold_;
423 }
424 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
425 // Reacquire mutator_lock_ for logging.
426 ScopedObjectAccess soa(self);
427 if (wait_ms > kLongWaitMs && owners_method != nullptr) {
428 uint32_t pc;
429 ArtMethod* m = self->GetCurrentMethod(&pc);
430 // TODO: We should maybe check that original_owner is still a live thread.
431 LOG(WARNING) << "Long "
432 << PrettyContentionInfo(original_owner_name,
433 original_owner_tid,
434 owners_method,
435 owners_dex_pc,
436 num_waiters)
437 << " in " << ArtMethod::PrettyMethod(m) << " for "
438 << PrettyDuration(MsToNs(wait_ms));
439 }
440 const char* owners_filename;
441 int32_t owners_line_number;
442 TranslateLocation(owners_method,
443 owners_dex_pc,
444 &owners_filename,
445 &owners_line_number);
446 LogContentionEvent(self,
447 wait_ms,
448 sample_percent,
449 owners_filename,
450 owners_line_number);
451 }
452 }
453 }
454 }
455 }
456 if (started_trace) {
457 ATRACE_END();
458 }
459 self->SetMonitorEnterObject(nullptr);
460 monitor_lock_.Lock(self); // Reacquire locks in order.
461 --num_waiters_;
462 }
463 }
464
465 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
466 __attribute__((format(printf, 1, 2)));
467
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)468 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
469 REQUIRES_SHARED(Locks::mutator_lock_) {
470 va_list args;
471 va_start(args, fmt);
472 Thread* self = Thread::Current();
473 self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
474 if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
475 std::ostringstream ss;
476 self->Dump(ss);
477 LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR)
478 << self->GetException()->Dump() << "\n" << ss.str();
479 }
480 va_end(args);
481 }
482
ThreadToString(Thread * thread)483 static std::string ThreadToString(Thread* thread) {
484 if (thread == nullptr) {
485 return "nullptr";
486 }
487 std::ostringstream oss;
488 // TODO: alternatively, we could just return the thread's name.
489 oss << *thread;
490 return oss.str();
491 }
492
FailedUnlock(mirror::Object * o,uint32_t expected_owner_thread_id,uint32_t found_owner_thread_id,Monitor * monitor)493 void Monitor::FailedUnlock(mirror::Object* o,
494 uint32_t expected_owner_thread_id,
495 uint32_t found_owner_thread_id,
496 Monitor* monitor) {
497 // Acquire thread list lock so threads won't disappear from under us.
498 std::string current_owner_string;
499 std::string expected_owner_string;
500 std::string found_owner_string;
501 uint32_t current_owner_thread_id = 0u;
502 {
503 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
504 ThreadList* const thread_list = Runtime::Current()->GetThreadList();
505 Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
506 Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
507
508 // Re-read owner now that we hold lock.
509 Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
510 if (current_owner != nullptr) {
511 current_owner_thread_id = current_owner->GetThreadId();
512 }
513 // Get short descriptions of the threads involved.
514 current_owner_string = ThreadToString(current_owner);
515 expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
516 found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
517 }
518
519 if (current_owner_thread_id == 0u) {
520 if (found_owner_thread_id == 0u) {
521 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
522 " on thread '%s'",
523 mirror::Object::PrettyTypeOf(o).c_str(),
524 expected_owner_string.c_str());
525 } else {
526 // Race: the original read found an owner but now there is none
527 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
528 " (where now the monitor appears unowned) on thread '%s'",
529 found_owner_string.c_str(),
530 mirror::Object::PrettyTypeOf(o).c_str(),
531 expected_owner_string.c_str());
532 }
533 } else {
534 if (found_owner_thread_id == 0u) {
535 // Race: originally there was no owner, there is now
536 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
537 " (originally believed to be unowned) on thread '%s'",
538 current_owner_string.c_str(),
539 mirror::Object::PrettyTypeOf(o).c_str(),
540 expected_owner_string.c_str());
541 } else {
542 if (found_owner_thread_id != current_owner_thread_id) {
543 // Race: originally found and current owner have changed
544 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
545 " owned by '%s') on object of type '%s' on thread '%s'",
546 found_owner_string.c_str(),
547 current_owner_string.c_str(),
548 mirror::Object::PrettyTypeOf(o).c_str(),
549 expected_owner_string.c_str());
550 } else {
551 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
552 " on thread '%s",
553 current_owner_string.c_str(),
554 mirror::Object::PrettyTypeOf(o).c_str(),
555 expected_owner_string.c_str());
556 }
557 }
558 }
559 }
560
Unlock(Thread * self)561 bool Monitor::Unlock(Thread* self) {
562 DCHECK(self != nullptr);
563 uint32_t owner_thread_id = 0u;
564 {
565 MutexLock mu(self, monitor_lock_);
566 Thread* owner = owner_;
567 if (owner != nullptr) {
568 owner_thread_id = owner->GetThreadId();
569 }
570 if (owner == self) {
571 // We own the monitor, so nobody else can be in here.
