1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // Note that $opt$ is a marker for the optimizing compiler to test
18 // it does compile the method.
19 public class Main {
20 
expectEquals(int expected, int result)21   public static void expectEquals(int expected, int result) {
22     if (expected != result) {
23       throw new Error("Expected: " + expected + ", found: " + result);
24     }
25   }
26 
expectEquals(long expected, long result)27   public static void expectEquals(long expected, long result) {
28     if (expected != result) {
29       throw new Error("Expected: " + expected + ", found: " + result);
30     }
31   }
32 
expectEquals(float expected, float result)33   public static void expectEquals(float expected, float result) {
34     if (expected != result) {
35       throw new Error("Expected: " + expected + ", found: " + result);
36     }
37   }
38 
expectEquals(double expected, double result)39   public static void expectEquals(double expected, double result) {
40     if (expected != result) {
41       throw new Error("Expected: " + expected + ", found: " + result);
42     }
43   }
44 
expectApproxEquals(float a, float b, float maxDelta)45   public static void expectApproxEquals(float a, float b, float maxDelta) {
46     boolean aproxEquals = (a > b)
47       ? ((a - b) < maxDelta)
48       : ((b - a) < maxDelta);
49     if (!aproxEquals) {
50       throw new Error("Expected: " + a + ", found: " + b + ", with delta: " + maxDelta);
51     }
52   }
53 
expectApproxEquals(double a, double b, double maxDelta)54   public static void expectApproxEquals(double a, double b, double maxDelta) {
55     boolean aproxEquals = (a > b)
56       ? ((a - b) < maxDelta)
57       : ((b - a) < maxDelta);
58     if (!aproxEquals) {
59       throw new Error("Expected: " + a + ", found: " + b + ", with delta: " + maxDelta);
60     }
61   }
62 
expectNaN(float a)63   public static void expectNaN(float a) {
64     if (a == a) {
65       throw new Error("Expected NaN: " + a);
66     }
67   }
68 
expectNaN(double a)69   public static void expectNaN(double a) {
70     if (a == a) {
71       throw new Error("Expected NaN: " + a);
72     }
73   }
74 
main(String[] args)75   public static void main(String[] args) {
76     mul();
77   }
78 
mul()79   public static void mul() {
80     mulInt();
81     mulLong();
82     mulFloat();
83     mulDouble();
84   }
85 
mulInt()86   private static void mulInt() {
87     expectEquals(15, $opt$Mul(5, 3));
88     expectEquals(0, $opt$Mul(0, 0));
89     expectEquals(0, $opt$Mul(0, 3));
90     expectEquals(0, $opt$Mul(3, 0));
91     expectEquals(-3, $opt$Mul(1, -3));
92     expectEquals(36, $opt$Mul(-12, -3));
93     expectEquals(33, $opt$Mul(1, 3) * 11);
94     expectEquals(671088645, $opt$Mul(134217729, 5)); // (2^27 + 1) * 5
95   }
96 
mulLong()97   private static void mulLong() {
98     expectEquals(15L, $opt$Mul(5L, 3L));
99     expectEquals(0L, $opt$Mul(0L, 0L));
100     expectEquals(0L, $opt$Mul(0L, 3L));
101     expectEquals(0L, $opt$Mul(3L, 0L));
102     expectEquals(-3L, $opt$Mul(1L, -3L));
103     expectEquals(36L, $opt$Mul(-12L, -3L));
104     expectEquals(33L, $opt$Mul(1L, 3L) * 11L);
105     expectEquals(240518168583L, $opt$Mul(34359738369L, 7L)); // (2^35 + 1) * 7
106   }
107 
mulFloat()108   private static void mulFloat() {
109     expectApproxEquals(15F, $opt$Mul(5F, 3F), 0.0001F);
110     expectApproxEquals(0F, $opt$Mul(0F, 0F), 0.0001F);
111     expectApproxEquals(0F, $opt$Mul(0F, 3F), 0.0001F);
112     expectApproxEquals(0F, $opt$Mul(3F, 0F), 0.0001F);
113     expectApproxEquals(-3F, $opt$Mul(1F, -3F), 0.0001F);
