1 /* SHA256 module */
2 
3 /* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */
4 
5 /* See below for information about the original code this module was
6    based upon. Additional work performed by:
7 
8    Andrew Kuchling (amk@amk.ca)
9    Greg Stein (gstein@lyra.org)
10    Trevor Perrin (trevp@trevp.net)
11 
12    Copyright (C) 2005   Gregory P. Smith (greg@krypto.org)
13    Licensed to PSF under a Contributor Agreement.
14 
15 */
16 
17 /* SHA objects */
18 
19 #include "Python.h"
20 #include "structmember.h"
21 
22 
23 /* Endianness testing and definitions */
24 #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
25         if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
26 
27 #define PCT_LITTLE_ENDIAN 1
28 #define PCT_BIG_ENDIAN 0
29 
30 /* Some useful types */
31 
32 typedef unsigned char SHA_BYTE;
33 
34 #if SIZEOF_INT == 4
35 typedef unsigned int SHA_INT32; /* 32-bit integer */
36 #else
37 /* not defined. compilation will die. */
38 #endif
39 
40 /* The SHA block size and message digest sizes, in bytes */
41 
42 #define SHA_BLOCKSIZE    64
43 #define SHA_DIGESTSIZE  32
44 
45 /* The structure for storing SHA info */
46 
47 typedef struct {
48     PyObject_HEAD
49     SHA_INT32 digest[8];                /* Message digest */
50     SHA_INT32 count_lo, count_hi;       /* 64-bit bit count */
51     SHA_BYTE data[SHA_BLOCKSIZE];       /* SHA data buffer */
52     int Endianness;
53     int local;                          /* unprocessed amount in data */
54     int digestsize;
55 } SHAobject;
56 
57 /* When run on a little-endian CPU we need to perform byte reversal on an
58    array of longwords. */
59 
longReverse(SHA_INT32 * buffer,int byteCount,int Endianness)60 static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness)
61 {
62     SHA_INT32 value;
63 
64     if ( Endianness == PCT_BIG_ENDIAN )
65         return;
66 
67     byteCount /= sizeof(*buffer);
68     while (byteCount--) {
69         value = *buffer;
70         value = ( ( value & 0xFF00FF00L ) >> 8  ) | \
71                 ( ( value & 0x00FF00FFL ) << 8 );
72         *buffer++ = ( value << 16 ) | ( value >> 16 );
73     }
74 }
75 
SHAcopy(SHAobject * src,SHAobject * dest)76 static void SHAcopy(SHAobject *src, SHAobject *dest)
77 {
78     dest->Endianness = src->Endianness;
79     dest->local = src->local;
80     dest->digestsize = src->digestsize;
81     dest->count_lo = src->count_lo;
82     dest->count_hi = src->count_hi;
83     memcpy(dest->digest, src->digest, sizeof(src->digest));
84     memcpy(dest->data, src->data, sizeof(src->data));
85 }
86 
87 
88 /* ------------------------------------------------------------------------
89  *
90  * This code for the SHA-256 algorithm was noted as public domain. The
91  * original headers are pasted below.
92  *
93  * Several changes have been made to make it more compatible with the
94  * Python environment and desired interface.
95  *
96  */
97 
98 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
99  *
100  * LibTomCrypt is a library that provides various cryptographic
101  * algorithms in a highly modular and flexible manner.
102  *
103  * The library is free for all purposes without any express
104  * gurantee it works.