572 AtraceMonitorUnlock();
573 if (lock_count_ == 0) {
574 owner_ = nullptr;
575 locking_method_ = nullptr;
576 locking_dex_pc_ = 0;
577 // Wake a contender.
578 monitor_contenders_.Signal(self);
579 } else {
580 --lock_count_;
581 }
582 return true;
583 }
584 }
585 // We don't own this, so we're not allowed to unlock it.
586 // The JNI spec says that we should throw IllegalMonitorStateException in this case.
587 FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
588 return false;
589 }
590
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)591 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
592 bool interruptShouldThrow, ThreadState why) {
593 DCHECK(self != nullptr);
594 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
595
596 monitor_lock_.Lock(self);
597
598 // Make sure that we hold the lock.
599 if (owner_ != self) {
600 monitor_lock_.Unlock(self);
601 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
602 return;
603 }
604
605 // We need to turn a zero-length timed wait into a regular wait because
606 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
607 if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
608 why = kWaiting;
609 }
610
611 // Enforce the timeout range.
612 if (ms < 0 || ns < 0 || ns > 999999) {
613 monitor_lock_.Unlock(self);
614 self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
615 "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
616 return;
617 }
618
619 /*
620 * Add ourselves to the set of threads waiting on this monitor, and
621 * release our hold. We need to let it go even if we're a few levels
622 * deep in a recursive lock, and we need to restore that later.
623 *
624 * We append to the wait set ahead of clearing the count and owner
625 * fields so the subroutine can check that the calling thread owns
626 * the monitor. Aside from that, the order of member updates is
627 * not order sensitive as we hold the pthread mutex.
628 */
629 AppendToWaitSet(self);
630 ++num_waiters_;
631 int prev_lock_count = lock_count_;
632 lock_count_ = 0;
633 owner_ = nullptr;
634 ArtMethod* saved_method = locking_method_;
635 locking_method_ = nullptr;
636 uintptr_t saved_dex_pc = locking_dex_pc_;
637 locking_dex_pc_ = 0;
638
639 AtraceMonitorUnlock(); // For the implict Unlock() just above. This will only end the deepest
640 // nesting, but that is enough for the visualization, and corresponds to
641 // the single Lock() we do afterwards.
642 AtraceMonitorLock(self, GetObject(), true /* is_wait */);
643
644 bool was_interrupted = false;
645 {
646 // Update thread state. If the GC wakes up, it'll ignore us, knowing
647 // that we won't touch any references in this state, and we'll check
648 // our suspend mode before we transition out.
649 ScopedThreadSuspension sts(self, why);
650
651 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
652 MutexLock mu(self, *self->GetWaitMutex());
653
654 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
655 // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
656 // up.
657 DCHECK(self->GetWaitMonitor() == nullptr);
658 self->SetWaitMonitor(this);
659
660 // Release the monitor lock.
661 monitor_contenders_.Signal(self);
662 monitor_lock_.Unlock(self);
663
664 // Handle the case where the thread was interrupted before we called wait().
665 if (self->IsInterruptedLocked()) {
666 was_interrupted = true;
667 } else {
668 // Wait for a notification or a timeout to occur.
669 if (why == kWaiting) {
670 self->GetWaitConditionVariable()->Wait(self);
671 } else {
672 DCHECK(why == kTimedWaiting || why == kSleeping) << why;
673 self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
674 }
675 was_interrupted = self->IsInterruptedLocked();
676 }
677 }
678
679 {
680 // We reset the thread's wait_monitor_ field after transitioning back to runnable so
681 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
682 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
683 // are waiting on "null".)
684 MutexLock mu(self, *self->GetWaitMutex());
685 DCHECK(self->GetWaitMonitor() != nullptr);
686 self->SetWaitMonitor(nullptr);
687 }
688
689 // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
690 // If the GC requires acquiring the monitor for enqueuing cleared references, this would
691 // cause a deadlock if the monitor is held.
692 if (was_interrupted && interruptShouldThrow) {
693 /*
694 * We were interrupted while waiting, or somebody interrupted an
695 * un-interruptible thread earlier and we're bailing out immediately.
696 *
697 * The doc sayeth: "The interrupted status of the current thread is
698 * cleared when this exception is thrown."
