1 /*
2 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31
32 /*******************************************************************************
33 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34 * plug-in component to the Secure Monitor, registered as a runtime service. The
35 * SPD is expected to be a functional extension of the Secure Payload (SP) that
36 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37 * the Trusted OS/Applications range to the dispatcher. The SPD will either
38 * handle the request locally or delegate it to the Secure Payload. It is also
39 * responsible for initialising and maintaining communication with the SP.
40 ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <string.h>
52 #include <tsp.h>
53 #include <uuid.h>
54 #include "tspd_private.h"
55
56 /*******************************************************************************
57 * Address of the entrypoint vector table in the Secure Payload. It is
58 * initialised once on the primary core after a cold boot.
59 ******************************************************************************/
60 tsp_vectors_t *tsp_vectors;
61
62 /*******************************************************************************
63 * Array to keep track of per-cpu Secure Payload state
64 ******************************************************************************/
65 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
66
67
68 /* TSP UID */
69 DEFINE_SVC_UUID(tsp_uuid,
70 0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
71 0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
72
73 int32_t tspd_init(void);
74
tspd_handle_sp_preemption(void * handle)75 uint64_t tspd_handle_sp_preemption(void *handle)
76 {
77 cpu_context_t *ns_cpu_context;
78 assert(handle == cm_get_context(SECURE));
79 cm_el1_sysregs_context_save(SECURE);
80 /* Get a reference to the non-secure context */
81 ns_cpu_context = cm_get_context(NON_SECURE);
82 assert(ns_cpu_context);
83
84 /*
85 * Restore non-secure state. The secure system
86 * register context will be saved when required.
87 */
88 cm_el1_sysregs_context_restore(NON_SECURE);
89 cm_set_next_eret_context(NON_SECURE);
90
91 SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
92 }
93 /*******************************************************************************
94 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
95 * validates the interrupt and upon success arranges entry into the TSP at
96 * 'tsp_fiq_entry()' for handling the interrupt.
97 ******************************************************************************/
tspd_sel1_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)98 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
99 uint32_t flags,
100 void *handle,
101 void *cookie)
102 {
103 uint32_t linear_id;
104 uint64_t mpidr;
105 tsp_context_t *tsp_ctx;
106
107 /* Check the security state when the exception was generated */
108 assert(get_interrupt_src_ss(flags) == NON_SECURE);
109
110 #if IMF_READ_INTERRUPT_ID
111 /* Check the security status of the interrupt */
112 assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
113 #endif
114
115 /* Sanity check the pointer to this cpu's context */
116 mpidr = read_mpidr();
117 assert(handle == cm_get_context(NON_SECURE));
118
119 /* Save the non-secure context before entering the TSP */
120 cm_el1_sysregs_context_save(NON_SECURE);
121
122 /* Get a reference to this cpu's TSP context */
123 linear_id = platform_get_core_pos(mpidr);
124 tsp_ctx = &tspd_sp_context[linear_id];
125 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
126
127 /*
128 * Determine if the TSP was previously preempted. Its last known
129 * context has to be preserved in this case.
130 * The TSP should return control to the TSPD after handling this
131 * FIQ. Preserve essential EL3 context to allow entry into the
132 * TSP at the FIQ entry point using the 'cpu_context' structure.
133 * There is no need to save the secure system register context
134 * since the TSP is supposed to preserve it during S-EL1 interrupt
135 * handling.
136 */
137 if (get_std_smc_active_flag(tsp_ctx->state)) {
138 tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
139 CTX_SPSR_EL3);
140 tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
141 CTX_ELR_EL3);
142 #if TSPD_ROUTE_IRQ_TO_EL3
143 /*Need to save the previously interrupted secure context */
144 memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
145 #endif
146 }
147
148 cm_el1_sysregs_context_restore(SECURE);
149 cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
150 SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
151
152 cm_set_next_eret_context(SECURE);
153
154 /*
155 * Tell the TSP that it has to handle an FIQ synchronously. Also the
156 * instruction in normal world where the interrupt was generated is
157 * passed for debugging purposes. It is safe to retrieve this address
158 * from ELR_EL3 as the secure context will not take effect until
159 * el3_exit().
160 */
161 SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
162 }
163
164 #if TSPD_ROUTE_IRQ_TO_EL3
165 /*******************************************************************************
166 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
167 * validates the interrupt and upon success arranges entry into the TSP at
168 * 'tsp_fiq_entry()' for handling the interrupt.