105  *
106  * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
107  */
108 
109 
110 /* SHA256 by Tom St Denis */
111 
112 /* Various logical functions */
113 #define ROR(x, y)\
114 ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
115 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
116 #define Ch(x,y,z)       (z ^ (x & (y ^ z)))
117 #define Maj(x,y,z)      (((x | y) & z) | (x & y))
118 #define S(x, n)         ROR((x),(n))
119 #define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n))
120 #define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22))
121 #define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25))
122 #define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3))
123 #define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10))
124 
125 
126 static void
sha_transform(SHAobject * sha_info)127 sha_transform(SHAobject *sha_info)
128 {
129     int i;
130         SHA_INT32 S[8], W[64], t0, t1;
131 
132     memcpy(W, sha_info->data, sizeof(sha_info->data));
133     longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
134 
135     for (i = 16; i < 64; ++i) {
136                 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
137     }
138     for (i = 0; i < 8; ++i) {
139         S[i] = sha_info->digest[i];
140     }
141 
142     /* Compress */
143 #define RND(a,b,c,d,e,f,g,h,i,ki)                    \
144      t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \
145      t1 = Sigma0(a) + Maj(a, b, c);                  \
146      d += t0;                                        \
147      h  = t0 + t1;
148 
149     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
150     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
151     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
152     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
153     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
154     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
155     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
156     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
157     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
158     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
159     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
160     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
161     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
162     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
163     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
164     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
165     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
166     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
167     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
168     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
169     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
170     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
171     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
172     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
173     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
174     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
175     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
176     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
177     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
178     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
179     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
180     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
181     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
182     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
183     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
184     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
185     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
186     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
187     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
188     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
189     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
190     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
191     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
192     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
193     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
194     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
195     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
196     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
197     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
198     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
199     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
200     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
201     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
202     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
203     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
204     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
205     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
206     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
207     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
208     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
209     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
210     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
211     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
212     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
213 
214 #undef RND
215 
216     /* feedback */
217     for (i = 0; i < 8; i++) {
218         sha_info->digest[i] = sha_info->digest[i] + S[i];
219     }
220 
221 }
222 
223 
224 
225 /* initialize the SHA digest */
226 
227 static void
sha_init(SHAobject * sha_info)228 sha_init(SHAobject *sha_info)
229 {
230     TestEndianness(sha_info->Endianness)
231     sha_info->digest[0] = 0x6A09E667L;
232     sha_info->digest[1] = 0xBB67AE85L;
233     sha_info->digest[2] = 0x3C6EF372L;
234     sha_info->digest[3] = 0xA54FF53AL;