699 */
700 {
701 MutexLock mu(self, *self->GetWaitMutex());
702 self->SetInterruptedLocked(false);
703 }
704 self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
705 }
706
707 AtraceMonitorUnlock(); // End Wait().
708
709 // Re-acquire the monitor and lock.
710 Lock(self);
711 monitor_lock_.Lock(self);
712 self->GetWaitMutex()->AssertNotHeld(self);
713
714 /*
715 * We remove our thread from wait set after restoring the count
716 * and owner fields so the subroutine can check that the calling
717 * thread owns the monitor. Aside from that, the order of member
718 * updates is not order sensitive as we hold the pthread mutex.
719 */
720 owner_ = self;
721 lock_count_ = prev_lock_count;
722 locking_method_ = saved_method;
723 locking_dex_pc_ = saved_dex_pc;
724 --num_waiters_;
725 RemoveFromWaitSet(self);
726
727 monitor_lock_.Unlock(self);
728 }
729
Notify(Thread * self)730 void Monitor::Notify(Thread* self) {
731 DCHECK(self != nullptr);
732 MutexLock mu(self, monitor_lock_);
733 // Make sure that we hold the lock.
734 if (owner_ != self) {
735 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
736 return;
737 }
738 // Signal the first waiting thread in the wait set.
739 while (wait_set_ != nullptr) {
740 Thread* thread = wait_set_;
741 wait_set_ = thread->GetWaitNext();
742 thread->SetWaitNext(nullptr);
743
744 // Check to see if the thread is still waiting.
745 MutexLock wait_mu(self, *thread->GetWaitMutex());
746 if (thread->GetWaitMonitor() != nullptr) {
747 thread->GetWaitConditionVariable()->Signal(self);
748 return;
749 }
750 }
751 }
752
NotifyAll(Thread * self)753 void Monitor::NotifyAll(Thread* self) {
754 DCHECK(self != nullptr);
755 MutexLock mu(self, monitor_lock_);
756 // Make sure that we hold the lock.
757 if (owner_ != self) {
758 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
759 return;
760 }
761 // Signal all threads in the wait set.
762 while (wait_set_ != nullptr) {
763 Thread* thread = wait_set_;
764 wait_set_ = thread->GetWaitNext();
765 thread->SetWaitNext(nullptr);
766 thread->Notify();
767 }
768 }
769
Deflate(Thread * self,mirror::Object * obj)770 bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
771 DCHECK(obj != nullptr);
772 // Don't need volatile since we only deflate with mutators suspended.
773 LockWord lw(obj->GetLockWord(false));
774 // If the lock isn't an inflated monitor, then we don't need to deflate anything.
775 if (lw.GetState() == LockWord::kFatLocked) {
776 Monitor* monitor = lw.FatLockMonitor();
777 DCHECK(monitor != nullptr);
778 MutexLock mu(self, monitor->monitor_lock_);
779 // Can't deflate if we have anybody waiting on the CV.
780 if (monitor->num_waiters_ > 0) {
781 return false;
782 }
783 Thread* owner = monitor->owner_;
784 if (owner != nullptr) {
785 // Can't deflate if we are locked and have a hash code.
786 if (monitor->HasHashCode()) {
787 return false;
788 }
789 // Can't deflate if our lock count is too high.
790 if (static_cast<uint32_t>(monitor->lock_count_) > LockWord::kThinLockMaxCount) {
791 return false;
792 }
793 // Deflate to a thin lock.
794 LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(),
795 monitor->lock_count_,
796 lw.GCState());
797 // Assume no concurrent read barrier state changes as mutators are suspended.
798 obj->SetLockWord(new_lw, false);
799 VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
800 << monitor->lock_count_;
801 } else if (monitor->HasHashCode()) {
802 LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState());
803 // Assume no concurrent read barrier state changes as mutators are suspended.
804 obj->SetLockWord(new_lw, false);
805 VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
806 } else {
807 // No lock and no hash, just put an empty lock word inside the object.
808 LockWord new_lw = LockWord::FromDefault(lw.GCState());
809 // Assume no concurrent read barrier state changes as mutators are suspended.
810 obj->SetLockWord(new_lw, false);
811 VLOG(monitor) << "Deflated" << obj << " to empty lock word";
812 }
813 // The monitor is deflated, mark the object as null so that we know to delete it during the
814 // next GC.
815 monitor->obj_ = GcRoot<mirror::Object>(nullptr);
816 }
817 return true;
818 }
819
Inflate(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)820 void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
821 DCHECK(self != nullptr);
822 DCHECK(obj != nullptr);
823 // Allocate and acquire a new monitor.
