1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <bl_common.h>
35 #include <bl31.h>
36 #include <context.h>
37 #include <context_mgmt.h>
38 #include <cpu_data.h>
39 #include <interrupt_mgmt.h>
40 #include <platform.h>
41 #include <platform_def.h>
42 #include <runtime_svc.h>
43 #include <string.h>
44 
45 
46 /*******************************************************************************
47  * Context management library initialisation routine. This library is used by
48  * runtime services to share pointers to 'cpu_context' structures for the secure
49  * and non-secure states. Management of the structures and their associated
50  * memory is not done by the context management library e.g. the PSCI service
51  * manages the cpu context used for entry from and exit to the non-secure state.
52  * The Secure payload dispatcher service manages the context(s) corresponding to
53  * the secure state. It also uses this library to get access to the non-secure
54  * state cpu context pointers.
55  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
56  * which will used for programming an entry into a lower EL. The same context
57  * will used to save state upon exception entry from that EL.
58  ******************************************************************************/
cm_init(void)59 void cm_init(void)
60 {
61 	/*
62 	 * The context management library has only global data to intialize, but
63 	 * that will be done when the BSS is zeroed out
64 	 */
65 }
66 
67 /*******************************************************************************
68  * This function returns a pointer to the most recent 'cpu_context' structure
69  * for the CPU identified by MPIDR that was set as the context for the specified
70  * security state. NULL is returned if no such structure has been specified.
71  ******************************************************************************/
cm_get_context_by_mpidr(uint64_t mpidr,uint32_t security_state)72 void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state)
73 {
74 	assert(sec_state_is_valid(security_state));
75 
76 	return get_cpu_data_by_mpidr(mpidr, cpu_context[security_state]);
77 }
78 
79 /*******************************************************************************
80  * This function sets the pointer to the current 'cpu_context' structure for the
81  * specified security state for the CPU identified by MPIDR
82  ******************************************************************************/
cm_set_context_by_mpidr(uint64_t mpidr,void * context,uint32_t security_state)83 void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state)
84 {
85 	assert(sec_state_is_valid(security_state));
86 
87 	set_cpu_data_by_mpidr(mpidr, cpu_context[security_state], context);
88 }
89 
90 /*******************************************************************************
91  * This function is used to program the context that's used for exception
92  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
93  * the required security state
94  ******************************************************************************/
cm_set_next_context(void * context)95 static inline void cm_set_next_context(void *context)
96 {
97 #if DEBUG
98 	uint64_t sp_mode;
99 
100 	/*
101 	 * Check that this function is called with SP_EL0 as the stack
102 	 * pointer
103 	 */
104 	__asm__ volatile("mrs	%0, SPSel\n"
105 			 : "=r" (sp_mode));
106 
107 	assert(sp_mode == MODE_SP_EL0);
108 #endif
109 
110 	__asm__ volatile("msr	spsel, #1\n"
111 			 "mov	sp, %0\n"
112 			 "msr	spsel, #0\n"
113 			 : : "r" (context));
114 }
115 
116 /*******************************************************************************
117  * The following function initializes a cpu_context for the current CPU for
118  * first use, and sets the initial entrypoint state as specified by the
119  * entry_point_info structure.
120  *
121  * The security state to initialize is determined by the SECURE attribute
122  * of the entry_point_info. The function returns a pointer to the initialized
123  * context and sets this as the next context to return to.
124  *
125  * The EE and ST attributes are used to configure the endianess and secure
126  * timer availability for the new excution context.
127  *
128  * To prepare the register state for entry call cm_prepare_el3_exit() and
129  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
130  * cm_e1_sysreg_context_restore().