235     sha_info->digest[4] = 0x510E527FL;
236     sha_info->digest[5] = 0x9B05688CL;
237     sha_info->digest[6] = 0x1F83D9ABL;
238     sha_info->digest[7] = 0x5BE0CD19L;
239     sha_info->count_lo = 0L;
240     sha_info->count_hi = 0L;
241     sha_info->local = 0;
242     sha_info->digestsize = 32;
243 }
244 
245 static void
sha224_init(SHAobject * sha_info)246 sha224_init(SHAobject *sha_info)
247 {
248     TestEndianness(sha_info->Endianness)
249     sha_info->digest[0] = 0xc1059ed8L;
250     sha_info->digest[1] = 0x367cd507L;
251     sha_info->digest[2] = 0x3070dd17L;
252     sha_info->digest[3] = 0xf70e5939L;
253     sha_info->digest[4] = 0xffc00b31L;
254     sha_info->digest[5] = 0x68581511L;
255     sha_info->digest[6] = 0x64f98fa7L;
256     sha_info->digest[7] = 0xbefa4fa4L;
257     sha_info->count_lo = 0L;
258     sha_info->count_hi = 0L;
259     sha_info->local = 0;
260     sha_info->digestsize = 28;
261 }
262 
263 
264 /* update the SHA digest */
265 
266 static void
sha_update(SHAobject * sha_info,SHA_BYTE * buffer,int count)267 sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
268 {
269     int i;
270     SHA_INT32 clo;
271 
272     clo = sha_info->count_lo + ((SHA_INT32) count << 3);
273     if (clo < sha_info->count_lo) {
274         ++sha_info->count_hi;
275     }
276     sha_info->count_lo = clo;
277     sha_info->count_hi += (SHA_INT32) count >> 29;
278     if (sha_info->local) {
279         i = SHA_BLOCKSIZE - sha_info->local;
280         if (i > count) {
281             i = count;
282         }
283         memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
284         count -= i;
285         buffer += i;
286         sha_info->local += i;
287         if (sha_info->local == SHA_BLOCKSIZE) {
288             sha_transform(sha_info);
289         }
290         else {
291             return;
292         }
293     }
294     while (count >= SHA_BLOCKSIZE) {
295         memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
296         buffer += SHA_BLOCKSIZE;
297         count -= SHA_BLOCKSIZE;
298         sha_transform(sha_info);
299     }
300     memcpy(sha_info->data, buffer, count);
301     sha_info->local = count;
302 }
303 
304 /* finish computing the SHA digest */
305 
306 static void
sha_final(unsigned char digest[SHA_DIGESTSIZE],SHAobject * sha_info)307 sha_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info)
308 {
309     int count;
310     SHA_INT32 lo_bit_count, hi_bit_count;
311 
312     lo_bit_count = sha_info->count_lo;
313     hi_bit_count = sha_info->count_hi;
314     count = (int) ((lo_bit_count >> 3) & 0x3f);
315     ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
316     if (count > SHA_BLOCKSIZE - 8) {
317         memset(((SHA_BYTE *) sha_info->data) + count, 0,
318                SHA_BLOCKSIZE - count);
319         sha_transform(sha_info);
320         memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
321     }
322     else {
323         memset(((SHA_BYTE *) sha_info->data) + count, 0,
324                SHA_BLOCKSIZE - 8 - count);
325     }
326 
327     /* GJS: note that we add the hi/lo in big-endian. sha_transform will
328        swap these values into host-order. */
329     sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
330     sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
331     sha_info->data[58] = (hi_bit_count >>  8) & 0xff;
332     sha_info->data[59] = (hi_bit_count >>  0) & 0xff;
333     sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
334     sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
335     sha_info->data[62] = (lo_bit_count >>  8) & 0xff;
336     sha_info->data[63] = (lo_bit_count >>  0) & 0xff;
337     sha_transform(sha_info);
338     digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
339     digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
340     digest[ 2] = (unsigned char) ((sha_info->digest[0] >>  8) & 0xff);
341     digest[ 3] = (unsigned char) ((sha_info->digest[0]      ) & 0xff);
342     digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
343     digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
344     digest[ 6] = (unsigned char) ((sha_info->digest[1] >>  8) & 0xff);
345     digest[ 7] = (unsigned char) ((sha_info->digest[1]      ) & 0xff);
346     digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
347     digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
348     digest[10] = (unsigned char) ((sha_info->digest[2] >>  8) & 0xff);
349     digest[11] = (unsigned char) ((sha_info->digest[2]      ) & 0xff);
350     digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
351     digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
352     digest[14] = (unsigned char) ((sha_info->digest[3] >>  8) & 0xff);
353     digest[15] = (unsigned char) ((sha_info->digest[3]      ) & 0xff);
354     digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
355     digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
356     digest[18] = (unsigned char) ((sha_info->digest[4] >>  8) & 0xff);
357     digest[19] = (unsigned char) ((sha_info->digest[4]      ) & 0xff);
358     digest[20] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff);
359     digest[21] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff);
360     digest[22] = (unsigned char) ((sha_info->digest[5] >>  8) & 0xff);
361     digest[23] = (unsigned char) ((sha_info->digest[5]      ) & 0xff);
362     digest[24] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff);
363     digest[25] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff);
364     digest[26] = (unsigned char) ((sha_info->digest[6] >>  8) & 0xff);
365     digest[27] = (unsigned char) ((sha_info->digest[6]      ) & 0xff);
366     digest[28] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff);
367     digest[29] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff);
368     digest[30] = (unsigned char) ((sha_info->digest[7] >>  8) & 0xff);
369     digest[31] = (unsigned char) ((sha_info->digest[7]      ) & 0xff);
370 }
371 
372 /*
373  * End of copied SHA code.