824 Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
825 DCHECK(m != nullptr);
826 if (m->Install(self)) {
827 if (owner != nullptr) {
828 VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
829 << " created monitor " << m << " for object " << obj;
830 } else {
831 VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
832 << " created monitor " << m << " for object " << obj;
833 }
834 Runtime::Current()->GetMonitorList()->Add(m);
835 CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
836 } else {
837 MonitorPool::ReleaseMonitor(self, m);
838 }
839 }
840
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)841 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
842 uint32_t hash_code) {
843 DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
844 uint32_t owner_thread_id = lock_word.ThinLockOwner();
845 if (owner_thread_id == self->GetThreadId()) {
846 // We own the monitor, we can easily inflate it.
847 Inflate(self, self, obj.Get(), hash_code);
848 } else {
849 ThreadList* thread_list = Runtime::Current()->GetThreadList();
850 // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
851 self->SetMonitorEnterObject(obj.Get());
852 bool timed_out;
853 Thread* owner;
854 {
855 ScopedThreadSuspension sts(self, kBlocked);
856 owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
857 }
858 if (owner != nullptr) {
859 // We succeeded in suspending the thread, check the lock's status didn't change.
860 lock_word = obj->GetLockWord(true);
861 if (lock_word.GetState() == LockWord::kThinLocked &&
862 lock_word.ThinLockOwner() == owner_thread_id) {
863 // Go ahead and inflate the lock.
864 Inflate(self, owner, obj.Get(), hash_code);
865 }
866 thread_list->Resume(owner, false);
867 }
868 self->SetMonitorEnterObject(nullptr);
869 }
870 }
871
872 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(mirror::Object * obj)873 static mirror::Object* FakeLock(mirror::Object* obj)
874 EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
875 return obj;
876 }
877
878 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(mirror::Object * obj)879 static mirror::Object* FakeUnlock(mirror::Object* obj)
880 UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
881 return obj;
882 }
883
MonitorEnter(Thread * self,mirror::Object * obj,bool trylock)884 mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj, bool trylock) {
885 DCHECK(self != nullptr);
886 DCHECK(obj != nullptr);
887 self->AssertThreadSuspensionIsAllowable();
888 obj = FakeLock(obj);
889 uint32_t thread_id = self->GetThreadId();
890 size_t contention_count = 0;
891 StackHandleScope<1> hs(self);
892 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
893 while (true) {
894 // We initially read the lockword with ordinary Java/relaxed semantics. When stronger
895 // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load,
896 // we can fix it later, in an infrequently executed case, with a fence.
897 LockWord lock_word = h_obj->GetLockWord(false);
898 switch (lock_word.GetState()) {
899 case LockWord::kUnlocked: {
900 // No ordering required for preceding lockword read, since we retest.
901 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState()));
902 if (h_obj->CasLockWordWeakAcquire(lock_word, thin_locked)) {
903 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
904 return h_obj.Get(); // Success!
905 }
906 continue; // Go again.
907 }
908 case LockWord::kThinLocked: {
909 uint32_t owner_thread_id = lock_word.ThinLockOwner();
910 if (owner_thread_id == thread_id) {
911 // No ordering required for initial lockword read.
912 // We own the lock, increase the recursion count.
913 uint32_t new_count = lock_word.ThinLockCount() + 1;
914 if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
915 LockWord thin_locked(LockWord::FromThinLockId(thread_id,
916 new_count,
917 lock_word.GCState()));
918 // Only this thread pays attention to the count. Thus there is no need for stronger
919 // than relaxed memory ordering.
920 if (!kUseReadBarrier) {
921 h_obj->SetLockWord(thin_locked, false /* volatile */);
922 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
923 return h_obj.Get(); // Success!
924 } else {
925 // Use CAS to preserve the read barrier state.
926 if (h_obj->CasLockWordWeakRelaxed(lock_word, thin_locked)) {
927 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
928 return h_obj.Get(); // Success!
929 }
930 }
931 continue; // Go again.
932 } else {
933 // We'd overflow the recursion count, so inflate the monitor.
934 InflateThinLocked(self, h_obj, lock_word, 0);
935 }
936 } else {
937 if (trylock) {
938 return nullptr;
939 }
940 // Contention.
941 contention_count++;
942 Runtime* runtime = Runtime::Current();
943 if (contention_count <= runtime->GetMaxSpinsBeforeThinLockInflation()) {
944 // TODO: Consider switching the thread state to kBlocked when we are yielding.
945 // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
946 // parameter you pass in. This can cause thread suspension to take excessively long
947 // and make long pauses. See b/16307460.
948 // TODO: We should literally spin first, without sched_yield. Sched_yield either does
949 // nothing (at significant expense), or guarantees that we wait at least microseconds.
950 // If the owner is running, I would expect the median lock hold time to be hundreds
951 // of nanoseconds or less.
