1# Copyright (c) 2004 Python Software Foundation. 2# All rights reserved. 3 4# Written by Eric Price <eprice at tjhsst.edu> 5# and Facundo Batista <facundo at taniquetil.com.ar> 6# and Raymond Hettinger <python at rcn.com> 7# and Aahz <aahz at pobox.com> 8# and Tim Peters 9 10# This module is currently Py2.3 compatible and should be kept that way 11# unless a major compelling advantage arises. IOW, 2.3 compatibility is 12# strongly preferred, but not guaranteed. 13 14# Also, this module should be kept in sync with the latest updates of 15# the IBM specification as it evolves. Those updates will be treated 16# as bug fixes (deviation from the spec is a compatibility, usability 17# bug) and will be backported. At this point the spec is stabilizing 18# and the updates are becoming fewer, smaller, and less significant. 19 20""" 21This is a Py2.3 implementation of decimal floating point arithmetic based on 22the General Decimal Arithmetic Specification: 23 24 www2.hursley.ibm.com/decimal/decarith.html 25 26and IEEE standard 854-1987: 27 28 www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html 29 30Decimal floating point has finite precision with arbitrarily large bounds. 31 32The purpose of this module is to support arithmetic using familiar 33"schoolhouse" rules and to avoid some of the tricky representation 34issues associated with binary floating point. The package is especially 35useful for financial applications or for contexts where users have 36expectations that are at odds with binary floating point (for instance, 37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead 38of the expected Decimal('0.00') returned by decimal floating point). 39 40Here are some examples of using the decimal module: 41 42>>> from decimal import * 43>>> setcontext(ExtendedContext) 44>>> Decimal(0) 45Decimal('0') 46>>> Decimal('1') 47Decimal('1') 48>>> Decimal('-.0123') 49Decimal('-0.0123') 50>>> Decimal(123456) 51Decimal('123456') 52>>> Decimal('123.45e12345678901234567890') 53Decimal('1.2345E+12345678901234567892') 54>>> Decimal('1.33') + Decimal('1.27') 55Decimal('2.60') 56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') 57Decimal('-2.20') 58>>> dig = Decimal(1) 59>>> print dig / Decimal(3) 600.333333333 61>>> getcontext().prec = 18 62>>> print dig / Decimal(3) 630.333333333333333333 64>>> print dig.sqrt() 651 66>>> print Decimal(3).sqrt() 671.73205080756887729 68>>> print Decimal(3) ** 123 694.85192780976896427E+58 70>>> inf = Decimal(1) / Decimal(0) 71>>> print inf 72Infinity 73>>> neginf = Decimal(-1) / Decimal(0) 74>>> print neginf 75-Infinity 76>>> print neginf + inf 77NaN 78>>> print neginf * inf 79-Infinity 80>>> print dig / 0 81Infinity 82>>> getcontext().traps[DivisionByZero] = 1 83>>> print dig / 0 84Traceback (most recent call last): 85 ... 86 ... 87 ... 88DivisionByZero: x / 0 89>>> c = Context() 90>>> c.traps[InvalidOperation] = 0 91>>> print c.flags[InvalidOperation] 920 93>>> c.divide(Decimal(0), Decimal(0)) 94Decimal('NaN') 95>>> c.traps[InvalidOperation] = 1 96>>> print c.flags[InvalidOperation] 971 98>>> c.flags[InvalidOperation] = 0 99>>> print c.flags[InvalidOperation] 1000 101>>> print c.divide(Decimal(0), Decimal(0)) 102Traceback (most recent call last): 103 ... 104 ... 105 ... 106InvalidOperation: 0 / 0 107>>> print c.flags[InvalidOperation] 1081 109>>> c.flags[InvalidOperation] = 0 110>>> c.traps[InvalidOperation] = 0 111>>> print c.divide(Decimal(0), Decimal(0)) 112NaN 113>>> print c.flags[InvalidOperation] 1141 115>>> 116""" 117 118__all__ = [ 119 # Two major classes 120 'Decimal', 'Context', 121 122 # Contexts 123 'DefaultContext', 'BasicContext', 'ExtendedContext', 124 125 # Exceptions 126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', 127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', 128 129 # Constants for use in setting up contexts 130 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', 131 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP', 132 133 # Functions for manipulating contexts 134 'setcontext', 'getcontext', 'localcontext' 135] 136 137__version__ = '1.70' # Highest version of the spec this complies with 138 139import copy as _copy 140import math as _math 141import numbers as _numbers 142 143try: 144 from collections import namedtuple as _namedtuple 145 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent') 146except ImportError: 147 DecimalTuple = lambda *args: args 148 149# Rounding 150ROUND_DOWN = 'ROUND_DOWN' 151ROUND_HALF_UP = 'ROUND_HALF_UP' 152ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' 153ROUND_CEILING = 'ROUND_CEILING' 154ROUND_FLOOR = 'ROUND_FLOOR' 155ROUND_UP = 'ROUND_UP' 156ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' 157ROUND_05UP = 'ROUND_05UP' 158 159# Errors 160 161class DecimalException(ArithmeticError): 162 """Base exception class. 163 164 Used exceptions derive from this. 165 If an exception derives from another exception besides this (such as 166 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only 167 called if the others are present. This isn't actually used for 168 anything, though. 169 170 handle -- Called when context._raise_error is called and the 171 trap_enabler is not set. First argument is self, second is the 172 context. More arguments can be given, those being after 173 the explanation in _raise_error (For example, 174 context._raise_error(NewError, '(-x)!', self._sign) would 175 call NewError().handle(context, self._sign).) 176 177 To define a new exception, it should be sufficient to have it derive 178 from DecimalException. 179 """ 180 def handle(self, context, *args): 181 pass 182 183 184class Clamped(DecimalException): 185 """Exponent of a 0 changed to fit bounds. 186 187 This occurs and signals clamped if the exponent of a result has been 188 altered in order to fit the constraints of a specific concrete 189 representation. This may occur when the exponent of a zero result would 190 be outside the bounds of a representation, or when a large normal 191 number would have an encoded exponent that cannot be represented. In 192 this latter case, the exponent is reduced to fit and the corresponding 193 number of zero digits are appended to the coefficient ("fold-down"). 194 """ 195 196class InvalidOperation(DecimalException): 197 """An invalid operation was performed. 198 199 Various bad things cause this: 200 201 Something creates a signaling NaN 202 -INF + INF 203 0 * (+-)INF 204 (+-)INF / (+-)INF 205 x % 0 206 (+-)INF % x 207 x._rescale( non-integer ) 208 sqrt(-x) , x > 0 209 0 ** 0 210 x ** (non-integer) 211 x ** (+-)INF 212 An operand is invalid 213 214 The result of the operation after these is a quiet positive NaN, 215 except when the cause is a signaling NaN, in which case the result is 216 also a quiet NaN, but with the original sign, and an optional 217 diagnostic information. 218 """ 219 def handle(self, context, *args): 220 if args: 221 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True) 222 return ans._fix_nan(context) 223 return _NaN 224 225class ConversionSyntax(InvalidOperation): 226 """Trying to convert badly formed string. 227 228 This occurs and signals invalid-operation if an string is being 229 converted to a number and it does not conform to the numeric string 230 syntax. The result is [0,qNaN]. 231 """ 232 def handle(self, context, *args): 233 return _NaN 234 235class DivisionByZero(DecimalException, ZeroDivisionError): 236 """Division by 0. 237 238 This occurs and signals division-by-zero if division of a finite number 239 by zero was attempted (during a divide-integer or divide operation, or a 240 power operation with negative right-hand operand), and the dividend was 241 not zero. 242 243 The result of the operation is [sign,inf], where sign is the exclusive 244 or of the signs of the operands for divide, or is 1 for an odd power of 245 -0, for power. 246 """ 247 248 def handle(self, context, sign, *args): 249 return _SignedInfinity[sign] 250 251class DivisionImpossible(InvalidOperation): 252 """Cannot perform the division adequately. 253 254 This occurs and signals invalid-operation if the integer result of a 255 divide-integer or remainder operation had too many digits (would be 256 longer than precision). The result is [0,qNaN]. 257 """ 258 259 def handle(self, context, *args): 260 return _NaN 261 262class DivisionUndefined(InvalidOperation, ZeroDivisionError): 263 """Undefined result of division. 264 265 This occurs and signals invalid-operation if division by zero was 266 attempted (during a divide-integer, divide, or remainder operation), and 267 the dividend is also zero. The result is [0,qNaN]. 