169 ******************************************************************************/
tspd_ns_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)170 static uint64_t tspd_ns_interrupt_handler(uint32_t id,
171 uint32_t flags,
172 void *handle,
173 void *cookie)
174 {
175 /* Check the security state when the exception was generated */
176 assert(get_interrupt_src_ss(flags) == SECURE);
177
178 #if IMF_READ_INTERRUPT_ID
179 /* Check the security status of the interrupt */
180 assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_NS);
181 #endif
182 /*
183 * Disable the routing of NS interrupts from secure world to EL3 while
184 * interrupted on this core.
185 */
186 disable_intr_rm_local(INTR_TYPE_NS, SECURE);
187
188 return tspd_handle_sp_preemption(handle);
189 }
190 #endif
191
192 /*******************************************************************************
193 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
194 * (aarch32/aarch64) if not already known and initialises the context for entry
195 * into the SP for its initialisation.
196 ******************************************************************************/
tspd_setup(void)197 int32_t tspd_setup(void)
198 {
199 entry_point_info_t *tsp_ep_info;
200 uint64_t mpidr = read_mpidr();
201 uint32_t linear_id;
202
203 linear_id = platform_get_core_pos(mpidr);
204
205 /*
206 * Get information about the Secure Payload (BL32) image. Its
207 * absence is a critical failure. TODO: Add support to
208 * conditionally include the SPD service
209 */
210 tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
211 if (!tsp_ep_info) {
212 WARN("No TSP provided by BL2 boot loader, Booting device"
213 " without TSP initialization. SMC`s destined for TSP"
214 " will return SMC_UNK\n");
215 return 1;
216 }
217
218 /*
219 * If there's no valid entry point for SP, we return a non-zero value
220 * signalling failure initializing the service. We bail out without
221 * registering any handlers
222 */
223 if (!tsp_ep_info->pc)
224 return 1;
225
226 /*
227 * We could inspect the SP image and determine it's execution
228 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
229 * for the time being.
230 */
231 tspd_init_tsp_ep_state(tsp_ep_info,
232 TSP_AARCH64,
233 tsp_ep_info->pc,
234 &tspd_sp_context[linear_id]);
235
236 #if TSP_INIT_ASYNC
237 bl31_set_next_image_type(SECURE);
238 #else
239 /*
240 * All TSPD initialization done. Now register our init function with
241 * BL31 for deferred invocation
242 */
243 bl31_register_bl32_init(&tspd_init);
244 #endif
245 return 0;
246 }
247
248 /*******************************************************************************
249 * This function passes control to the Secure Payload image (BL32) for the first
250 * time on the primary cpu after a cold boot. It assumes that a valid secure
251 * context has already been created by tspd_setup() which can be directly used.
252 * It also assumes that a valid non-secure context has been initialised by PSCI
253 * so it does not need to save and restore any non-secure state. This function
254 * performs a synchronous entry into the Secure payload. The SP passes control
255 * back to this routine through a SMC.
256 ******************************************************************************/
tspd_init(void)257 int32_t tspd_init(void)
258 {
259 uint64_t mpidr = read_mpidr();
260 uint32_t linear_id = platform_get_core_pos(mpidr);
261 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
262 entry_point_info_t *tsp_entry_point;
263 uint64_t rc;
264
265 /*
266 * Get information about the Secure Payload (BL32) image. Its
267 * absence is a critical failure.
268 */
269 tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
270 assert(tsp_entry_point);
271
272 cm_init_context(mpidr, tsp_entry_point);
273
274 /*
275 * Arrange for an entry into the test secure payload. It will be
276 * returned via TSP_ENTRY_DONE case
277 */
278 rc = tspd_synchronous_sp_entry(tsp_ctx);
279 assert(rc != 0);
280
281 return rc;
282 }
283
284
285 /*******************************************************************************
286 * This function is responsible for handling all SMCs in the Trusted OS/App
287 * range from the non-secure state as defined in the SMC Calling Convention
288 * Document. It is also responsible for communicating with the Secure payload
289 * to delegate work and return results back to the non-secure state. Lastly it
290 * will also return any information that the secure payload needs to do the
291 * work assigned to it.
292 ******************************************************************************/
tspd_smc_handler(uint32_t smc_fid,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)293 uint64_t tspd_smc_handler(uint32_t smc_fid,
294 uint64_t x1,
295 uint64_t x2,
296 uint64_t x3,
297 uint64_t x4,
298 void *cookie,
299 void *handle,
300 uint64_t flags)
301 {
302 cpu_context_t *ns_cpu_context;
303 unsigned long mpidr = read_mpidr();
304 uint32_t linear_id = platform_get_core_pos(mpidr), ns;
305 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
306 uint64_t rc;
307 #if TSP_INIT_ASYNC
308 entry_point_info_t *next_image_info;
309 #endif
310
311 /* Determine which security state this SMC originated from */
312 ns = is_caller_non_secure(flags);
313
314 switch (smc_fid) {
315
316 /*
317 * This function ID is used by TSP to indicate that it was
318 * preempted by a normal world IRQ.