952 sched_yield();
953 } else {
954 contention_count = 0;
955 // No ordering required for initial lockword read. Install rereads it anyway.
956 InflateThinLocked(self, h_obj, lock_word, 0);
957 }
958 }
959 continue; // Start from the beginning.
960 }
961 case LockWord::kFatLocked: {
962 // We should have done an acquire read of the lockword initially, to ensure
963 // visibility of the monitor data structure. Use an explicit fence instead.
964 QuasiAtomic::ThreadFenceAcquire();
965 Monitor* mon = lock_word.FatLockMonitor();
966 if (trylock) {
967 return mon->TryLock(self) ? h_obj.Get() : nullptr;
968 } else {
969 mon->Lock(self);
970 return h_obj.Get(); // Success!
971 }
972 }
973 case LockWord::kHashCode:
974 // Inflate with the existing hashcode.
975 // Again no ordering required for initial lockword read, since we don't rely
976 // on the visibility of any prior computation.
977 Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
978 continue; // Start from the beginning.
979 default: {
980 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
981 UNREACHABLE();
982 }
983 }
984 }
985 }
986
MonitorExit(Thread * self,mirror::Object * obj)987 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
988 DCHECK(self != nullptr);
989 DCHECK(obj != nullptr);
990 self->AssertThreadSuspensionIsAllowable();
991 obj = FakeUnlock(obj);
992 StackHandleScope<1> hs(self);
993 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
994 while (true) {
995 LockWord lock_word = obj->GetLockWord(true);
996 switch (lock_word.GetState()) {
997 case LockWord::kHashCode:
998 // Fall-through.
999 case LockWord::kUnlocked:
1000 FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
1001 return false; // Failure.
1002 case LockWord::kThinLocked: {
1003 uint32_t thread_id = self->GetThreadId();
1004 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1005 if (owner_thread_id != thread_id) {
1006 FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
1007 return false; // Failure.
1008 } else {
1009 // We own the lock, decrease the recursion count.
1010 LockWord new_lw = LockWord::Default();
1011 if (lock_word.ThinLockCount() != 0) {
1012 uint32_t new_count = lock_word.ThinLockCount() - 1;
1013 new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState());
1014 } else {
1015 new_lw = LockWord::FromDefault(lock_word.GCState());
1016 }
1017 if (!kUseReadBarrier) {
1018 DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
1019 // TODO: This really only needs memory_order_release, but we currently have
1020 // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord
1021 // with a final argument of true. This slows down x86 and ARMv7, but probably not v8.
1022 h_obj->SetLockWord(new_lw, true);
1023 AtraceMonitorUnlock();
1024 // Success!
1025 return true;
1026 } else {
1027 // Use CAS to preserve the read barrier state.
1028 if (h_obj->CasLockWordWeakRelease(lock_word, new_lw)) {
1029 AtraceMonitorUnlock();
1030 // Success!
1031 return true;
1032 }
1033 }
1034 continue; // Go again.
1035 }
1036 }
1037 case LockWord::kFatLocked: {
1038 Monitor* mon = lock_word.FatLockMonitor();
1039 return mon->Unlock(self);
1040 }
1041 default: {
1042 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1043 return false;
1044 }
1045 }
1046 }
1047 }
1048
Wait(Thread * self,mirror::Object * obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)1049 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
1050 bool interruptShouldThrow, ThreadState why) {
1051 DCHECK(self != nullptr);
1052 DCHECK(obj != nullptr);
1053 LockWord lock_word = obj->GetLockWord(true);
1054 while (lock_word.GetState() != LockWord::kFatLocked) {
1055 switch (lock_word.GetState()) {
1056 case LockWord::kHashCode:
1057 // Fall-through.
1058 case LockWord::kUnlocked:
1059 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1060 return; // Failure.
1061 case LockWord::kThinLocked: {
1062 uint32_t thread_id = self->GetThreadId();
1063 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1064 if (owner_thread_id != thread_id) {
1065 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1066 return; // Failure.
1067 } else {
1068 // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
1069 // re-load.
1070 Inflate(self, self, obj, 0);
1071 lock_word = obj->GetLockWord(true);
1072 }
1073 break;
1074 }
1075 case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through.
1076 default: {
1077 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1078 return;
1079 }
1080 }
1081 }
1082 Monitor* mon = lock_word.FatLockMonitor();
1083 mon->Wait(self, ms, ns, interruptShouldThrow, why);
1084 }
1085
DoNotify(Thread * self,mirror::Object * obj,bool notify_all)1086 void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
1087 DCHECK(self != nullptr);
1088 DCHECK(obj != nullptr);
1089 LockWord lock_word = obj->GetLockWord(true);
1090 switch (lock_word.GetState()) {
1091 case LockWord::kHashCode:
1092 // Fall-through.