131  ******************************************************************************/
cm_init_context(uint64_t mpidr,const entry_point_info_t * ep)132 void cm_init_context(uint64_t mpidr, const entry_point_info_t *ep)
133 {
134 	uint32_t security_state;
135 	cpu_context_t *ctx;
136 	uint32_t scr_el3;
137 	el3_state_t *state;
138 	gp_regs_t *gp_regs;
139 	unsigned long sctlr_elx;
140 
141 	security_state = GET_SECURITY_STATE(ep->h.attr);
142 	ctx = cm_get_context_by_mpidr(mpidr, security_state);
143 	assert(ctx);
144 
145 	/* Clear any residual register values from the context */
146 	memset(ctx, 0, sizeof(*ctx));
147 
148 	/*
149 	 * Base the context SCR on the current value, adjust for entry point
150 	 * specific requirements and set trap bits from the IMF
151 	 * TODO: provide the base/global SCR bits using another mechanism?
152 	 */
153 	scr_el3 = read_scr();
154 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
155 			SCR_ST_BIT | SCR_HCE_BIT);
156 
157 	if (security_state != SECURE)
158 		scr_el3 |= SCR_NS_BIT;
159 
160 	if (GET_RW(ep->spsr) == MODE_RW_64)
161 		scr_el3 |= SCR_RW_BIT;
162 
163 	if (EP_GET_ST(ep->h.attr))
164 		scr_el3 |= SCR_ST_BIT;
165 
166 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
167 
168 	/*
169 	 * Set up SCTLR_ELx for the target exception level:
170 	 * EE bit is taken from the entrpoint attributes
171 	 * M, C and I bits must be zero (as required by PSCI specification)
172 	 *
173 	 * The target exception level is based on the spsr mode requested.
174 	 * If execution is requested to EL2 or hyp mode, HVC is enabled
175 	 * via SCR_EL3.HCE.
176 	 *
177 	 * Always compute the SCTLR_EL1 value and save in the cpu_context
178 	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
179 	 * are not part of the stored cpu_context
180 	 *
181 	 * TODO: In debug builds the spsr should be validated and checked
182 	 * against the CPU support, security state, endianess and pc
183 	 */
184 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
185 	if (GET_RW(ep->spsr) == MODE_RW_64)
186 		sctlr_elx |= SCTLR_EL1_RES1;
187 	else
188 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
189 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
190 
191 	if ((GET_RW(ep->spsr) == MODE_RW_64
192 	     && GET_EL(ep->spsr) == MODE_EL2)
193 	    || (GET_RW(ep->spsr) != MODE_RW_64
194 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
195 		scr_el3 |= SCR_HCE_BIT;
196 	}
197 
198 	/* Populate EL3 state so that we've the right context before doing ERET */
199 	state = get_el3state_ctx(ctx);
200 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
201 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
202 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
203 
204 	/*
205 	 * Store the X0-X7 value from the entrypoint into the context
206 	 * Use memcpy as we are in control of the layout of the structures
207 	 */
208 	gp_regs = get_gpregs_ctx(ctx);
209 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
210 }
211 
212 /*******************************************************************************
213  * Prepare the CPU system registers for first entry into secure or normal world
214  *
215  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
216  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
217  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
218  * For all entries, the EL1 registers are initialized from the cpu_context
219  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)220 void cm_prepare_el3_exit(uint32_t security_state)
221 {
222 	uint32_t sctlr_elx, scr_el3, cptr_el2;
223 	cpu_context_t *ctx = cm_get_context(security_state);
224 
225 	assert(ctx);
226 
227 	if (security_state == NON_SECURE) {
228 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
229 		if (scr_el3 & SCR_HCE_BIT) {
230 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
231 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
232 						 CTX_SCTLR_EL1);
233 			sctlr_elx &= ~SCTLR_EE_BIT;
234 			sctlr_elx |= SCTLR_EL2_RES1;
235 			write_sctlr_el2(sctlr_elx);
236 		} else if (read_id_aa64pfr0_el1() &
237 			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
238 			/* EL2 present but unused, need to disable safely */
239 
240 			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
241 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
242 
243 			/* SCTLR_EL2 : can be ignored when bypassing */
244 
245 			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
246 			cptr_el2 = read_cptr_el2();
247 			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
248 			write_cptr_el2(cptr_el2);
249 
250 			/* Enable EL1 access to timer */
251 			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
252 
253 			/* Reset CNTVOFF_EL2 */
254 			write_cntvoff_el2(0);
255 
256 			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
257 			write_vpidr_el2(read_midr_el1());
258 			write_vmpidr_el2(read_mpidr_el1());
259 		}
260 	}
261 
262 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
263 
264 	cm_set_next_context(ctx);
265 }
266 
267 /*******************************************************************************
268  * The next four functions are used by runtime services to save and restore
269  * EL1 context on the 'cpu_context' structure for the specified security
270  * state.