268 """ 269 270 def handle(self, context, *args): 271 return _NaN 272 273class Inexact(DecimalException): 274 """Had to round, losing information. 275 276 This occurs and signals inexact whenever the result of an operation is 277 not exact (that is, it needed to be rounded and any discarded digits 278 were non-zero), or if an overflow or underflow condition occurs. The 279 result in all cases is unchanged. 280 281 The inexact signal may be tested (or trapped) to determine if a given 282 operation (or sequence of operations) was inexact. 283 """ 284 285class InvalidContext(InvalidOperation): 286 """Invalid context. Unknown rounding, for example. 287 288 This occurs and signals invalid-operation if an invalid context was 289 detected during an operation. This can occur if contexts are not checked 290 on creation and either the precision exceeds the capability of the 291 underlying concrete representation or an unknown or unsupported rounding 292 was specified. These aspects of the context need only be checked when 293 the values are required to be used. The result is [0,qNaN]. 294 """ 295 296 def handle(self, context, *args): 297 return _NaN 298 299class Rounded(DecimalException): 300 """Number got rounded (not necessarily changed during rounding). 301 302 This occurs and signals rounded whenever the result of an operation is 303 rounded (that is, some zero or non-zero digits were discarded from the 304 coefficient), or if an overflow or underflow condition occurs. The 305 result in all cases is unchanged. 306 307 The rounded signal may be tested (or trapped) to determine if a given 308 operation (or sequence of operations) caused a loss of precision. 309 """ 310 311class Subnormal(DecimalException): 312 """Exponent < Emin before rounding. 313 314 This occurs and signals subnormal whenever the result of a conversion or 315 operation is subnormal (that is, its adjusted exponent is less than 316 Emin, before any rounding). The result in all cases is unchanged. 317 318 The subnormal signal may be tested (or trapped) to determine if a given 319 or operation (or sequence of operations) yielded a subnormal result. 320 """ 321 322class Overflow(Inexact, Rounded): 323 """Numerical overflow. 324 325 This occurs and signals overflow if the adjusted exponent of a result 326 (from a conversion or from an operation that is not an attempt to divide 327 by zero), after rounding, would be greater than the largest value that 328 can be handled by the implementation (the value Emax). 329 330 The result depends on the rounding mode: 331 332 For round-half-up and round-half-even (and for round-half-down and 333 round-up, if implemented), the result of the operation is [sign,inf], 334 where sign is the sign of the intermediate result. For round-down, the 335 result is the largest finite number that can be represented in the 336 current precision, with the sign of the intermediate result. For 337 round-ceiling, the result is the same as for round-down if the sign of 338 the intermediate result is 1, or is [0,inf] otherwise. For round-floor, 339 the result is the same as for round-down if the sign of the intermediate 340 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded 341 will also be raised. 342 """ 343 344 def handle(self, context, sign, *args): 345 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, 346 ROUND_HALF_DOWN, ROUND_UP): 347 return _SignedInfinity[sign] 348 if sign == 0: 349 if context.rounding == ROUND_CEILING: 350 return _SignedInfinity[sign] 351 return _dec_from_triple(sign, '9'*context.prec, 352 context.Emax-context.prec+1) 353 if sign == 1: 354 if context.rounding == ROUND_FLOOR: 355 return _SignedInfinity[sign] 356 return _dec_from_triple(sign, '9'*context.prec, 357 context.Emax-context.prec+1) 358 359 360class Underflow(Inexact, Rounded, Subnormal): 361 """Numerical underflow with result rounded to 0. 362 363 This occurs and signals underflow if a result is inexact and the 364 adjusted exponent of the result would be smaller (more negative) than 365 the smallest value that can be handled by the implementation (the value 366 Emin). That is, the result is both inexact and subnormal. 367 368 The result after an underflow will be a subnormal number rounded, if 369 necessary, so that its exponent is not less than Etiny. This may result 370 in 0 with the sign of the intermediate result and an exponent of Etiny. 371 372 In all cases, Inexact, Rounded, and Subnormal will also be raised. 373 """ 374 375# List of public traps and flags 376_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, 377 Underflow, InvalidOperation, Subnormal] 378 379# Map conditions (per the spec) to signals 380_condition_map = {ConversionSyntax:InvalidOperation, 381 DivisionImpossible:InvalidOperation, 382 DivisionUndefined:InvalidOperation, 383 InvalidContext:InvalidOperation} 384 385##### Context Functions ################################################## 386 387# The getcontext() and setcontext() function manage access to a thread-local 388# current context. Py2.4 offers direct support for thread locals. If that 389# is not available, use threading.currentThread() which is slower but will 390# work for older Pythons. If threads are not part of the build, create a 391# mock threading object with threading.local() returning the module namespace. 392 393try: 394 import threading 395except ImportError: 396 # Python was compiled without threads; create a mock object instead 397 import sys 398 class MockThreading(object): 399 def local(self, sys=sys): 400 return sys.modules[__name__] 401 threading = MockThreading() 402 del sys, MockThreading 403 404try: 405 threading.local 406 407except AttributeError: 408 409 # To fix reloading, force it to create a new context 410 # Old contexts have different exceptions in their dicts, making problems. 411 if hasattr(threading.currentThread(), '__decimal_context__'): 412 del threading.currentThread().__decimal_context__ 413 414 def setcontext(context): 415 """Set this thread's context to context.""" 416 if context in (DefaultContext, BasicContext, ExtendedContext): 417 context = context.copy() 418 context.clear_flags() 419 threading.currentThread().__decimal_context__ = context 420 421 def getcontext(): 422 """Returns this thread's context. 423 424 If this thread does not yet have a context, returns 425 a new context and sets this thread's context. 426 New contexts are copies of DefaultContext. 427 """ 428 try: 429 return threading.currentThread().__decimal_context__ 430 except AttributeError: 431 context = Context() 432 threading.currentThread().__decimal_context__ = context 433 return context 434 435else: 436 437 local = threading.local() 438 if hasattr(local, '__decimal_context__'): 439 del local.__decimal_context__ 440 441 def getcontext(_local=local): 442 """Returns this thread's context. 443 444 If this thread does not yet have a context, returns 445 a new context and sets this thread's context. 446 New contexts are copies of DefaultContext. 447 """ 448 try: 449 return _local.__decimal_context__ 450 except AttributeError: 451 context = Context() 452 _local.__decimal_context__ = context 453 return context 454 455 def setcontext(context, _local=local): 456 """Set this thread's context to context.""" 457 if context in (DefaultContext, BasicContext, ExtendedContext): 458 context = context.copy() 459 context.clear_flags() 460 _local.__decimal_context__ = context 461 462 del threading, local # Don't contaminate the namespace 463 464def localcontext(ctx=None): 465 """Return a context manager for a copy of the supplied context 466 467 Uses a copy of the current context if no context is specified 468 The returned context manager creates a local decimal context 469 in a with statement: 470 def sin(x): 471 with localcontext() as ctx: 472 ctx.prec += 2 473 # Rest of sin calculation algorithm 474 # uses a precision 2 greater than normal 475 return +s # Convert result to normal precision 476 477 def sin(x): 478 with localcontext(ExtendedContext): 479 # Rest of sin calculation algorithm 480 # uses the Extended Context from the 481 # General Decimal Arithmetic Specification 482 return +s # Convert result to normal context 483 484 >>> setcontext(DefaultContext) 485 >>> print getcontext().prec 486 28 487 >>> with localcontext(): 488 ... ctx = getcontext() 489 ... ctx.prec += 2 490 ... print ctx.prec 491 ... 492 30 493 >>> with localcontext(ExtendedContext): 494 ... print getcontext().prec 495 ... 