374  *
375  * ------------------------------------------------------------------------
376  */
377 
378 static PyTypeObject SHA224type;
379 static PyTypeObject SHA256type;
380 
381 
382 static SHAobject *
newSHA224object(void)383 newSHA224object(void)
384 {
385     return (SHAobject *)PyObject_New(SHAobject, &SHA224type);
386 }
387 
388 static SHAobject *
newSHA256object(void)389 newSHA256object(void)
390 {
391     return (SHAobject *)PyObject_New(SHAobject, &SHA256type);
392 }
393 
394 /* Internal methods for a hash object */
395 
396 static void
SHA_dealloc(PyObject * ptr)397 SHA_dealloc(PyObject *ptr)
398 {
399     PyObject_Del(ptr);
400 }
401 
402 
403 /* External methods for a hash object */
404 
405 PyDoc_STRVAR(SHA256_copy__doc__, "Return a copy of the hash object.");
406 
407 static PyObject *
SHA256_copy(SHAobject * self,PyObject * unused)408 SHA256_copy(SHAobject *self, PyObject *unused)
409 {
410     SHAobject *newobj;
411 
412     if (Py_TYPE(self) == &SHA256type) {
413         if ( (newobj = newSHA256object())==NULL)
414             return NULL;
415     } else {
416         if ( (newobj = newSHA224object())==NULL)
417             return NULL;
418     }
419 
420     SHAcopy(self, newobj);
421     return (PyObject *)newobj;
422 }
423 
424 PyDoc_STRVAR(SHA256_digest__doc__,
425 "Return the digest value as a string of binary data.");
426 
427 static PyObject *
SHA256_digest(SHAobject * self,PyObject * unused)428 SHA256_digest(SHAobject *self, PyObject *unused)
429 {
430     unsigned char digest[SHA_DIGESTSIZE];
431     SHAobject temp;
432 
433     SHAcopy(self, &temp);
434     sha_final(digest, &temp);
435     return PyString_FromStringAndSize((const char *)digest, self->digestsize);
436 }
437 
438 PyDoc_STRVAR(SHA256_hexdigest__doc__,
439 "Return the digest value as a string of hexadecimal digits.");
440 
441 static PyObject *
SHA256_hexdigest(SHAobject * self,PyObject * unused)442 SHA256_hexdigest(SHAobject *self, PyObject *unused)
443 {
444     unsigned char digest[SHA_DIGESTSIZE];
445     SHAobject temp;
446     PyObject *retval;
447     char *hex_digest;
448     int i, j;
449 
450     /* Get the raw (binary) digest value */
451     SHAcopy(self, &temp);
452     sha_final(digest, &temp);
453 
454     /* Create a new string */
455     retval = PyString_FromStringAndSize(NULL, self->digestsize * 2);
456     if (!retval)
457             return NULL;
458     hex_digest = PyString_AsString(retval);
459     if (!hex_digest) {
460             Py_DECREF(retval);
461             return NULL;
462     }
463 
464     /* Make hex version of the digest */
465     for(i=j=0; i<self->digestsize; i++) {
466         char c;
467         c = (digest[i] >> 4) & 0xf;
468         c = (c>9) ? c+'a'-10 : c + '0';
469         hex_digest[j++] = c;
470         c = (digest[i] & 0xf);
471         c = (c>9) ? c+'a'-10 : c + '0';
472         hex_digest[j++] = c;
473     }
474     return retval;
475 }
476 
477 PyDoc_STRVAR(SHA256_update__doc__,
478 "Update this hash object's state with the provided string.");
479 
480 static PyObject *
SHA256_update(SHAobject * self,PyObject * args)481 SHA256_update(SHAobject *self, PyObject *args)
482 {
483     Py_buffer buf;
484 
485     if (!PyArg_ParseTuple(args, "s*:update", &buf))
486         return NULL;
487 
488     sha_update(self, buf.buf, buf.len);
489 
490     PyBuffer_Release(&buf);
491     Py_RETURN_NONE;
492 }
493 
494 static PyMethodDef SHA_methods[] = {
495     {"copy",      (PyCFunction)SHA256_copy,      METH_NOARGS,  SHA256_copy__doc__},