319 *
320 */
321 case TSP_PREEMPTED:
322 if (ns)
323 SMC_RET1(handle, SMC_UNK);
324
325 return tspd_handle_sp_preemption(handle);
326
327 /*
328 * This function ID is used only by the TSP to indicate that it has
329 * finished handling a S-EL1 FIQ interrupt. Execution should resume
330 * in the normal world.
331 */
332 case TSP_HANDLED_S_EL1_FIQ:
333 if (ns)
334 SMC_RET1(handle, SMC_UNK);
335
336 assert(handle == cm_get_context(SECURE));
337
338 /*
339 * Restore the relevant EL3 state which saved to service
340 * this SMC.
341 */
342 if (get_std_smc_active_flag(tsp_ctx->state)) {
343 SMC_SET_EL3(&tsp_ctx->cpu_ctx,
344 CTX_SPSR_EL3,
345 tsp_ctx->saved_spsr_el3);
346 SMC_SET_EL3(&tsp_ctx->cpu_ctx,
347 CTX_ELR_EL3,
348 tsp_ctx->saved_elr_el3);
349 #if TSPD_ROUTE_IRQ_TO_EL3
350 /*
351 * Need to restore the previously interrupted
352 * secure context.
353 */
354 memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
355 TSPD_SP_CTX_SIZE);
356 #endif
357 }
358
359 /* Get a reference to the non-secure context */
360 ns_cpu_context = cm_get_context(NON_SECURE);
361 assert(ns_cpu_context);
362
363 /*
364 * Restore non-secure state. There is no need to save the
365 * secure system register context since the TSP was supposed
366 * to preserve it during S-EL1 interrupt handling.
367 */
368 cm_el1_sysregs_context_restore(NON_SECURE);
369 cm_set_next_eret_context(NON_SECURE);
370
371 SMC_RET0((uint64_t) ns_cpu_context);
372
373
374 /*
375 * This function ID is used only by the TSP to indicate that it was
376 * interrupted due to a EL3 FIQ interrupt. Execution should resume
377 * in the normal world.
378 */
379 case TSP_EL3_FIQ:
380 if (ns)
381 SMC_RET1(handle, SMC_UNK);
382
383 assert(handle == cm_get_context(SECURE));
384
385 /* Assert that standard SMC execution has been preempted */
386 assert(get_std_smc_active_flag(tsp_ctx->state));
387
388 /* Save the secure system register state */
389 cm_el1_sysregs_context_save(SECURE);
390
391 /* Get a reference to the non-secure context */
392 ns_cpu_context = cm_get_context(NON_SECURE);
393 assert(ns_cpu_context);
394
395 /* Restore non-secure state */
396 cm_el1_sysregs_context_restore(NON_SECURE);
397 cm_set_next_eret_context(NON_SECURE);
398
399 SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);
400
401
402 /*
403 * This function ID is used only by the SP to indicate it has
404 * finished initialising itself after a cold boot
405 */
406 case TSP_ENTRY_DONE:
407 if (ns)
408 SMC_RET1(handle, SMC_UNK);
409
410 /*
411 * Stash the SP entry points information. This is done
412 * only once on the primary cpu
413 */
414 assert(tsp_vectors == NULL);
415 tsp_vectors = (tsp_vectors_t *) x1;
416
417 if (tsp_vectors) {
418 set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
419
420 /*
421 * TSP has been successfully initialized. Register power
422 * managemnt hooks with PSCI
423 */
424 psci_register_spd_pm_hook(&tspd_pm);
425
426 /*
427 * Register an interrupt handler for S-EL1 interrupts
428 * when generated during code executing in the
429 * non-secure state.
430 */
431 flags = 0;
432 set_interrupt_rm_flag(flags, NON_SECURE);
433 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
434 tspd_sel1_interrupt_handler,
435 flags);
436 if (rc)
437 panic();
438
439 #if TSPD_ROUTE_IRQ_TO_EL3
440 /*
441 * Register an interrupt handler for NS interrupts when
442 * generated during code executing in secure state are
443 * routed to EL3.
