1# Copyright 2014 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import its.image 16import its.device 17import its.caps 18import its.objects 19import os.path 20from matplotlib import pylab 21import matplotlib 22import matplotlib.pyplot 23import numpy 24 25#AE must converge within this number of auto requests for EV 26THREASH_CONVERGE_FOR_EV = 8 27 28def main(): 29 """Tests that EV compensation is applied. 30 """ 31 LOCKED = 3 32 33 NAME = os.path.basename(__file__).split(".")[0] 34 35 MAX_LUMA_DELTA_THRESH = 0.05 36 37 with its.device.ItsSession() as cam: 38 props = cam.get_camera_properties() 39 its.caps.skip_unless(its.caps.manual_sensor(props) and 40 its.caps.manual_post_proc(props) and 41 its.caps.per_frame_control(props) and 42 its.caps.ev_compensation(props)) 43 44 debug = its.caps.debug_mode() 45 largest_yuv = its.objects.get_largest_yuv_format(props) 46 if debug: 47 fmt = largest_yuv 48 else: 49 match_ar = (largest_yuv['width'], largest_yuv['height']) 50 fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) 51 52 ev_compensation_range = props['android.control.aeCompensationRange'] 53 range_min = ev_compensation_range[0] 54 range_max = ev_compensation_range[1] 55 ev_per_step = its.objects.rational_to_float( 56 props['android.control.aeCompensationStep']) 57 steps_per_ev = int(round(1.0 / ev_per_step)) 58 ev_steps = range(range_min, range_max + 1, steps_per_ev) 59 imid = len(ev_steps) / 2 60 ev_shifts = [pow(2, step * ev_per_step) for step in ev_steps] 61 lumas = [] 62 63 # Converge 3A, and lock AE once converged. skip AF trigger as 64 # dark/bright scene could make AF convergence fail and this test 65 # doesn't care the image sharpness. 66 cam.do_3a(ev_comp=0, lock_ae=True, do_af=False) 67 68 for ev in ev_steps: 69 70 # Capture a single shot with the same EV comp and locked AE. 71 req = its.objects.auto_capture_request() 72 req['android.control.aeExposureCompensation'] = ev 73 req["android.control.aeLock"] = True 74 # Use linear tone curve to avoid brightness being impacted 75 # by tone curves. 76 req["android.tonemap.mode"] = 0 77 req["android.tonemap.curveRed"] = [0.0,0.0, 1.0,1.0] 78 req["android.tonemap.curveGreen"] = [0.0,0.0, 1.0,1.0] 79 req["android.tonemap.curveBlue"] = [0.0,0.0, 1.0,1.0] 80 caps = cam.do_capture([req]*THREASH_CONVERGE_FOR_EV, fmt) 81 82 for cap in caps: 83 if (cap['metadata']['android.control.aeState'] == LOCKED): 84 y = its.image.convert_capture_to_planes(cap)[0] 85 tile = its.image.get_image_patch(y, 0.45,0.45,0.1,0.1) 86 lumas.append(its.image.compute_image_means(tile)[0]) 87 break 88 assert(cap['metadata']['android.control.aeState'] == LOCKED) 89 90 print "ev_step_size_in_stops", ev_per_step 91 shift_mid = ev_shifts[imid] 92 luma_normal = lumas[imid] / shift_mid 93 expected_lumas = [min(1.0, luma_normal * ev_shift) for ev_shift in ev_shifts] 94 95 pylab.plot(ev_steps, lumas, 'r') 96 pylab.plot(ev_steps, expected_lumas, 'b') 97 matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME)) 98 99 luma_diffs = [expected_lumas[i] - lumas[i] for i in range(len(ev_steps))] 100 max_diff = max(abs(i) for i in luma_diffs) 101 avg_diff = abs(numpy.array(luma_diffs)).mean() 102 print "Max delta between modeled and measured lumas:", max_diff 103 print "Avg delta between modeled and measured lumas:", avg_diff 104 assert(max_diff < MAX_LUMA_DELTA_THRESH) 105 106if __name__ == '__main__': 107 main() 108