496 9 497 >>> print getcontext().prec 498 28 499 """ 500 if ctx is None: ctx = getcontext() 501 return _ContextManager(ctx) 502 503 504##### Decimal class ####################################################### 505 506class Decimal(object): 507 """Floating point class for decimal arithmetic.""" 508 509 __slots__ = ('_exp','_int','_sign', '_is_special') 510 # Generally, the value of the Decimal instance is given by 511 # (-1)**_sign * _int * 10**_exp 512 # Special values are signified by _is_special == True 513 514 # We're immutable, so use __new__ not __init__ 515 def __new__(cls, value="0", context=None): 516 """Create a decimal point instance. 517 518 >>> Decimal('3.14') # string input 519 Decimal('3.14') 520 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) 521 Decimal('3.14') 522 >>> Decimal(314) # int or long 523 Decimal('314') 524 >>> Decimal(Decimal(314)) # another decimal instance 525 Decimal('314') 526 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay 527 Decimal('3.14') 528 """ 529 530 # Note that the coefficient, self._int, is actually stored as 531 # a string rather than as a tuple of digits. This speeds up 532 # the "digits to integer" and "integer to digits" conversions 533 # that are used in almost every arithmetic operation on 534 # Decimals. This is an internal detail: the as_tuple function 535 # and the Decimal constructor still deal with tuples of 536 # digits. 537 538 self = object.__new__(cls) 539 540 # From a string 541 # REs insist on real strings, so we can too. 542 if isinstance(value, basestring): 543 m = _parser(value.strip()) 544 if m is None: 545 if context is None: 546 context = getcontext() 547 return context._raise_error(ConversionSyntax, 548 "Invalid literal for Decimal: %r" % value) 549 550 if m.group('sign') == "-": 551 self._sign = 1 552 else: 553 self._sign = 0 554 intpart = m.group('int') 555 if intpart is not None: 556 # finite number 557 fracpart = m.group('frac') or '' 558 exp = int(m.group('exp') or '0') 559 self._int = str(int(intpart+fracpart)) 560 self._exp = exp - len(fracpart) 561 self._is_special = False 562 else: 563 diag = m.group('diag') 564 if diag is not None: 565 # NaN 566 self._int = str(int(diag or '0')).lstrip('0') 567 if m.group('signal'): 568 self._exp = 'N' 569 else: 570 self._exp = 'n' 571 else: 572 # infinity 573 self._int = '0' 574 self._exp = 'F' 575 self._is_special = True 576 return self 577 578 # From an integer 579 if isinstance(value, (int,long)): 580 if value >= 0: 581 self._sign = 0 582 else: 583 self._sign = 1 584 self._exp = 0 585 self._int = str(abs(value)) 586 self._is_special = False 587 return self 588 589 # From another decimal 590 if isinstance(value, Decimal): 591 self._exp = value._exp 592 self._sign = value._sign 593 self._int = value._int 594 self._is_special = value._is_special 595 return self 596 597 # From an internal working value 598 if isinstance(value, _WorkRep): 599 self._sign = value.sign 600 self._int = str(value.int) 601 self._exp = int(value.exp) 602 self._is_special = False 603 return self 604 605 # tuple/list conversion (possibly from as_tuple()) 606 if isinstance(value, (list,tuple)): 607 if len(value) != 3: 608 raise ValueError('Invalid tuple size in creation of Decimal ' 609 'from list or tuple. The list or tuple ' 610 'should have exactly three elements.') 611 # process sign. The isinstance test rejects floats 612 if not (isinstance(value[0], (int, long)) and value[0] in (0,1)): 613 raise ValueError("Invalid sign. The first value in the tuple " 614 "should be an integer; either 0 for a " 615 "positive number or 1 for a negative number.") 616 self._sign = value[0] 617 if value[2] == 'F': 618 # infinity: value[1] is ignored 619 self._int = '0' 620 self._exp = value[2] 621 self._is_special = True 622 else: 623 # process and validate the digits in value[1] 624 digits = [] 625 for digit in value[1]: 626 if isinstance(digit, (int, long)) and 0 <= digit <= 9: 627 # skip leading zeros 628 if digits or digit != 0: 629 digits.append(digit) 630 else: 631 raise ValueError("The second value in the tuple must " 632 "be composed of integers in the range " 633 "0 through 9.") 634 if value[2] in ('n', 'N'): 635 # NaN: digits form the diagnostic 636 self._int = ''.join(map(str, digits)) 637 self._exp = value[2] 638 self._is_special = True 639 elif isinstance(value[2], (int, long)): 640 # finite number: digits give the coefficient 641 self._int = ''.join(map(str, digits or [0])) 642 self._exp = value[2] 643 self._is_special = False 644 else: 645 raise ValueError("The third value in the tuple must " 646 "be an integer, or one of the " 647 "strings 'F', 'n', 'N'.") 648 return self 649 650 if isinstance(value, float): 651 value = Decimal.from_float(value) 652 self._exp = value._exp 653 self._sign = value._sign 654 self._int = value._int 655 self._is_special = value._is_special 656 return self 657 658 raise TypeError("Cannot convert %r to Decimal" % value) 659 660 # @classmethod, but @decorator is not valid Python 2.3 syntax, so 661 # don't use it (see notes on Py2.3 compatibility at top of file) 662 def from_float(cls, f): 663 """Converts a float to a decimal number, exactly. 664 665 Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). 666 Since 0.1 is not exactly representable in binary floating point, the 667 value is stored as the nearest representable value which is 668 0x1.999999999999ap-4. The exact equivalent of the value in decimal 669 is 0.1000000000000000055511151231257827021181583404541015625. 670 671 >>> Decimal.from_float(0.1) 672 Decimal('0.1000000000000000055511151231257827021181583404541015625') 673 >>> Decimal.from_float(float('nan')) 674 Decimal('NaN') 675 >>> Decimal.from_float(float('inf')) 676 Decimal('Infinity') 677 >>> Decimal.from_float(-float('inf')) 678 Decimal('-Infinity') 679 >>> Decimal.from_float(-0.0) 680 Decimal('-0') 681 682 """ 683 if isinstance(f, (int, long)): # handle integer inputs 684 return cls(f) 685 if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float 686 return cls(repr(f)) 687 if _math.copysign(1.0, f) == 1.0: 688 sign = 0 689 else: 690 sign = 1 691 n, d = abs(f).as_integer_ratio() 692 k = d.bit_length() - 1 693 result = _dec_from_triple(sign, str(n*5**k), -k) 694 if cls is Decimal: 695 return result 696 else: 697 return cls(result) 698 from_float = classmethod(from_float) 699 700 def _isnan(self): 701 """Returns whether the number is not actually one. 702 703 0 if a number 704 1 if NaN 705 2 if sNaN 706 """ 707 if self._is_special: 708 exp = self._exp 709 if exp == 'n': 710 return 1 711 elif exp == 'N': 712 return 2 713 return 0 714 715 def _isinfinity(self): 716 """Returns whether the number is infinite 717 718 0 if finite or not a number 719 1 if +INF 720 -1 if -INF 721 """ 722 if self._exp == 'F': 723 if self._sign: 724 return -1 725 return 1 726 return 0 727 728 def _check_nans(self, other=None, context=None): 729 """Returns whether the number is not actually one. 730 731 if self, other are sNaN, signal 732 if self, other are NaN return nan 733 return 0 734 735 Done before operations. 736 """ 737 738 self_is_nan = self._isnan() 739 if other is None: 740 other_is_nan = False 741 else: 742 other_is_nan = other._isnan() 743 744 if self_is_nan or other_is_nan: 745 if context is None: 746 context = getcontext() 747 748 if self_is_nan == 2: 749 return context._raise_error(InvalidOperation, 'sNaN', 750 self) 751 if other_is_nan == 2: 752 return context._raise_error(InvalidOperation, 'sNaN', 753 other) 754 if self_is_nan: 755 return self._fix_nan(context) 756 757 return other._fix_nan(context) 758 return 0 759 760 def _compare_check_nans(self, other, context): 761 """Version of _check_nans used for the signaling comparisons 762 compare_signal, __le__, __lt__, __ge__, __gt__. 763 764 Signal InvalidOperation if either self or other is a (quiet 765 or signaling) NaN. Signaling NaNs take precedence over quiet 766 NaNs. 767 768 Return 0 if neither operand is a NaN. 769 770 """ 771 if context is None: 772 context = getcontext() 773 774 if self._is_special or other._is_special: 775 if self.is_snan(): 776 return context._raise_error(InvalidOperation, 777 'comparison involving sNaN', 778 self) 779 elif other.is_snan(): 780 return context._raise_error(InvalidOperation, 781 'comparison involving sNaN', 782 other) 783 elif self.is_qnan(): 784 return context._raise_error(InvalidOperation, 785 'comparison involving NaN', 786 self) 787 elif other.is_qnan(): 788 return context._raise_error(InvalidOperation, 789 'comparison involving NaN', 790 other) 791 return 0 792 793 def __nonzero__(self): 794 """Return True if self is nonzero; otherwise return False. 795 796 NaNs and infinities are considered nonzero. 