1093 case LockWord::kUnlocked:
1094 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1095 return; // Failure.
1096 case LockWord::kThinLocked: {
1097 uint32_t thread_id = self->GetThreadId();
1098 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1099 if (owner_thread_id != thread_id) {
1100 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1101 return; // Failure.
1102 } else {
1103 // We own the lock but there's no Monitor and therefore no waiters.
1104 return; // Success.
1105 }
1106 }
1107 case LockWord::kFatLocked: {
1108 Monitor* mon = lock_word.FatLockMonitor();
1109 if (notify_all) {
1110 mon->NotifyAll(self);
1111 } else {
1112 mon->Notify(self);
1113 }
1114 return; // Success.
1115 }
1116 default: {
1117 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1118 return;
1119 }
1120 }
1121 }
1122
GetLockOwnerThreadId(mirror::Object * obj)1123 uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
1124 DCHECK(obj != nullptr);
1125 LockWord lock_word = obj->GetLockWord(true);
1126 switch (lock_word.GetState()) {
1127 case LockWord::kHashCode:
1128 // Fall-through.
1129 case LockWord::kUnlocked:
1130 return ThreadList::kInvalidThreadId;
1131 case LockWord::kThinLocked:
1132 return lock_word.ThinLockOwner();
1133 case LockWord::kFatLocked: {
1134 Monitor* mon = lock_word.FatLockMonitor();
1135 return mon->GetOwnerThreadId();
1136 }
1137 default: {
1138 LOG(FATAL) << "Unreachable";
1139 UNREACHABLE();
1140 }
1141 }
1142 }
1143
DescribeWait(std::ostream & os,const Thread * thread)1144 void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
1145 // Determine the wait message and object we're waiting or blocked upon.
1146 mirror::Object* pretty_object = nullptr;
1147 const char* wait_message = nullptr;
1148 uint32_t lock_owner = ThreadList::kInvalidThreadId;
1149 ThreadState state = thread->GetState();
1150 if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
1151 wait_message = (state == kSleeping) ? " - sleeping on " : " - waiting on ";
1152 Thread* self = Thread::Current();
1153 MutexLock mu(self, *thread->GetWaitMutex());
1154 Monitor* monitor = thread->GetWaitMonitor();
1155 if (monitor != nullptr) {
1156 pretty_object = monitor->GetObject();
1157 }
1158 } else if (state == kBlocked) {
1159 wait_message = " - waiting to lock ";
1160 pretty_object = thread->GetMonitorEnterObject();
1161 if (pretty_object != nullptr) {
1162 if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1163 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1164 // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in
1165 // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward
1166 // it here.
1167 pretty_object = ReadBarrier::Mark(pretty_object);
1168 }
1169 lock_owner = pretty_object->GetLockOwnerThreadId();
1170 }
1171 }
1172
1173 if (wait_message != nullptr) {
1174 if (pretty_object == nullptr) {
1175 os << wait_message << "an unknown object";
1176 } else {
1177 if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
1178 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1179 // Getting the identity hashcode here would result in lock inflation and suspension of the
1180 // current thread, which isn't safe if this is the only runnable thread.
1181 os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
1182 reinterpret_cast<intptr_t>(pretty_object),
1183 pretty_object->PrettyTypeOf().c_str());
1184 } else {
1185 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
1186 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
1187 // suspension and move pretty_object.
1188 const std::string pretty_type(pretty_object->PrettyTypeOf());
1189 os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
1190 pretty_type.c_str());
1191 }
1192 }
1193 // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
1194 if (lock_owner != ThreadList::kInvalidThreadId) {
1195 os << " held by thread " << lock_owner;
1196 }
1197 os << "\n";
1198 }
1199 }
1200
GetContendedMonitor(Thread * thread)1201 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
1202 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
1203 // definition of contended that includes a monitor a thread is trying to enter...
1204 mirror::Object* result = thread->GetMonitorEnterObject();
1205 if (result == nullptr) {
1206 // ...but also a monitor that the thread is waiting on.
1207 MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
1208 Monitor* monitor = thread->GetWaitMonitor();
1209 if (monitor != nullptr) {
1210 result = monitor->GetObject();
1211 }
1212 }
1213 return result;
1214 }
1215
VisitLocks(StackVisitor * stack_visitor,void (* callback)(mirror::Object *,void *),void * callback_context,bool abort_on_failure)1216 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
1217 void* callback_context, bool abort_on_failure) {
1218 ArtMethod* m = stack_visitor->GetMethod();
1219 CHECK(m != nullptr);
1220
1221 // Native methods are an easy special case.