444 */
445 flags = 0;
446 set_interrupt_rm_flag(flags, SECURE);
447
448 rc = register_interrupt_type_handler(INTR_TYPE_NS,
449 tspd_ns_interrupt_handler,
450 flags);
451 if (rc)
452 panic();
453
454 /*
455 * Disable the interrupt NS locally since it will be enabled globally
456 * within cm_init_context.
457 */
458 disable_intr_rm_local(INTR_TYPE_NS, SECURE);
459 #endif
460 }
461
462
463 #if TSP_INIT_ASYNC
464 /* Save the Secure EL1 system register context */
465 assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
466 cm_el1_sysregs_context_save(SECURE);
467
468 /* Program EL3 registers to enable entry into the next EL */
469 next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
470 assert(next_image_info);
471 assert(NON_SECURE ==
472 GET_SECURITY_STATE(next_image_info->h.attr));
473
474 cm_init_context(read_mpidr_el1(), next_image_info);
475 cm_prepare_el3_exit(NON_SECURE);
476 SMC_RET0(cm_get_context(NON_SECURE));
477 #else
478 /*
479 * SP reports completion. The SPD must have initiated
480 * the original request through a synchronous entry
481 * into the SP. Jump back to the original C runtime
482 * context.
483 */
484 tspd_synchronous_sp_exit(tsp_ctx, x1);
485 #endif
486
487 /*
488 * These function IDs is used only by the SP to indicate it has
489 * finished:
490 * 1. turning itself on in response to an earlier psci
491 * cpu_on request
492 * 2. resuming itself after an earlier psci cpu_suspend
493 * request.
494 */
495 case TSP_ON_DONE:
496 case TSP_RESUME_DONE:
497
498 /*
499 * These function IDs is used only by the SP to indicate it has
500 * finished:
501 * 1. suspending itself after an earlier psci cpu_suspend
502 * request.
503 * 2. turning itself off in response to an earlier psci
504 * cpu_off request.
505 */
506 case TSP_OFF_DONE:
507 case TSP_SUSPEND_DONE:
508 case TSP_SYSTEM_OFF_DONE:
509 case TSP_SYSTEM_RESET_DONE:
510 if (ns)
511 SMC_RET1(handle, SMC_UNK);
512
513 /*
514 * SP reports completion. The SPD must have initiated the
515 * original request through a synchronous entry into the SP.
516 * Jump back to the original C runtime context, and pass x1 as
517 * return value to the caller
518 */
519 tspd_synchronous_sp_exit(tsp_ctx, x1);
520
521 /*
522 * Request from non-secure client to perform an
523 * arithmetic operation or response from secure
524 * payload to an earlier request.
525 */
526 case TSP_FAST_FID(TSP_ADD):
527 case TSP_FAST_FID(TSP_SUB):
528 case TSP_FAST_FID(TSP_MUL):
529 case TSP_FAST_FID(TSP_DIV):
530
531 case TSP_STD_FID(TSP_ADD):
532 case TSP_STD_FID(TSP_SUB):
533 case TSP_STD_FID(TSP_MUL):
534 case TSP_STD_FID(TSP_DIV):
535 if (ns) {
536 /*
537 * This is a fresh request from the non-secure client.
538 * The parameters are in x1 and x2. Figure out which
539 * registers need to be preserved, save the non-secure
540 * state and send the request to the secure payload.
541 */
542 assert(handle == cm_get_context(NON_SECURE));
543
544 /* Check if we are already preempted */
545 if (get_std_smc_active_flag(tsp_ctx->state))
546 SMC_RET1(handle, SMC_UNK);
547
548 cm_el1_sysregs_context_save(NON_SECURE);
549
550 /* Save x1 and x2 for use by TSP_GET_ARGS call below */
551 store_tsp_args(tsp_ctx, x1, x2);
552
553 /*
554 * We are done stashing the non-secure context. Ask the
555 * secure payload to do the work now.
556 */
557
558 /*
559 * Verify if there is a valid context to use, copy the
560 * operation type and parameters to the secure context
561 * and jump to the fast smc entry point in the secure
562 * payload. Entry into S-EL1 will take place upon exit
563 * from this function.
564 */
565 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
566
567 /* Set appropriate entry for SMC.
568 * We expect the TSP to manage the PSTATE.I and PSTATE.F
569 * flags as appropriate.
570 */
571 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
572 cm_set_elr_el3(SECURE, (uint64_t)
573 &tsp_vectors->fast_smc_entry);
574 } else {
575 set_std_smc_active_flag(tsp_ctx->state);
576 cm_set_elr_el3(SECURE, (uint64_t)
577 &tsp_vectors->std_smc_entry);
578 #if TSPD_ROUTE_IRQ_TO_EL3
579 /*
580 * Enable the routing of NS interrupts to EL3
581 * during STD SMC processing on this core.