797 """ 798 return self._is_special or self._int != '0' 799 800 def _cmp(self, other): 801 """Compare the two non-NaN decimal instances self and other. 802 803 Returns -1 if self < other, 0 if self == other and 1 804 if self > other. This routine is for internal use only.""" 805 806 if self._is_special or other._is_special: 807 self_inf = self._isinfinity() 808 other_inf = other._isinfinity() 809 if self_inf == other_inf: 810 return 0 811 elif self_inf < other_inf: 812 return -1 813 else: 814 return 1 815 816 # check for zeros; Decimal('0') == Decimal('-0') 817 if not self: 818 if not other: 819 return 0 820 else: 821 return -((-1)**other._sign) 822 if not other: 823 return (-1)**self._sign 824 825 # If different signs, neg one is less 826 if other._sign < self._sign: 827 return -1 828 if self._sign < other._sign: 829 return 1 830 831 self_adjusted = self.adjusted() 832 other_adjusted = other.adjusted() 833 if self_adjusted == other_adjusted: 834 self_padded = self._int + '0'*(self._exp - other._exp) 835 other_padded = other._int + '0'*(other._exp - self._exp) 836 if self_padded == other_padded: 837 return 0 838 elif self_padded < other_padded: 839 return -(-1)**self._sign 840 else: 841 return (-1)**self._sign 842 elif self_adjusted > other_adjusted: 843 return (-1)**self._sign 844 else: # self_adjusted < other_adjusted 845 return -((-1)**self._sign) 846 847 # Note: The Decimal standard doesn't cover rich comparisons for 848 # Decimals. In particular, the specification is silent on the 849 # subject of what should happen for a comparison involving a NaN. 850 # We take the following approach: 851 # 852 # == comparisons involving a quiet NaN always return False 853 # != comparisons involving a quiet NaN always return True 854 # == or != comparisons involving a signaling NaN signal 855 # InvalidOperation, and return False or True as above if the 856 # InvalidOperation is not trapped. 857 # <, >, <= and >= comparisons involving a (quiet or signaling) 858 # NaN signal InvalidOperation, and return False if the 859 # InvalidOperation is not trapped. 860 # 861 # This behavior is designed to conform as closely as possible to 862 # that specified by IEEE 754. 863 864 def __eq__(self, other, context=None): 865 other = _convert_other(other, allow_float=True) 866 if other is NotImplemented: 867 return other 868 if self._check_nans(other, context): 869 return False 870 return self._cmp(other) == 0 871 872 def __ne__(self, other, context=None): 873 other = _convert_other(other, allow_float=True) 874 if other is NotImplemented: 875 return other 876 if self._check_nans(other, context): 877 return True 878 return self._cmp(other) != 0 879 880 def __lt__(self, other, context=None): 881 other = _convert_other(other, allow_float=True) 882 if other is NotImplemented: 883 return other 884 ans = self._compare_check_nans(other, context) 885 if ans: 886 return False 887 return self._cmp(other) < 0 888 889 def __le__(self, other, context=None): 890 other = _convert_other(other, allow_float=True) 891 if other is NotImplemented: 892 return other 893 ans = self._compare_check_nans(other, context) 894 if ans: 895 return False 896 return self._cmp(other) <= 0 897 898 def __gt__(self, other, context=None): 899 other = _convert_other(other, allow_float=True) 900 if other is NotImplemented: 901 return other 902 ans = self._compare_check_nans(other, context) 903 if ans: 904 return False 905 return self._cmp(other) > 0 906 907 def __ge__(self, other, context=None): 908 other = _convert_other(other, allow_float=True) 909 if other is NotImplemented: 910 return other 911 ans = self._compare_check_nans(other, context) 912 if ans: 913 return False 914 return self._cmp(other) >= 0 915 916 def compare(self, other, context=None): 917 """Compares one to another. 918 919 -1 => a < b 920 0 => a = b 921 1 => a > b 922 NaN => one is NaN 923 Like __cmp__, but returns Decimal instances. 924 """ 925 other = _convert_other(other, raiseit=True) 926 927 # Compare(NaN, NaN) = NaN 928 if (self._is_special or other and other._is_special): 929 ans = self._check_nans(other, context) 930 if ans: 931 return ans 932 933 return Decimal(self._cmp(other)) 934 935 def __hash__(self): 936 """x.__hash__() <==> hash(x)""" 937 # Decimal integers must hash the same as the ints 938 # 939 # The hash of a nonspecial noninteger Decimal must depend only 940 # on the value of that Decimal, and not on its representation. 941 # For example: hash(Decimal('100E-1')) == hash(Decimal('10')). 942 943 # Equality comparisons involving signaling nans can raise an 944 # exception; since equality checks are implicitly and 945 # unpredictably used when checking set and dict membership, we 946 # prevent signaling nans from being used as set elements or 947 # dict keys by making __hash__ raise an exception. 948 if self._is_special: 949 if self.is_snan(): 950 raise TypeError('Cannot hash a signaling NaN value.') 951 elif self.is_nan(): 952 # 0 to match hash(float('nan')) 953 return 0 954 else: 955 # values chosen to match hash(float('inf')) and 956 # hash(float('-inf')). 957 if self._sign: 958 return -271828 959 else: 960 return 314159 961 962 # In Python 2.7, we're allowing comparisons (but not 963 # arithmetic operations) between floats and Decimals; so if 964 # a Decimal instance is exactly representable as a float then 965 # its hash should match that of the float. 966 self_as_float = float(self) 967 if Decimal.from_float(self_as_float) == self: 968 return hash(self_as_float) 969 970 if self._isinteger(): 971 op = _WorkRep(self.to_integral_value()) 972 # to make computation feasible for Decimals with large 973 # exponent, we use the fact that hash(n) == hash(m) for 974 # any two nonzero integers n and m such that (i) n and m 975 # have the same sign, and (ii) n is congruent to m modulo 976 # 2**64-1. So we can replace hash((-1)**s*c*10**e) with 977 # hash((-1)**s*c*pow(10, e, 2**64-1). 978 return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1)) 979 # The value of a nonzero nonspecial Decimal instance is 980 # faithfully represented by the triple consisting of its sign, 981 # its adjusted exponent, and its coefficient with trailing 982 # zeros removed. 983 return hash((self._sign, 984 self._exp+len(self._int), 985 self._int.rstrip('0'))) 986 987 def as_tuple(self): 988 """Represents the number as a triple tuple. 989 990 To show the internals exactly as they are. 991 """ 992 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp) 993 994 def __repr__(self): 995 """Represents the number as an instance of Decimal.""" 996 # Invariant: eval(repr(d)) == d 997 return "Decimal('%s')" % str(self) 998 999 def __str__(self, eng=False, context=None): 1000 """Return string representation of the number in scientific notation. 1001 1002 Captures all of the information in the underlying representation. 1003 """ 1004 1005 sign = ['', '-'][self._sign] 1006 if self._is_special: 1007 if self._exp == 'F': 1008 return sign + 'Infinity' 1009 elif self._exp == 'n': 1010 return sign + 'NaN' + self._int 1011 else: # self._exp == 'N' 1012 return sign + 'sNaN' + self._int 1013 1014 # number of digits of self._int to left of decimal point 1015 leftdigits = self._exp + len(self._int) 1016 1017 # dotplace is number of digits of self._int to the left of the 1018 # decimal point in the mantissa of the output string (that is, 1019 # after adjusting the exponent) 1020 if self._exp <= 0 and leftdigits > -6: 1021 # no exponent required 1022 dotplace = leftdigits 1023 elif not eng: 1024 # usual scientific notation: 1 digit on left of the point 1025 dotplace = 1 1026 elif self._int == '0': 1027 # engineering notation, zero 1028 dotplace = (leftdigits + 1) % 3 - 1 1029 else: 1030 # engineering notation, nonzero 1031 dotplace = (leftdigits - 1) % 3 + 1 1032 1033 if dotplace <= 0: 1034 intpart = '0' 1035 fracpart = '.' + '0'*(-dotplace) + self._int 1036 elif dotplace >= len(self._int): 1037 intpart = self._int+'0'*(dotplace-len(self._int)) 1038 fracpart = '' 1039 else: 1040 intpart = self._int[:dotplace] 1041 fracpart = '.' + self._int[dotplace:] 1042 if leftdigits == dotplace: 1043 exp = '' 1044 else: 1045 if context is None: 1046 context = getcontext() 1047 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace) 1048 1049 return sign + intpart + fracpart + exp 1050 1051 def to_eng_string(self, context=None): 1052 """Convert to engineering-type string. 1053 1054 Engineering notation has an exponent which is a multiple of 3, so there 1055 are up to 3 digits left of the decimal place. 1056 1057 Same rules for when in exponential and when as a value as in __str__. 