1222 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1223 if (m->IsNative()) {
1224 if (m->IsSynchronized()) {
1225 mirror::Object* jni_this =
1226 stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0);
1227 callback(jni_this, callback_context);
1228 }
1229 return;
1230 }
1231
1232 // Proxy methods should not be synchronized.
1233 if (m->IsProxyMethod()) {
1234 CHECK(!m->IsSynchronized());
1235 return;
1236 }
1237
1238 // Is there any reason to believe there's any synchronization in this method?
1239 const DexFile::CodeItem* code_item = m->GetCodeItem();
1240 CHECK(code_item != nullptr) << m->PrettyMethod();
1241 if (code_item->tries_size_ == 0) {
1242 return; // No "tries" implies no synchronization, so no held locks to report.
1243 }
1244
1245 // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1246 // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1247 // inconsistent stack anyways.
1248 uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1249 if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) {
1250 LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod();
1251 return;
1252 }
1253
1254 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1255 // the locks held in this stack frame.
1256 std::vector<uint32_t> monitor_enter_dex_pcs;
1257 verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
1258 for (uint32_t monitor_dex_pc : monitor_enter_dex_pcs) {
1259 // The verifier works in terms of the dex pcs of the monitor-enter instructions.
1260 // We want the registers used by those instructions (so we can read the values out of them).
1261 const Instruction* monitor_enter_instruction =
1262 Instruction::At(&code_item->insns_[monitor_dex_pc]);
1263
1264 // Quick sanity check.
1265 CHECK_EQ(monitor_enter_instruction->Opcode(), Instruction::MONITOR_ENTER)
1266 << "expected monitor-enter @" << monitor_dex_pc << "; was "
1267 << reinterpret_cast<const void*>(monitor_enter_instruction);
1268
1269 uint16_t monitor_register = monitor_enter_instruction->VRegA();
1270 uint32_t value;
1271 bool success = stack_visitor->GetVReg(m, monitor_register, kReferenceVReg, &value);
1272 CHECK(success) << "Failed to read v" << monitor_register << " of kind "
1273 << kReferenceVReg << " in method " << m->PrettyMethod();
1274 mirror::Object* o = reinterpret_cast<mirror::Object*>(value);
1275 callback(o, callback_context);
1276 }
1277 }
1278
IsValidLockWord(LockWord lock_word)1279 bool Monitor::IsValidLockWord(LockWord lock_word) {
1280 switch (lock_word.GetState()) {
1281 case LockWord::kUnlocked:
1282 // Nothing to check.
1283 return true;
1284 case LockWord::kThinLocked:
1285 // Basic sanity check of owner.
1286 return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1287 case LockWord::kFatLocked: {
1288 // Check the monitor appears in the monitor list.
1289 Monitor* mon = lock_word.FatLockMonitor();
1290 MonitorList* list = Runtime::Current()->GetMonitorList();
1291 MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1292 for (Monitor* list_mon : list->list_) {
1293 if (mon == list_mon) {
1294 return true; // Found our monitor.
1295 }
1296 }
1297 return false; // Fail - unowned monitor in an object.
1298 }
1299 case LockWord::kHashCode:
1300 return true;
1301 default:
1302 LOG(FATAL) << "Unreachable";
1303 UNREACHABLE();
1304 }
1305 }
1306
IsLocked()1307 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) {
1308 MutexLock mu(Thread::Current(), monitor_lock_);
1309 return owner_ != nullptr;
1310 }
1311
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,int32_t * line_number)1312 void Monitor::TranslateLocation(ArtMethod* method,
1313 uint32_t dex_pc,
1314 const char** source_file,
1315 int32_t* line_number) {
1316 // If method is null, location is unknown
1317 if (method == nullptr) {
1318 *source_file = "";
1319 *line_number = 0;
1320 return;
1321 }
1322 *source_file = method->GetDeclaringClassSourceFile();
1323 if (*source_file == nullptr) {
1324 *source_file = "";
1325 }
1326 *line_number = method->GetLineNumFromDexPC(dex_pc);
1327 }
1328
GetOwnerThreadId()1329 uint32_t Monitor::GetOwnerThreadId() {
1330 MutexLock mu(Thread::Current(), monitor_lock_);
1331 Thread* owner = owner_;
1332 if (owner != nullptr) {
1333 return owner->GetThreadId();
1334 } else {
1335 return ThreadList::kInvalidThreadId;
1336 }
1337 }
1338
MonitorList()1339 MonitorList::MonitorList()
1340 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1341 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1342 }
1343
~MonitorList()1344 MonitorList::~MonitorList() {
1345 Thread* self = Thread::Current();
1346 MutexLock mu(self, monitor_list_lock_);
1347 // Release all monitors to the pool.