496     {"digest",    (PyCFunction)SHA256_digest,    METH_NOARGS,  SHA256_digest__doc__},
497     {"hexdigest", (PyCFunction)SHA256_hexdigest, METH_NOARGS,  SHA256_hexdigest__doc__},
498     {"update",    (PyCFunction)SHA256_update,    METH_VARARGS, SHA256_update__doc__},
499     {NULL,        NULL}         /* sentinel */
500 };
501 
502 static PyObject *
SHA256_get_block_size(PyObject * self,void * closure)503 SHA256_get_block_size(PyObject *self, void *closure)
504 {
505     return PyInt_FromLong(SHA_BLOCKSIZE);
506 }
507 
508 static PyObject *
SHA256_get_name(PyObject * self,void * closure)509 SHA256_get_name(PyObject *self, void *closure)
510 {
511     if (((SHAobject *)self)->digestsize == 32)
512         return PyString_FromStringAndSize("SHA256", 6);
513     else
514         return PyString_FromStringAndSize("SHA224", 6);
515 }
516 
517 static PyGetSetDef SHA_getseters[] = {
518     {"block_size",
519      (getter)SHA256_get_block_size, NULL,
520      NULL,
521      NULL},
522     {"name",
523      (getter)SHA256_get_name, NULL,
524      NULL,
525      NULL},
526     {NULL}  /* Sentinel */
527 };
528 
529 static PyMemberDef SHA_members[] = {
530     {"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
531     /* the old md5 and sha modules support 'digest_size' as in PEP 247.
532      * the old sha module also supported 'digestsize'.  ugh. */
533     {"digestsize", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
534     {NULL}  /* Sentinel */
535 };
536 
537 static PyTypeObject SHA224type = {
538     PyVarObject_HEAD_INIT(NULL, 0)
539     "_sha256.sha224",   /*tp_name*/
540     sizeof(SHAobject),  /*tp_size*/
541     0,                  /*tp_itemsize*/
542     /* methods */
543     SHA_dealloc,        /*tp_dealloc*/
544     0,                  /*tp_print*/
545     0,                  /*tp_getattr*/
546     0,                  /*tp_setattr*/
547     0,                  /*tp_compare*/
548     0,                  /*tp_repr*/
549     0,                  /*tp_as_number*/
550     0,                  /*tp_as_sequence*/
551     0,                  /*tp_as_mapping*/
552     0,                  /*tp_hash*/
553     0,                  /*tp_call*/
554     0,                  /*tp_str*/
555     0,                  /*tp_getattro*/
556     0,                  /*tp_setattro*/
557     0,                  /*tp_as_buffer*/
558     Py_TPFLAGS_DEFAULT, /*tp_flags*/
559     0,                  /*tp_doc*/
560     0,                  /*tp_traverse*/
561     0,                  /*tp_clear*/
562     0,                  /*tp_richcompare*/
563     0,                  /*tp_weaklistoffset*/
564     0,                  /*tp_iter*/
565     0,                  /*tp_iternext*/
566     SHA_methods,        /* tp_methods */
567     SHA_members,        /* tp_members */
568     SHA_getseters,      /* tp_getset */
569 };
570 
571 static PyTypeObject SHA256type = {
572     PyVarObject_HEAD_INIT(NULL, 0)
573     "_sha256.sha256",   /*tp_name*/
574     sizeof(SHAobject),  /*tp_size*/
575     0,                  /*tp_itemsize*/
576     /* methods */
577     SHA_dealloc,        /*tp_dealloc*/
578     0,                  /*tp_print*/
579     0,                  /*tp_getattr*/
580     0,                  /*tp_setattr*/
581     0,                  /*tp_compare*/
582     0,                  /*tp_repr*/
583     0,                  /*tp_as_number*/
584     0,                  /*tp_as_sequence*/
585     0,                  /*tp_as_mapping*/
586     0,                  /*tp_hash*/
587     0,                  /*tp_call*/
588     0,                  /*tp_str*/
