1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // Note that $opt$ is a marker for the optimizing compiler to test 18 // it does compile the method. 19 public class Main { 20 expectEquals(int expected, int result)21 public static void expectEquals(int expected, int result) { 22 if (expected != result) { 23 throw new Error("Expected: " + expected + ", found: " + result); 24 } 25 } 26 expectEquals(long expected, long result)27 public static void expectEquals(long expected, long result) { 28 if (expected != result) { 29 throw new Error("Expected: " + expected + ", found: " + result); 30 } 31 } 32 expectEquals(float expected, float result)33 public static void expectEquals(float expected, float result) { 34 if (expected != result) { 35 throw new Error("Expected: " + expected + ", found: " + result); 36 } 37 } 38 expectEquals(double expected, double result)39 public static void expectEquals(double expected, double result) { 40 if (expected != result) { 41 throw new Error("Expected: " + expected + ", found: " + result); 42 } 43 } 44 expectApproxEquals(float a, float b, float maxDelta)45 public static void expectApproxEquals(float a, float b, float maxDelta) { 46 boolean aproxEquals = (a > b) 47 ? ((a - b) < maxDelta) 48 : ((b - a) < maxDelta); 49 if (!aproxEquals) { 50 throw new Error("Expected: " + a + ", found: " + b + ", with delta: " + maxDelta); 51 } 52 } 53 expectApproxEquals(double a, double b, double maxDelta)54 public static void expectApproxEquals(double a, double b, double maxDelta) { 55 boolean aproxEquals = (a > b) 56 ? ((a - b) < maxDelta) 57 : ((b - a) < maxDelta); 58 if (!aproxEquals) { 59 throw new Error("Expected: " + a + ", found: " + b + ", with delta: " + maxDelta); 60 } 61 } 62 expectNaN(float a)63 public static void expectNaN(float a) { 64 if (a == a) { 65 throw new Error("Expected NaN: " + a); 66 } 67 } 68 expectNaN(double a)69 public static void expectNaN(double a) { 70 if (a == a) { 71 throw new Error("Expected NaN: " + a); 72 } 73 } 74 main(String[] args)75 public static void main(String[] args) { 76 mul(); 77 } 78 mul()79 public static void mul() { 80 mulInt(); 81 mulLong(); 82 mulFloat(); 83 mulDouble(); 84 } 85 mulInt()86 private static void mulInt() { 87 expectEquals(15, $opt$Mul(5, 3)); 88 expectEquals(0, $opt$Mul(0, 0)); 89 expectEquals(0, $opt$Mul(0, 3)); 90 expectEquals(0, $opt$Mul(3, 0)); 91 expectEquals(-3, $opt$Mul(1, -3)); 92 expectEquals(36, $opt$Mul(-12, -3)); 93 expectEquals(33, $opt$Mul(1, 3) * 11); 94 expectEquals(671088645, $opt$Mul(134217729, 5)); // (2^27 + 1) * 5 95 } 96 mulLong()97 private static void mulLong() { 98 expectEquals(15L, $opt$Mul(5L, 3L)); 99 expectEquals(0L, $opt$Mul(0L, 0L)); 100 expectEquals(0L, $opt$Mul(0L, 3L)); 101 expectEquals(0L, $opt$Mul(3L, 0L)); 102 expectEquals(-3L, $opt$Mul(1L, -3L)); 103 expectEquals(36L, $opt$Mul(-12L, -3L)); 104 expectEquals(33L, $opt$Mul(1L, 3L) * 11L); 105 expectEquals(240518168583L, $opt$Mul(34359738369L, 7L)); // (2^35 + 1) * 7 106 } 107 mulFloat()108 private static void mulFloat() { 109 expectApproxEquals(15F, $opt$Mul(5F, 3F), 0.0001F); 110 expectApproxEquals(0F, $opt$Mul(0F, 0F), 0.0001F); 111 expectApproxEquals(0F, $opt$Mul(0F, 3F), 0.0001F); 112 expectApproxEquals(0F, $opt$Mul(3F, 0F), 0.0001F); 113 expectApproxEquals(-3F, $opt$Mul(1F, -3F), 0.0001F); 114 