1058 """ 1059 return self.__str__(eng=True, context=context) 1060 1061 def __neg__(self, context=None): 1062 """Returns a copy with the sign switched. 1063 1064 Rounds, if it has reason. 1065 """ 1066 if self._is_special: 1067 ans = self._check_nans(context=context) 1068 if ans: 1069 return ans 1070 1071 if context is None: 1072 context = getcontext() 1073 1074 if not self and context.rounding != ROUND_FLOOR: 1075 # -Decimal('0') is Decimal('0'), not Decimal('-0'), except 1076 # in ROUND_FLOOR rounding mode. 1077 ans = self.copy_abs() 1078 else: 1079 ans = self.copy_negate() 1080 1081 return ans._fix(context) 1082 1083 def __pos__(self, context=None): 1084 """Returns a copy, unless it is a sNaN. 1085 1086 Rounds the number (if more then precision digits) 1087 """ 1088 if self._is_special: 1089 ans = self._check_nans(context=context) 1090 if ans: 1091 return ans 1092 1093 if context is None: 1094 context = getcontext() 1095 1096 if not self and context.rounding != ROUND_FLOOR: 1097 # + (-0) = 0, except in ROUND_FLOOR rounding mode. 1098 ans = self.copy_abs() 1099 else: 1100 ans = Decimal(self) 1101 1102 return ans._fix(context) 1103 1104 def __abs__(self, round=True, context=None): 1105 """Returns the absolute value of self. 1106 1107 If the keyword argument 'round' is false, do not round. The 1108 expression self.__abs__(round=False) is equivalent to 1109 self.copy_abs(). 1110 """ 1111 if not round: 1112 return self.copy_abs() 1113 1114 if self._is_special: 1115 ans = self._check_nans(context=context) 1116 if ans: 1117 return ans 1118 1119 if self._sign: 1120 ans = self.__neg__(context=context) 1121 else: 1122 ans = self.__pos__(context=context) 1123 1124 return ans 1125 1126 def __add__(self, other, context=None): 1127 """Returns self + other. 1128 1129 -INF + INF (or the reverse) cause InvalidOperation errors. 1130 """ 1131 other = _convert_other(other) 1132 if other is NotImplemented: 1133 return other 1134 1135 if context is None: 1136 context = getcontext() 1137 1138 if self._is_special or other._is_special: 1139 ans = self._check_nans(other, context) 1140 if ans: 1141 return ans 1142 1143 if self._isinfinity(): 1144 # If both INF, same sign => same as both, opposite => error. 1145 if self._sign != other._sign and other._isinfinity(): 1146 return context._raise_error(InvalidOperation, '-INF + INF') 1147 return Decimal(self) 1148 if other._isinfinity(): 1149 return Decimal(other) # Can't both be infinity here 1150 1151 exp = min(self._exp, other._exp) 1152 negativezero = 0 1153 if context.rounding == ROUND_FLOOR and self._sign != other._sign: 1154 # If the answer is 0, the sign should be negative, in this case. 1155 negativezero = 1 1156 1157 if not self and not other: 1158 sign = min(self._sign, other._sign) 1159 if negativezero: 1160 sign = 1 1161 ans = _dec_from_triple(sign, '0', exp) 1162 ans = ans._fix(context) 1163 return ans 1164 if not self: 1165 exp = max(exp, other._exp - context.prec-1) 1166 ans = other._rescale(exp, context.rounding) 1167 ans = ans._fix(context) 1168 return ans 1169 if not other: 1170 exp = max(exp, self._exp - context.prec-1) 1171 ans = self._rescale(exp, context.rounding) 1172 ans = ans._fix(context) 1173 return ans 1174 1175 op1 = _WorkRep(self) 1176 op2 = _WorkRep(other) 1177 op1, op2 = _normalize(op1, op2, context.prec) 1178 1179 result = _WorkRep() 1180 if op1.sign != op2.sign: 1181 # Equal and opposite 1182 if op1.int == op2.int: 1183 ans = _dec_from_triple(negativezero, '0', exp) 1184 ans = ans._fix(context) 1185 return ans 1186 if op1.int < op2.int: 1187 op1, op2 = op2, op1 1188 # OK, now abs(op1) > abs(op2) 1189 if op1.sign == 1: 1190 result.sign = 1 1191 op1.sign, op2.sign = op2.sign, op1.sign 1192 else: 1193 result.sign = 0 1194 # So we know the sign, and op1 > 0. 1195 elif op1.sign == 1: 1196 result.sign = 1 1197 op1.sign, op2.sign = (0, 0) 1198 else: 1199 result.sign = 0 1200 # Now, op1 > abs(op2) > 0 1201 1202 if op2.sign == 0: 1203 result.int = op1.int + op2.int 1204 else: 1205 result.int = op1.int - op2.int 1206 1207 result.exp = op1.exp 1208 ans = Decimal(result) 1209 ans = ans._fix(context) 1210 return ans 1211 1212 __radd__ = __add__ 1213 1214 def __sub__(self, other, context=None): 1215 """Return self - other""" 1216 other = _convert_other(other) 1217 if other is NotImplemented: 1218 return other 1219 1220 if self._is_special or other._is_special: 1221 ans = self._check_nans(other, context=context) 1222 if ans: 1223 return ans 1224 1225 # self - other is computed as self + other.copy_negate() 1226 return self.__add__(other.copy_negate(), context=context) 1227 1228 def __rsub__(self, other, context=None): 1229 """Return other - self""" 1230 other = _convert_other(other) 1231 if other is NotImplemented: 1232 return other 1233 1234 return other.__sub__(self, context=context) 1235 1236 def __mul__(self, other, context=None): 1237 """Return self * other. 1238 1239 (+-) INF * 0 (or its reverse) raise InvalidOperation. 1240 """ 1241 other = _convert_other(other) 1242 if other is NotImplemented: 1243 return other 1244 1245 if context is None: 1246 context = getcontext() 1247 1248 resultsign = self._sign ^ other._sign 1249 1250 if self._is_special or other._is_special: 1251 ans = self._check_nans(other, context) 1252 if ans: 1253 return ans 1254 1255 if self._isinfinity(): 1256 if not other: 1257 return context._raise_error(InvalidOperation, '(+-)INF * 0') 1258 return _SignedInfinity[resultsign] 1259 1260 if other._isinfinity(): 1261 if not self: 1262 return context._raise_error(InvalidOperation, '0 * (+-)INF') 1263 return _SignedInfinity[resultsign] 1264 1265 resultexp = self._exp + other._exp 1266 1267 # Special case for multiplying by zero 1268 if not self or not other: 1269 ans = _dec_from_triple(resultsign, '0', resultexp) 1270 # Fixing in case the exponent is out of bounds 1271 ans = ans._fix(context) 1272 return ans 1273 1274 # Special case for multiplying by power of 10 1275 if self._int == '1': 1276 ans = _dec_from_triple(resultsign, other._int, resultexp) 1277 ans = ans._fix(context) 1278 return ans 1279 if other._int == '1': 1280 ans = _dec_from_triple(resultsign, self._int, resultexp) 1281 ans = ans._fix(context) 1282 return ans 1283 1284 op1 = _WorkRep(self) 1285 op2 = _WorkRep(other) 1286 1287 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp) 1288 ans = ans._fix(context) 1289 1290 return ans 1291 __rmul__ = __mul__ 1292 1293 def __truediv__(self, other, context=None): 1294 """Return self / other.""" 1295 other = _convert_other(other) 1296 if other is NotImplemented: 1297 return NotImplemented 1298 1299 if context is None: 1300 context = getcontext() 1301 1302 sign = self._sign ^ other._sign 1303 1304 if self._is_special or other._is_special: 1305 ans = self._check_nans(other, context) 1306 if ans: 1307 return ans 1308 1309 if self._isinfinity() and other._isinfinity(): 1310 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') 1311 1312 if self._isinfinity(): 1313 return _SignedInfinity[sign] 1314 1315 if other._isinfinity(): 1316 context._raise_error(Clamped, 'Division by infinity') 1317 return _dec_from_triple(sign, '0', context.Etiny()) 1318 1319 # Special cases for zeroes 1320 if not other: 1321 if not self: 1322 return context._raise_error(DivisionUndefined, '0 / 0') 1323 return context._raise_error(DivisionByZero, 'x / 0', sign) 1324 1325 if not self: 1326 exp = self._exp - other._exp 1327 coeff = 0 1328 else: 1329 # OK, so neither = 0, INF or NaN 1330 shift = len(other._int) - len(self._int) + context.prec + 1 1331 exp = self._exp - other._exp - shift 1332 op1 = _WorkRep(self) 1333 op2 = _WorkRep(other) 1334 if shift >= 0: 1335 coeff, remainder = divmod(op1.int * 10**shift, op2.int) 1336 else: 1337 coeff, remainder = divmod(op1.int, op2.int * 10**-shift) 1338 if remainder: 1339 # result is not exact; adjust to ensure correct rounding 1340 if coeff % 5 == 0: 1341 coeff += 1 1342 else: 1343 # result is exact; get as close to ideal exponent as possible 1344 ideal_exp = self._exp - other._exp 1345 while exp < ideal_exp and coeff % 10 == 0: 1346 coeff //= 10 1347 exp += 1 1348 1349 ans = _dec_from_triple(sign, str(coeff), exp) 1350 return ans._fix(context) 1351 1352 def _divide(self, other, context): 1353 """Return (self // other, self % other), to context.prec precision. 1354 1355 Assumes that neither self nor other is a NaN, that self is not 1356 infinite and that other is nonzero. 