589     0,                  /*tp_getattro*/
590     0,                  /*tp_setattro*/
591     0,                  /*tp_as_buffer*/
592     Py_TPFLAGS_DEFAULT, /*tp_flags*/
593     0,                  /*tp_doc*/
594     0,                  /*tp_traverse*/
595     0,                  /*tp_clear*/
596     0,                  /*tp_richcompare*/
597     0,                  /*tp_weaklistoffset*/
598     0,                  /*tp_iter*/
599     0,                  /*tp_iternext*/
600     SHA_methods,        /* tp_methods */
601     SHA_members,        /* tp_members */
602     SHA_getseters,      /* tp_getset */
603 };
604 
605 
606 /* The single module-level function: new() */
607 
608 PyDoc_STRVAR(SHA256_new__doc__,
609 "Return a new SHA-256 hash object; optionally initialized with a string.");
610 
611 static PyObject *
SHA256_new(PyObject * self,PyObject * args,PyObject * kwdict)612 SHA256_new(PyObject *self, PyObject *args, PyObject *kwdict)
613 {
614     static char *kwlist[] = {"string", NULL};
615     SHAobject *new;
616     Py_buffer buf = { 0 };
617 
618     if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s*:new", kwlist,
619                                      &buf)) {
620         return NULL;
621     }
622 
623     if ((new = newSHA256object()) == NULL) {
624         PyBuffer_Release(&buf);
625         return NULL;
626     }
627 
628     sha_init(new);
629 
630     if (PyErr_Occurred()) {
631         Py_DECREF(new);
632         PyBuffer_Release(&buf);
633         return NULL;
634     }
635     if (buf.len > 0) {
636         sha_update(new, buf.buf, buf.len);
637     }
638     PyBuffer_Release(&buf);
639 
640     return (PyObject *)new;
641 }
642 
643 PyDoc_STRVAR(SHA224_new__doc__,
644 "Return a new SHA-224 hash object; optionally initialized with a string.");
645 
646 static PyObject *
SHA224_new(PyObject * self,PyObject * args,PyObject * kwdict)647 SHA224_new(PyObject *self, PyObject *args, PyObject *kwdict)
648 {
649     static char *kwlist[] = {"string", NULL};
650     SHAobject *new;
651     Py_buffer buf = { 0 };
652 
653     if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s*:new", kwlist,
654                                      &buf)) {
655         return NULL;
656     }
657 
658     if ((new = newSHA224object()) == NULL) {
659         PyBuffer_Release(&buf);
660         return NULL;
661     }
662 
663     sha224_init(new);
664 
665     if (PyErr_Occurred()) {
666         Py_DECREF(new);
667         PyBuffer_Release(&buf);
668         return NULL;
669     }
670     if (buf.len > 0) {
671         sha_update(new, buf.buf, buf.len);
672     }
673     PyBuffer_Release(&buf);
674 
675     return (PyObject *)new;
676 }
677 
678 
679 /* List of functions exported by this module */
680 
681 static struct PyMethodDef SHA_functions[] = {
682     {"sha256", (PyCFunction)SHA256_new, METH_VARARGS|METH_KEYWORDS, SHA256_new__doc__},
683     {"sha224", (PyCFunction)SHA224_new, METH_VARARGS|METH_KEYWORDS, SHA224_new__doc__},
684     {NULL,      NULL}            /* Sentinel */
685 };
686 
687 
688 /* Initialize this module. */
689 
690 #define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
691 
692 PyMODINIT_FUNC
init_sha256(void)693 init_sha256(void)
694 {
695     PyObject *m;
696 
697     Py_TYPE(&SHA224type) = &PyType_Type;
698     if (PyType_Ready(&SHA224type) < 0)
699         return;
700     Py_TYPE(&SHA256type) = &PyType_Type;
701     if (PyType_Ready(&SHA256type) < 0)
702         return;
703     m = Py_InitModule("_sha256", SHA_functions);
704     if (m == NULL)
705         return;
706 }
707