1# Copyright 2013 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import its.image 16import its.caps 17import its.device 18import its.objects 19import its.target 20from matplotlib import pylab 21import os.path 22import matplotlib 23import matplotlib.pyplot 24 25def main(): 26 """Test that the android.sensor.sensitivity parameter is applied. 27 """ 28 NAME = os.path.basename(__file__).split(".")[0] 29 30 NUM_STEPS = 5 31 32 sensitivities = None 33 r_means = [] 34 g_means = [] 35 b_means = [] 36 37 with its.device.ItsSession() as cam: 38 props = cam.get_camera_properties() 39 its.caps.skip_unless(its.caps.compute_target_exposure(props) and 40 its.caps.per_frame_control(props)) 41 42 debug = its.caps.debug_mode() 43 largest_yuv = its.objects.get_largest_yuv_format(props) 44 if debug: 45 fmt = largest_yuv 46 else: 47 match_ar = (largest_yuv['width'], largest_yuv['height']) 48 fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) 49 50 expt,_ = its.target.get_target_exposure_combos(cam)["midSensitivity"] 51 sens_range = props['android.sensor.info.sensitivityRange'] 52 sens_step = (sens_range[1] - sens_range[0]) / float(NUM_STEPS-1) 53 sensitivities = [sens_range[0] + i * sens_step for i in range(NUM_STEPS)] 54 55 for s in sensitivities: 56 req = its.objects.manual_capture_request(s, expt) 57 cap = cam.do_capture(req, fmt) 58 img = its.image.convert_capture_to_rgb_image(cap) 59 its.image.write_image( 60 img, "%s_iso=%04d.jpg" % (NAME, s)) 61 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 62 rgb_means = its.image.compute_image_means(tile) 63 r_means.append(rgb_means[0]) 64 g_means.append(rgb_means[1]) 65 b_means.append(rgb_means[2]) 66 67 # Draw a plot. 68 pylab.plot(sensitivities, r_means, 'r') 69 pylab.plot(sensitivities, g_means, 'g') 70 pylab.plot(sensitivities, b_means, 'b') 71 pylab.ylim([0,1]) 72 matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME)) 73 74 # Test for pass/fail: check that each shot is brighter than the previous. 75 for means in [r_means, g_means, b_means]: 76 for i in range(len(means)-1): 77 assert(means[i+1] > means[i]) 78 79if __name__ == '__main__': 80 main() 81 82