1357 """ 1358 sign = self._sign ^ other._sign 1359 if other._isinfinity(): 1360 ideal_exp = self._exp 1361 else: 1362 ideal_exp = min(self._exp, other._exp) 1363 1364 expdiff = self.adjusted() - other.adjusted() 1365 if not self or other._isinfinity() or expdiff <= -2: 1366 return (_dec_from_triple(sign, '0', 0), 1367 self._rescale(ideal_exp, context.rounding)) 1368 if expdiff <= context.prec: 1369 op1 = _WorkRep(self) 1370 op2 = _WorkRep(other) 1371 if op1.exp >= op2.exp: 1372 op1.int *= 10**(op1.exp - op2.exp) 1373 else: 1374 op2.int *= 10**(op2.exp - op1.exp) 1375 q, r = divmod(op1.int, op2.int) 1376 if q < 10**context.prec: 1377 return (_dec_from_triple(sign, str(q), 0), 1378 _dec_from_triple(self._sign, str(r), ideal_exp)) 1379 1380 # Here the quotient is too large to be representable 1381 ans = context._raise_error(DivisionImpossible, 1382 'quotient too large in //, % or divmod') 1383 return ans, ans 1384 1385 def __rtruediv__(self, other, context=None): 1386 """Swaps self/other and returns __truediv__.""" 1387 other = _convert_other(other) 1388 if other is NotImplemented: 1389 return other 1390 return other.__truediv__(self, context=context) 1391 1392 __div__ = __truediv__ 1393 __rdiv__ = __rtruediv__ 1394 1395 def __divmod__(self, other, context=None): 1396 """ 1397 Return (self // other, self % other) 1398 """ 1399 other = _convert_other(other) 1400 if other is NotImplemented: 1401 return other 1402 1403 if context is None: 1404 context = getcontext() 1405 1406 ans = self._check_nans(other, context) 1407 if ans: 1408 return (ans, ans) 1409 1410 sign = self._sign ^ other._sign 1411 if self._isinfinity(): 1412 if other._isinfinity(): 1413 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)') 1414 return ans, ans 1415 else: 1416 return (_SignedInfinity[sign], 1417 context._raise_error(InvalidOperation, 'INF % x')) 1418 1419 if not other: 1420 if not self: 1421 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)') 1422 return ans, ans 1423 else: 1424 return (context._raise_error(DivisionByZero, 'x // 0', sign), 1425 context._raise_error(InvalidOperation, 'x % 0')) 1426 1427 quotient, remainder = self._divide(other, context) 1428 remainder = remainder._fix(context) 1429 return quotient, remainder 1430 1431 def __rdivmod__(self, other, context=None): 1432 """Swaps self/other and returns __divmod__.""" 1433 other = _convert_other(other) 1434 if other is NotImplemented: 1435 return other 1436 return other.__divmod__(self, context=context) 1437 1438 def __mod__(self, other, context=None): 1439 """ 1440 self % other 1441 """ 1442 other = _convert_other(other) 1443 if other is NotImplemented: 1444 return other 1445 1446 if context is None: 1447 context = getcontext() 1448 1449 ans = self._check_nans(other, context) 1450 if ans: 1451 return ans 1452 1453 if self._isinfinity(): 1454 return context._raise_error(InvalidOperation, 'INF % x') 1455 elif not other: 1456 if self: 1457 return context._raise_error(InvalidOperation, 'x % 0') 1458 else: 1459 return context._raise_error(DivisionUndefined, '0 % 0') 1460 1461 remainder = self._divide(other, context)[1] 1462 remainder = remainder._fix(context) 1463 return remainder 1464 1465 def __rmod__(self, other, context=None): 1466 """Swaps self/other and returns __mod__.""" 1467 other = _convert_other(other) 1468 if other is NotImplemented: 1469 return other 1470 return other.__mod__(self, context=context) 1471 1472 def remainder_near(self, other, context=None): 1473 """ 1474 Remainder nearest to 0- abs(remainder-near) <= other/2 1475 """ 1476 if context is None: 1477 context = getcontext() 1478 1479 other = _convert_other(other, raiseit=True) 1480 1481 ans = self._check_nans(other, context) 1482 if ans: 1483 return ans 1484 1485 # self == +/-infinity -> InvalidOperation 1486 if self._isinfinity(): 1487 return context._raise_error(InvalidOperation, 1488 'remainder_near(infinity, x)') 1489 1490 # other == 0 -> either InvalidOperation or DivisionUndefined 1491 if not other: 1492 if self: 1493 return context._raise_error(InvalidOperation, 1494 'remainder_near(x, 0)') 1495 else: 1496 return context._raise_error(DivisionUndefined, 1497 'remainder_near(0, 0)') 1498 1499 # other = +/-infinity -> remainder = self 1500 if other._isinfinity(): 1501 ans = Decimal(self) 1502 return ans._fix(context) 1503 1504 # self = 0 -> remainder = self, with ideal exponent 1505 ideal_exponent = min(self._exp, other._exp) 1506 if not self: 1507 ans = _dec_from_triple(self._sign, '0', ideal_exponent) 1508 return ans._fix(context) 1509 1510 # catch most cases of large or small quotient 1511 expdiff = self.adjusted() - other.adjusted() 1512 if expdiff >= context.prec + 1: 1513 # expdiff >= prec+1 => abs(self/other) > 10**prec 1514 return context._raise_error(DivisionImpossible) 1515 if expdiff <= -2: 1516 # expdiff <= -2 => abs(self/other) < 0.1 1517 ans = self._rescale(ideal_exponent, context.rounding) 1518 return ans._fix(context) 1519 1520 # adjust both arguments to have the same exponent, then divide 1521 op1 = _WorkRep(self) 1522 op2 = _WorkRep(other) 1523 if op1.exp >= op2.exp: 1524 op1.int *= 10**(op1.exp - op2.exp) 1525 else: 1526 op2.int *= 10**(op2.exp - op1.exp) 1527 q, r = divmod(op1.int, op2.int) 1528 # remainder is r*10**ideal_exponent; other is +/-op2.int * 1529 # 10**ideal_exponent. Apply correction to ensure that 1530 # abs(remainder) <= abs(other)/2 1531 if 2*r + (q&1) > op2.int: 1532 r -= op2.int 1533 q += 1 1534 1535 if q >= 10**context.prec: 1536 return context._raise_error(DivisionImpossible) 1537 1538 # result has same sign as self unless r is negative 1539 sign = self._sign 1540 if r < 0: 1541 sign = 1-sign 1542 r = -r 1543 1544 ans = _dec_from_triple(sign, str(r), ideal_exponent) 1545 return ans._fix(context) 1546 1547 def __floordiv__(self, other, context=None): 1548 """self // other""" 1549 other = _convert_other(other) 1550 if other is NotImplemented: 1551 return other 1552 1553 if context is None: 1554 context = getcontext() 1555 1556 ans = self._check_nans(other, context) 1557 if ans: 1558 return ans 1559 1560 if self._isinfinity(): 1561 if other._isinfinity(): 1562 return context._raise_error(InvalidOperation, 'INF // INF') 1563 else: 1564 return _SignedInfinity[self._sign ^ other._sign] 1565 1566 if not other: 1567 if self: 1568 return context._raise_error(DivisionByZero, 'x // 0', 1569 self._sign ^ other._sign) 1570 else: 1571 return context._raise_error(DivisionUndefined, '0 // 0') 1572 1573 return self._divide(other, context)[0] 1574 1575 def __rfloordiv__(self, other, context=None): 1576 """Swaps self/other and returns __floordiv__.""" 1577 other = _convert_other(other) 1578 if other is NotImplemented: 1579 return other 1580 return other.__floordiv__(self, context=context) 1581 1582 def __float__(self): 1583 """Float representation.""" 1584 return float(str(self)) 1585 1586 def __int__(self): 1587 """Converts self to an int, truncating if necessary.""" 1588 if self._is_special: 1589 if self._isnan(): 1590 raise ValueError("Cannot convert NaN to integer") 1591 elif self._isinfinity(): 1592 raise OverflowError("Cannot convert infinity to integer") 1593 s = (-1)**self._sign 1594 if self._exp >= 0: 1595 return s*int(self._int)*10**self._exp 1596 else: 1597 return s*int(self._int[:self._exp] or '0') 1598 1599 __trunc__ = __int__ 1600 1601 def real(self): 1602 return self 1603 real = property(real) 1604 1605 def imag(self): 1606 return Decimal(0) 1607 imag = property(imag) 1608 1609 def conjugate(self): 1610 return self 1611 1612 def __complex__(self): 1613 return complex(float(self)) 1614 1615 def __long__(self): 1616 """Converts to a long. 1617 1618 Equivalent to long(int(self)) 1619 """ 1620 return long(self.__int__()) 1621 1622 def _fix_nan(self, context): 1623 """Decapitate the payload of a NaN to fit the context""" 1624 payload = self._int 1625 1626 # maximum length of payload is precision if _clamp=0, 1627 # precision-1 if _clamp=1. 1628 max_payload_len = context.prec - context._clamp 1629 if len(payload) > max_payload_len: 1630 payload = payload[len(payload)-max_payload_len:].lstrip('0') 1631 return _dec_from_triple(self._sign, payload, self._exp, True) 1632 return Decimal(self) 1633 1634 def _fix(self, context): 1635 """Round if it is necessary to keep self within prec precision. 1636 1637 Rounds and fixes the exponent. Does not raise on a sNaN. 1638 1639 Arguments: 1640 self - Decimal instance 1641 context - context used. 1642 """ 1643 1644 if self._is_special: 1645 if self._isnan(): 1646 # decapitate payload if necessary 1647 return self._fix_nan(context) 1648 else: 1649 # self is +/-Infinity; return unaltered 1650 return Decimal(self) 1651 1652 # if self is zero then exponent should be between Etiny and 1653 # Emax if _clamp==0, and between Etiny and Etop if _clamp==1. 