114     expectApproxEquals(36F, $opt$Mul(-12F, -3F), 0.0001F);
115     expectApproxEquals(33F, $opt$Mul(1F, 3F) * 11F, 0.0001F);
116     expectApproxEquals(0.02F, 0.1F * 0.2F, 0.0001F);
117     expectApproxEquals(-0.1F, -0.5F * 0.2F, 0.0001F);
118 
119     expectNaN($opt$Mul(0F, Float.POSITIVE_INFINITY));
120     expectNaN($opt$Mul(0F, Float.NEGATIVE_INFINITY));
121     expectNaN($opt$Mul(Float.NaN, 11F));
122     expectNaN($opt$Mul(Float.NaN, -11F));
123     expectNaN($opt$Mul(Float.NaN, Float.NEGATIVE_INFINITY));
124     expectNaN($opt$Mul(Float.NaN, Float.POSITIVE_INFINITY));
125 
126     expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(2F, 3.40282346638528860e+38F));
127     expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(2F, Float.POSITIVE_INFINITY));
128     expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(-2F, Float.POSITIVE_INFINITY));
129     expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(-2F, 3.40282346638528860e+38F));
130     expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(2F, Float.NEGATIVE_INFINITY));
131     expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(-2F, Float.NEGATIVE_INFINITY));
132     expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY));
133     expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY));
134     expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY));
135   }
136 
mulDouble()137   private static void mulDouble() {
138     expectApproxEquals(15D, $opt$Mul(5D, 3D), 0.0001D);
139     expectApproxEquals(0D, $opt$Mul(0D, 0D), 0.0001D);
140     expectApproxEquals(0D, $opt$Mul(0D, 3D), 0.0001D);
141     expectApproxEquals(0D, $opt$Mul(3D, 0D), 0.0001D);
142     expectApproxEquals(-3D, $opt$Mul(1D, -3D), 0.0001D);
143     expectApproxEquals(36D, $opt$Mul(-12D, -3D), 0.0001D);
144     expectApproxEquals(33D, $opt$Mul(1D, 3D) * 11D, 0.0001D);
145     expectApproxEquals(0.02D, 0.1D * 0.2D, 0.0001D);
146     expectApproxEquals(-0.1D, -0.5D * 0.2D, 0.0001D);
147 
148     expectNaN($opt$Mul(0D, Double.POSITIVE_INFINITY));
149     expectNaN($opt$Mul(0D, Double.NEGATIVE_INFINITY));
150     expectNaN($opt$Mul(Double.NaN, 11D));
151     expectNaN($opt$Mul(Double.NaN, -11D));
152     expectNaN($opt$Mul(Double.NaN, Double.NEGATIVE_INFINITY));
153     expectNaN($opt$Mul(Double.NaN, Double.POSITIVE_INFINITY));
154 
155     expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(2D, 1.79769313486231570e+308));
156     expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(2D, Double.POSITIVE_INFINITY));
157     expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(-2D, Double.POSITIVE_INFINITY));
158     expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(-2D, 1.79769313486231570e+308));
159     expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(2D, Double.NEGATIVE_INFINITY));
160     expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(-2D, Double.NEGATIVE_INFINITY));
161     expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY));
162     expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY));
163     expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY));
164   }
165 
$opt$Mul(int a, int b)166   static int $opt$Mul(int a, int b) {
167     return a * b;
168   }
169 
$opt$Mul(long a, long b)170   static long $opt$Mul(long a, long b) {
171     return a * b;
172   }
173 
$opt$Mul(float a, float b)174   static float $opt$Mul(float a, float b) {
175     return a * b;
176   }
177 
$opt$Mul(double a, double b)178   static double $opt$Mul(double a, double b) {
179     return a * b;
180   }
181 }
182