expectApproxEquals(36F, $opt$Mul(-12F, -3F), 0.0001F); 115 expectApproxEquals(33F, $opt$Mul(1F, 3F) * 11F, 0.0001F); 116 expectApproxEquals(0.02F, 0.1F * 0.2F, 0.0001F); 117 expectApproxEquals(-0.1F, -0.5F * 0.2F, 0.0001F); 118 119 expectNaN($opt$Mul(0F, Float.POSITIVE_INFINITY)); 120 expectNaN($opt$Mul(0F, Float.NEGATIVE_INFINITY)); 121 expectNaN($opt$Mul(Float.NaN, 11F)); 122 expectNaN($opt$Mul(Float.NaN, -11F)); 123 expectNaN($opt$Mul(Float.NaN, Float.NEGATIVE_INFINITY)); 124 expectNaN($opt$Mul(Float.NaN, Float.POSITIVE_INFINITY)); 125 126 expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(2F, 3.40282346638528860e+38F)); 127 expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(2F, Float.POSITIVE_INFINITY)); 128 expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(-2F, Float.POSITIVE_INFINITY)); 129 expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(-2F, 3.40282346638528860e+38F)); 130 expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(2F, Float.NEGATIVE_INFINITY)); 131 expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(-2F, Float.NEGATIVE_INFINITY)); 132 expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY)); 133 expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY)); 134 expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY)); 135 } 136 mulDouble()137 private static void mulDouble() { 138 expectApproxEquals(15D, $opt$Mul(5D, 3D), 0.0001D); 139 expectApproxEquals(0D, $opt$Mul(0D, 0D), 0.0001D); 140 expectApproxEquals(0D, $opt$Mul(0D, 3D), 0.0001D); 141 expectApproxEquals(0D, $opt$Mul(3D, 0D), 0.0001D); 142 expectApproxEquals(-3D, $opt$Mul(1D, -3D), 0.0001D); 143 expectApproxEquals(36D, $opt$Mul(-12D, -3D), 0.0001D); 144 expectApproxEquals(33D, $opt$Mul(1D, 3D) * 11D, 0.0001D); 145 expectApproxEquals(0.02D, 0.1D * 0.2D, 0.0001D); 146 expectApproxEquals(-0.1D, -0.5D * 0.2D, 0.0001D); 147 148 expectNaN($opt$Mul(0D, Double.POSITIVE_INFINITY)); 149 expectNaN($opt$Mul(0D, Double.NEGATIVE_INFINITY)); 150 expectNaN($opt$Mul(Double.NaN, 11D)); 151 expectNaN($opt$Mul(Double.NaN, -11D)); 152 expectNaN($opt$Mul(Double.NaN, Double.NEGATIVE_INFINITY)); 153 expectNaN($opt$Mul(Double.NaN, Double.POSITIVE_INFINITY)); 154 155 expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(2D, 1.79769313486231570e+308)); 156 expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(2D, Double.POSITIVE_INFINITY)); 157 expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(-2D, Double.POSITIVE_INFINITY)); 158 expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(-2D, 1.79769313486231570e+308)); 159 expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(2D, Double.NEGATIVE_INFINITY)); 160 expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(-2D, Double.NEGATIVE_INFINITY)); 161 expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY)); 162 expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)); 163 expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY)); 164 } 165 $opt$Mul(int a, int b)166 static int $opt$Mul(int a, int b) { 167 return a * b; 168 } 169 $opt$Mul(long a, long b)170 static long $opt$Mul(long a, long b) { 171 return a * b; 172 } 173 $opt$Mul(float a, float b)174 static float $opt$Mul(float a, float b) { 175 return a * b; 176 } 177 $opt$Mul(double a, double b)178 static double $opt$Mul(double a, double b) { 179 return a * b; 180 } 181 } 182