582 */
583 enable_intr_rm_local(INTR_TYPE_NS, SECURE);
584 #endif
585 }
586
587 cm_el1_sysregs_context_restore(SECURE);
588 cm_set_next_eret_context(SECURE);
589 SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
590 } else {
591 /*
592 * This is the result from the secure client of an
593 * earlier request. The results are in x1-x3. Copy it
594 * into the non-secure context, save the secure state
595 * and return to the non-secure state.
596 */
597 assert(handle == cm_get_context(SECURE));
598 cm_el1_sysregs_context_save(SECURE);
599
600 /* Get a reference to the non-secure context */
601 ns_cpu_context = cm_get_context(NON_SECURE);
602 assert(ns_cpu_context);
603
604 /* Restore non-secure state */
605 cm_el1_sysregs_context_restore(NON_SECURE);
606 cm_set_next_eret_context(NON_SECURE);
607 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD) {
608 clr_std_smc_active_flag(tsp_ctx->state);
609 #if TSPD_ROUTE_IRQ_TO_EL3
610 /*
611 * Disable the routing of NS interrupts to EL3
612 * after STD SMC processing is finished on this
613 * core.
614 */
615 disable_intr_rm_local(INTR_TYPE_NS, SECURE);
616 #endif
617 }
618
619 SMC_RET3(ns_cpu_context, x1, x2, x3);
620 }
621
622 break;
623
624 /*
625 * Request from non secure world to resume the preempted
626 * Standard SMC call.
627 */
628 case TSP_FID_RESUME:
629 /* RESUME should be invoked only by normal world */
630 if (!ns) {
631 assert(0);
632 break;
633 }
634
635 /*
636 * This is a resume request from the non-secure client.
637 * save the non-secure state and send the request to
638 * the secure payload.
639 */
640 assert(handle == cm_get_context(NON_SECURE));
641
642 /* Check if we are already preempted before resume */
643 if (!get_std_smc_active_flag(tsp_ctx->state))
644 SMC_RET1(handle, SMC_UNK);
645
646 cm_el1_sysregs_context_save(NON_SECURE);
647
648 /*
649 * We are done stashing the non-secure context. Ask the
650 * secure payload to do the work now.
651 */
652 #if TSPD_ROUTE_IRQ_TO_EL3
653 /*
654 * Enable the routing of NS interrupts to EL3 during resumption
655 * of STD SMC call on this core.
656 */
657 enable_intr_rm_local(INTR_TYPE_NS, SECURE);
658 #endif
659
660
661
662 /* We just need to return to the preempted point in
663 * TSP and the execution will resume as normal.
664 */
665 cm_el1_sysregs_context_restore(SECURE);
666 cm_set_next_eret_context(SECURE);
667 SMC_RET0(&tsp_ctx->cpu_ctx);
668
669 /*
670 * This is a request from the secure payload for more arguments
671 * for an ongoing arithmetic operation requested by the
672 * non-secure world. Simply return the arguments from the non-
673 * secure client in the original call.
674 */
675 case TSP_GET_ARGS:
676 if (ns)
677 SMC_RET1(handle, SMC_UNK);
678
679 get_tsp_args(tsp_ctx, x1, x2);
680 SMC_RET2(handle, x1, x2);
681
682 case TOS_CALL_COUNT:
683 /*
684 * Return the number of service function IDs implemented to
685 * provide service to non-secure
686 */
687 SMC_RET1(handle, TSP_NUM_FID);
688
689 case TOS_UID:
690 /* Return TSP UID to the caller */
691 SMC_UUID_RET(handle, tsp_uuid);
692
693 case TOS_CALL_VERSION:
694 /* Return the version of current implementation */
695 SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
696
697 default:
698 break;
699 }
700
701 SMC_RET1(handle, SMC_UNK);
702 }
703
704 /* Define a SPD runtime service descriptor for fast SMC calls */
705 DECLARE_RT_SVC(
706 tspd_fast,
707
708 OEN_TOS_START,
709 OEN_TOS_END,
710 SMC_TYPE_FAST,
711 tspd_setup,
712 tspd_smc_handler
713 );
714
715 /* Define a SPD runtime service descriptor for standard SMC calls */
716 DECLARE_RT_SVC(
717 tspd_std,
718
719 OEN_TOS_START,
720 OEN_TOS_END,
721 SMC_TYPE_STD,
722 NULL,
723 tspd_smc_handler
724 );
725