1348 // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1349 // clear faster in the pool.
1350 MonitorPool::ReleaseMonitors(self, &list_);
1351 }
1352
DisallowNewMonitors()1353 void MonitorList::DisallowNewMonitors() {
1354 CHECK(!kUseReadBarrier);
1355 MutexLock mu(Thread::Current(), monitor_list_lock_);
1356 allow_new_monitors_ = false;
1357 }
1358
AllowNewMonitors()1359 void MonitorList::AllowNewMonitors() {
1360 CHECK(!kUseReadBarrier);
1361 Thread* self = Thread::Current();
1362 MutexLock mu(self, monitor_list_lock_);
1363 allow_new_monitors_ = true;
1364 monitor_add_condition_.Broadcast(self);
1365 }
1366
BroadcastForNewMonitors()1367 void MonitorList::BroadcastForNewMonitors() {
1368 Thread* self = Thread::Current();
1369 MutexLock mu(self, monitor_list_lock_);
1370 monitor_add_condition_.Broadcast(self);
1371 }
1372
Add(Monitor * m)1373 void MonitorList::Add(Monitor* m) {
1374 Thread* self = Thread::Current();
1375 MutexLock mu(self, monitor_list_lock_);
1376 // CMS needs this to block for concurrent reference processing because an object allocated during
1377 // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak
1378 // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant.
1379 while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) {
1380 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
1381 // presence of threads blocking for weak ref access.
1382 self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_);
1383 monitor_add_condition_.WaitHoldingLocks(self);
1384 }
1385 list_.push_front(m);
1386 }
1387
SweepMonitorList(IsMarkedVisitor * visitor)1388 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
1389 Thread* self = Thread::Current();
1390 MutexLock mu(self, monitor_list_lock_);
1391 for (auto it = list_.begin(); it != list_.end(); ) {
1392 Monitor* m = *it;
1393 // Disable the read barrier in GetObject() as this is called by GC.
1394 mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
1395 // The object of a monitor can be null if we have deflated it.
1396 mirror::Object* new_obj = obj != nullptr ? visitor->IsMarked(obj) : nullptr;
1397 if (new_obj == nullptr) {
1398 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1399 << obj;
1400 MonitorPool::ReleaseMonitor(self, m);
1401 it = list_.erase(it);
1402 } else {
1403 m->SetObject(new_obj);
1404 ++it;
1405 }
1406 }
1407 }
1408
Size()1409 size_t MonitorList::Size() {
1410 Thread* self = Thread::Current();
1411 MutexLock mu(self, monitor_list_lock_);
1412 return list_.size();
1413 }
1414
1415 class MonitorDeflateVisitor : public IsMarkedVisitor {
1416 public:
MonitorDeflateVisitor()1417 MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
1418
IsMarked(mirror::Object * object)1419 virtual mirror::Object* IsMarked(mirror::Object* object) OVERRIDE
1420 REQUIRES_SHARED(Locks::mutator_lock_) {
1421 if (Monitor::Deflate(self_, object)) {
1422 DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1423 ++deflate_count_;
1424 // If we deflated, return null so that the monitor gets removed from the array.
1425 return nullptr;
1426 }
1427 return object; // Monitor was not deflated.
1428 }
1429
1430 Thread* const self_;
1431 size_t deflate_count_;
1432 };
1433
DeflateMonitors()1434 size_t MonitorList::DeflateMonitors() {
1435 MonitorDeflateVisitor visitor;
1436 Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
1437 SweepMonitorList(&visitor);
1438 return visitor.deflate_count_;
1439 }
1440
MonitorInfo(mirror::Object * obj)1441 MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(nullptr), entry_count_(0) {
1442 DCHECK(obj != nullptr);
1443 LockWord lock_word = obj->GetLockWord(true);
1444 switch (lock_word.GetState()) {
1445 case LockWord::kUnlocked:
1446 // Fall-through.
1447 case LockWord::kForwardingAddress:
1448 // Fall-through.
1449 case LockWord::kHashCode:
1450 break;
1451 case LockWord::kThinLocked:
1452 owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1453 entry_count_ = 1 + lock_word.ThinLockCount();
1454 // Thin locks have no waiters.
1455 break;
1456 case LockWord::kFatLocked: {
1457 Monitor* mon = lock_word.FatLockMonitor();
1458 owner_ = mon->owner_;
1459 entry_count_ = 1 + mon->lock_count_;
1460 for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1461 waiters_.push_back(waiter);
1462 }
1463 break;
1464 }
1465 }
1466 }
1467
1468 } // namespace art
1469