1654 Etiny = context.Etiny() 1655 Etop = context.Etop() 1656 if not self: 1657 exp_max = [context.Emax, Etop][context._clamp] 1658 new_exp = min(max(self._exp, Etiny), exp_max) 1659 if new_exp != self._exp: 1660 context._raise_error(Clamped) 1661 return _dec_from_triple(self._sign, '0', new_exp) 1662 else: 1663 return Decimal(self) 1664 1665 # exp_min is the smallest allowable exponent of the result, 1666 # equal to max(self.adjusted()-context.prec+1, Etiny) 1667 exp_min = len(self._int) + self._exp - context.prec 1668 if exp_min > Etop: 1669 # overflow: exp_min > Etop iff self.adjusted() > Emax 1670 ans = context._raise_error(Overflow, 'above Emax', self._sign) 1671 context._raise_error(Inexact) 1672 context._raise_error(Rounded) 1673 return ans 1674 1675 self_is_subnormal = exp_min < Etiny 1676 if self_is_subnormal: 1677 exp_min = Etiny 1678 1679 # round if self has too many digits 1680 if self._exp < exp_min: 1681 digits = len(self._int) + self._exp - exp_min 1682 if digits < 0: 1683 self = _dec_from_triple(self._sign, '1', exp_min-1) 1684 digits = 0 1685 rounding_method = self._pick_rounding_function[context.rounding] 1686 changed = rounding_method(self, digits) 1687 coeff = self._int[:digits] or '0' 1688 if changed > 0: 1689 coeff = str(int(coeff)+1) 1690 if len(coeff) > context.prec: 1691 coeff = coeff[:-1] 1692 exp_min += 1 1693 1694 # check whether the rounding pushed the exponent out of range 1695 if exp_min > Etop: 1696 ans = context._raise_error(Overflow, 'above Emax', self._sign) 1697 else: 1698 ans = _dec_from_triple(self._sign, coeff, exp_min) 1699 1700 # raise the appropriate signals, taking care to respect 1701 # the precedence described in the specification 1702 if changed and self_is_subnormal: 1703 context._raise_error(Underflow) 1704 if self_is_subnormal: 1705 context._raise_error(Subnormal) 1706 if changed: 1707 context._raise_error(Inexact) 1708 context._raise_error(Rounded) 1709 if not ans: 1710 # raise Clamped on underflow to 0 1711 context._raise_error(Clamped) 1712 return ans 1713 1714 if self_is_subnormal: 1715 context._raise_error(Subnormal) 1716 1717 # fold down if _clamp == 1 and self has too few digits 1718 if context._clamp == 1 and self._exp > Etop: 1719 context._raise_error(Clamped) 1720 self_padded = self._int + '0'*(self._exp - Etop) 1721 return _dec_from_triple(self._sign, self_padded, Etop) 1722 1723 # here self was representable to begin with; return unchanged 1724 return Decimal(self) 1725 1726 # for each of the rounding functions below: 1727 # self is a finite, nonzero Decimal 1728 # prec is an integer satisfying 0 <= prec < len(self._int) 1729 # 1730 # each function returns either -1, 0, or 1, as follows: 1731 # 1 indicates that self should be rounded up (away from zero) 1732 # 0 indicates that self should be truncated, and that all the 1733 # digits to be truncated are zeros (so the value is unchanged) 1734 # -1 indicates that there are nonzero digits to be truncated 1735 1736 def _round_down(self, prec): 1737 """Also known as round-towards-0, truncate.""" 1738 if _all_zeros(self._int, prec): 1739 return 0 1740 else: 1741 return -1 1742 1743 def _round_up(self, prec): 1744 """Rounds away from 0.""" 1745 return -self._round_down(prec) 1746 1747 def _round_half_up(self, prec): 1748 """Rounds 5 up (away from 0)""" 1749 if self._int[prec] in '56789': 1750 return 1 1751 elif _all_zeros(self._int, prec): 1752 return 0 1753 else: 1754 return -1 1755 1756 def _round_half_down(self, prec): 1757 """Round 5 down""" 1758 if _exact_half(self._int, prec): 1759 return -1 1760 else: 1761 return self._round_half_up(prec) 1762 1763 def _round_half_even(self, prec): 1764 """Round 5 to even, rest to nearest.""" 1765 if _exact_half(self._int, prec) and \ 1766 (prec == 0 or self._int[prec-1] in '02468'): 1767 return -1 1768 else: 1769 return self._round_half_up(prec) 1770 1771 def _round_ceiling(self, prec): 1772 """Rounds up (not away from 0 if negative.)""" 1773 if self._sign: 1774 return self._round_down(prec) 1775 else: 1776 return -self._round_down(prec) 1777 1778 def _round_floor(self, prec): 1779 """Rounds down (not towards 0 if negative)""" 1780 if not self._sign: 1781 return self._round_down(prec) 1782 else: 1783 return -self._round_down(prec) 1784 1785 def _round_05up(self, prec): 1786 """Round down unless digit prec-1 is 0 or 5.""" 1787 if prec and self._int[prec-1] not in '05': 1788 return self._round_down(prec) 1789 else: 1790 return -self._round_down(prec) 1791 1792 _pick_rounding_function = dict( 1793 ROUND_DOWN = _round_down, 1794 ROUND_UP = _round_up, 1795 ROUND_HALF_UP = _round_half_up, 1796 ROUND_HALF_DOWN = _round_half_down, 1797 ROUND_HALF_EVEN = _round_half_even, 1798 ROUND_CEILING = _round_ceiling, 1799 ROUND_FLOOR = _round_floor, 1800 ROUND_05UP = _round_05up, 1801 ) 1802 1803 def fma(self, other, third, context=None): 1804 """Fused multiply-add. 1805 1806 Returns self*other+third with no rounding of the intermediate 1807 product self*other. 1808 1809 self and other are multiplied together, with no rounding of 1810 the result. The third operand is then added to the result, 1811 and a single final rounding is performed. 1812 """ 1813 1814 other = _convert_other(other, raiseit=True) 1815 1816 # compute product; raise InvalidOperation if either operand is 1817 # a signaling NaN or if the product is zero times infinity. 1818 if self._is_special or other._is_special: 1819 if context is None: 1820 context = getcontext() 1821 if self._exp == 'N': 1822 return context._raise_error(InvalidOperation, 'sNaN', self) 1823 if other._exp == 'N': 1824 return context._raise_error(InvalidOperation, 'sNaN', other) 1825 if self._exp == 'n': 1826 product = self 1827 elif other._exp == 'n': 1828 product = other 1829 elif self._exp == 'F': 1830 if not other: 1831 return context._raise_error(InvalidOperation, 1832 'INF * 0 in fma') 1833 product = _SignedInfinity[self._sign ^ other._sign] 1834 elif other._exp == 'F': 1835 if not self: 1836 return context._raise_error(InvalidOperation, 1837 '0 * INF in fma') 1838 product = _SignedInfinity[self._sign ^ other._sign] 1839 else: 1840 product = _dec_from_triple(self._sign ^ other._sign, 1841 str(int(self._int) * int(other._int)), 1842 self._exp + other._exp) 1843 1844 third = _convert_other(third, raiseit=True) 1845 return product.__add__(third, context) 1846 1847 def _power_modulo(self, other, modulo, context=None): 1848 """Three argument version of __pow__""" 1849 1850 # if can't convert other and modulo to Decimal, raise 1851 # TypeError; there's no point returning NotImplemented (no 1852 # equivalent of __rpow__ for three argument pow) 1853 other = _convert_other(other, raiseit=True) 1854 modulo = _convert_other(modulo, raiseit=True) 1855 1856 if context is None: 1857 context = getcontext() 1858 1859 # deal with NaNs: if there are any sNaNs then first one wins, 1860 # (i.e. behaviour for NaNs is identical to that of fma) 1861 self_is_nan = self._isnan() 1862 other_is_nan = other._isnan() 1863 modulo_is_nan = modulo._isnan() 1864 if self_is_nan or other_is_nan or modulo_is_nan: 1865 if self_is_nan == 2: 1866 return context._raise_error(InvalidOperation, 'sNaN', 1867 self) 1868 if other_is_nan == 2: 1869 return context._raise_error(InvalidOperation, 'sNaN', 1870 other) 1871 if modulo_is_nan == 2: 1872 return context._raise_error(InvalidOperation, 'sNaN', 1873 modulo) 1874 if self_is_nan: 1875 return self._fix_nan(context) 1876 if other_is_nan: 1877 return other._fix_nan(context) 1878 return modulo._fix_nan(context) 1879 1880 # check inputs: we apply same restrictions as Python's pow() 1881 if not (self._isinteger() and 1882 other._isinteger() and 1883 modulo._isinteger()): 1884 return context._raise_error(InvalidOperation, 1885 'pow() 3rd argument not allowed ' 1886 'unless all arguments are integers') 1887 if other < 0: 1888 return context._raise_error(InvalidOperation, 1889 'pow() 2nd argument cannot be ' 1890 'negative when 3rd argument specified') 1891 if not modulo: 1892 return context._raise_error(InvalidOperation, 1893 'pow() 3rd argument cannot be 0') 1894 1895 # additional restriction for decimal: the modulus must be less 1896 # than 10**prec in absolute value 1897 if modulo.adjusted() >= context.prec: 1898 return context._raise_error(InvalidOperation, 1899 'insufficient precision: pow() 3rd ' 1900 'argument must not have more than ' 1901 'precision digits') 1902 1903 # define 0**0 == NaN, for consistency with two-argument pow 1904 # (even though it hurts!) 