271  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)272 void cm_el1_sysregs_context_save(uint32_t security_state)
273 {
274 	cpu_context_t *ctx;
275 
276 	ctx = cm_get_context(security_state);
277 	assert(ctx);
278 
279 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
280 }
281 
cm_el1_sysregs_context_restore(uint32_t security_state)282 void cm_el1_sysregs_context_restore(uint32_t security_state)
283 {
284 	cpu_context_t *ctx;
285 
286 	ctx = cm_get_context(security_state);
287 	assert(ctx);
288 
289 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
290 }
291 
292 /*******************************************************************************
293  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
294  * given security state with the given entrypoint
295  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uint64_t entrypoint)296 void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
297 {
298 	cpu_context_t *ctx;
299 	el3_state_t *state;
300 
301 	ctx = cm_get_context(security_state);
302 	assert(ctx);
303 
304 	/* Populate EL3 state so that ERET jumps to the correct entry */
305 	state = get_el3state_ctx(ctx);
306 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
307 }
308 
309 /*******************************************************************************
310  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
311  * pertaining to the given security state
312  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uint64_t entrypoint,uint32_t spsr)313 void cm_set_elr_spsr_el3(uint32_t security_state,
314 			 uint64_t entrypoint, uint32_t spsr)
315 {
316 	cpu_context_t *ctx;
317 	el3_state_t *state;
318 
319 	ctx = cm_get_context(security_state);
320 	assert(ctx);
321 
322 	/* Populate EL3 state so that ERET jumps to the correct entry */
323 	state = get_el3state_ctx(ctx);
324 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
325 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
326 }
327 
328 /*******************************************************************************
329  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
330  * pertaining to the given security state using the value and bit position
331  * specified in the parameters. It preserves all other bits.
332  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)333 void cm_write_scr_el3_bit(uint32_t security_state,
334 			  uint32_t bit_pos,
335 			  uint32_t value)
336 {
337 	cpu_context_t *ctx;
338 	el3_state_t *state;
339 	uint32_t scr_el3;
340 
341 	ctx = cm_get_context(security_state);
342 	assert(ctx);
343 
344 	/* Ensure that the bit position is a valid one */
345 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
346 
347 	/* Ensure that the 'value' is only a bit wide */
348 	assert(value <= 1);
349 
350 	/*
351 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
352 	 * and set it to its new value.
353 	 */
354 	state = get_el3state_ctx(ctx);
355 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
356 	scr_el3 &= ~(1 << bit_pos);
357 	scr_el3 |= value << bit_pos;
358 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
359 }
360 
361 /*******************************************************************************
362  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
363  * given security state.
364  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)365 uint32_t cm_get_scr_el3(uint32_t security_state)
366 {
367 	cpu_context_t *ctx;
368 	el3_state_t *state;
369 
370 	ctx = cm_get_context(security_state);
371 	assert(ctx);
372 
373 	/* Populate EL3 state so that ERET jumps to the correct entry */
374 	state = get_el3state_ctx(ctx);
375 	return read_ctx_reg(state, CTX_SCR_EL3);
376 }
377 
378 /*******************************************************************************
379  * This function is used to program the context that's used for exception
380  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
381  * the required security state
382  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)383 void cm_set_next_eret_context(uint32_t security_state)
384 {
385 	cpu_context_t *ctx;
386 
387 	ctx = cm_get_context(security_state);
388 	assert(ctx);
389 
390 	cm_set_next_context(ctx);
391 }
392