1905 if not other and not self: 1906 return context._raise_error(InvalidOperation, 1907 'at least one of pow() 1st argument ' 1908 'and 2nd argument must be nonzero ;' 1909 '0**0 is not defined') 1910 1911 # compute sign of result 1912 if other._iseven(): 1913 sign = 0 1914 else: 1915 sign = self._sign 1916 1917 # convert modulo to a Python integer, and self and other to 1918 # Decimal integers (i.e. force their exponents to be >= 0) 1919 modulo = abs(int(modulo)) 1920 base = _WorkRep(self.to_integral_value()) 1921 exponent = _WorkRep(other.to_integral_value()) 1922 1923 # compute result using integer pow() 1924 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo 1925 for i in xrange(exponent.exp): 1926 base = pow(base, 10, modulo) 1927 base = pow(base, exponent.int, modulo) 1928 1929 return _dec_from_triple(sign, str(base), 0) 1930 1931 def _power_exact(self, other, p): 1932 """Attempt to compute self**other exactly. 1933 1934 Given Decimals self and other and an integer p, attempt to 1935 compute an exact result for the power self**other, with p 1936 digits of precision. Return None if self**other is not 1937 exactly representable in p digits. 1938 1939 Assumes that elimination of special cases has already been 1940 performed: self and other must both be nonspecial; self must 1941 be positive and not numerically equal to 1; other must be 1942 nonzero. For efficiency, other._exp should not be too large, 1943 so that 10**abs(other._exp) is a feasible calculation.""" 1944 1945 # In the comments below, we write x for the value of self and 1946 # y for the value of other. Write x = xc*10**xe and y = 1947 # yc*10**ye. 1948 1949 # The main purpose of this method is to identify the *failure* 1950 # of x**y to be exactly representable with as little effort as 1951 # possible. So we look for cheap and easy tests that 1952 # eliminate the possibility of x**y being exact. Only if all 1953 # these tests are passed do we go on to actually compute x**y. 1954 1955 # Here's the main idea. First normalize both x and y. We 1956 # express y as a rational m/n, with m and n relatively prime 1957 # and n>0. Then for x**y to be exactly representable (at 1958 # *any* precision), xc must be the nth power of a positive 1959 # integer and xe must be divisible by n. If m is negative 1960 # then additionally xc must be a power of either 2 or 5, hence 1961 # a power of 2**n or 5**n. 1962 # 1963 # There's a limit to how small |y| can be: if y=m/n as above 1964 # then: 1965 # 1966 # (1) if xc != 1 then for the result to be representable we 1967 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So 1968 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <= 1969 # 2**(1/|y|), hence xc**|y| < 2 and the result is not 1970 # representable. 1971 # 1972 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if 1973 # |y| < 1/|xe| then the result is not representable. 1974 # 1975 # Note that since x is not equal to 1, at least one of (1) and 1976 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) < 1977 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye. 1978 # 1979 # There's also a limit to how large y can be, at least if it's 1980 # positive: the normalized result will have coefficient xc**y, 1981 # so if it's representable then xc**y < 10**p, and y < 1982 # p/log10(xc). Hence if y*log10(xc) >= p then the result is 1983 # not exactly representable. 1984 1985 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye, 1986 # so |y| < 1/xe and the result is not representable. 1987 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y| 1988 # < 1/nbits(xc). 1989 1990 x = _WorkRep(self) 1991 xc, xe = x.int, x.exp 1992 while xc % 10 == 0: 1993 xc //= 10 1994 xe += 1 1995 1996 y = _WorkRep(other) 1997 yc, ye = y.int, y.exp 1998 while yc % 10 == 0: 1999 yc //= 10 2000 ye += 1 2001 2002 # case where xc == 1: result is 10**(xe*y), with xe*y 2003 # required to be an integer 2004 if xc == 1: 2005 xe *= yc 2006 # result is now 10**(xe * 10**ye); xe * 10**ye must be integral 2007 while xe % 10 == 0: 2008 xe //= 10 2009 ye += 1 2010 if ye < 0: 2011 return None 2012 exponent = xe * 10**ye 2013 if y.sign == 1: 2014 exponent = -exponent 2015 # if other is a nonnegative integer, use ideal exponent 2016 if other._isinteger() and other._sign == 0: 2017 ideal_exponent = self._exp*int(other) 2018 zeros = min(exponent-ideal_exponent, p-1) 2019 else: 2020 zeros = 0 2021 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros) 2022 2023 # case where y is negative: xc must be either a power 2024 # of 2 or a power of 5. 2025 if y.sign == 1: 2026 last_digit = xc % 10 2027 if last_digit in (2,4,6,8): 2028 # quick test for power of 2 2029 if xc & -xc != xc: 2030 return None 2031 # now xc is a power of 2; e is its exponent 2032 e = _nbits(xc)-1 2033 # find e*y and xe*y; both must be integers 2034 if ye >= 0: 2035 y_as_int = yc*10**ye 2036 e = e*y_as_int 2037 xe = xe*y_as_int 2038 else: 2039 ten_pow = 10**-ye 2040 e, remainder = divmod(e*yc, ten_pow) 2041 if remainder: 2042 return None 2043 xe, remainder = divmod(xe*yc, ten_pow) 2044 if remainder: 2045 return None 2046 2047 if e*65 >= p*93: # 93/65 > log(10)/log(5) 2048 return None 2049 xc = 5**e 2050 2051 elif last_digit == 5: 2052 # e >= log_5(xc) if xc is a power of 5; we have 2053 # equality all the way up to xc=5**2658 2054 e = _nbits(xc)*28//65 2055 xc, remainder = divmod(5**e, xc) 2056 if remainder: 2057 return None 2058 while xc % 5 == 0: 2059 xc //= 5 2060 e -= 1 2061 if ye >= 0: 2062 y_as_integer = yc*10**ye 2063 e = e*y_as_integer 2064 xe = xe*y_as_integer 2065 else: 2066 ten_pow = 10**-ye 2067 e, remainder = divmod(e*yc, ten_pow) 2068 if remainder: 2069 return None 2070 xe, remainder = divmod(xe*yc, ten_pow) 2071 if remainder: 2072 return None 2073 if e*3 >= p*10: # 10/3 > log(10)/log(2) 2074 return None 2075 xc = 2**e 2076 else: 2077 return None 2078 2079 if xc >= 10**p: 2080 return None 2081 xe = -e-xe 2082 return _dec_from_triple(0, str(xc), xe) 2083 2084 # now y is positive; find m and n such that y = m/n 2085 if ye >= 0: 2086 m, n = yc*10**ye, 1 2087 else: 2088 if xe != 0 and len(str(abs(yc*xe))) <= -ye: 2089 return None 2090 xc_bits = _nbits(xc) 2091 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye: 2092 return None 2093 m, n = yc, 10**(-ye) 2094 while m % 2 == n % 2 == 0: 2095 m //= 2 2096 n //= 2 2097 while m % 5 == n % 5 == 0: 2098 m //= 5 2099 n //= 5 2100 2101 # compute nth root of xc*10**xe 2102 if n > 1: 2103 # if 1 < xc < 2**n then xc isn't an nth power 2104 if xc != 1 and xc_bits <= n: 2105 return None 2106 2107 xe, rem = divmod(xe, n) 2108 if rem != 0: 2109 return None 2110 2111 # compute nth root of xc using Newton's method 2112 a = 1L << -(-_nbits(xc)//n) # initial estimate 2113 while True: 2114 q, r = divmod(xc, a**(n-1)) 2115 if a <= q: 2116 break 2117 else: 2118 a = (a*(n-1) + q)//n 2119 if not (a == q and r == 0): 2120 return None 2121 xc = a 2122 2123 # now xc*10**xe is the nth root of the original xc*10**xe 2124 # compute mth power of xc*10**xe 2125 2126 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m > 2127 # 10**p and the result is not representable. 2128 if xc > 1 and m > p*100//_log10_lb(xc): 2129 return None 2130 xc = xc**m 2131 xe *= m 2132 if xc > 10**p: 2133 return None 2134 2135 # by this point the result *is* exactly representable 2136 # adjust the exponent to get as close as possible to the ideal 2137 # exponent, if necessary 2138 str_xc = str(xc) 2139 if other._isinteger() and other._sign == 0: 2140 ideal_exponent = self._exp*int(other) 2141 zeros = min(xe-ideal_exponent, p-len(str_xc)) 2142 else: 2143 zeros = 0 2144 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros) 2145 2146 def __pow__(self, other, modulo=None, context=None): 2147 """Return self ** other [ % modulo]. 2148 2149 With two arguments, compute self**other. 2150 2151 With three arguments, compute (self**other) % modulo. For the 2152 three argument form, the following restrictions on the 2153 arguments hold: 2154 2155 - all three arguments must be integral 2156 - other must be nonnegative 2157 - either self or other (or both) must be nonzero 2158 - modulo must be nonzero and must have at most p digits, 2159 where p is the context precision. 2160 2161 If any of these restrictions is violated the InvalidOperation 2162 flag is raised. 2163 2164 The result of pow(self, other, modulo) is identical to the 2165 result that would be obtained by computing (self**other) % 2166 modulo with unbounded precision, but is computed more 2167 efficiently. It is always exact. 2168 """ 2169 2170 if modulo is not None: 2171 return self._power_modulo(other, modulo, context) 2172 2173 other = _convert_other(other) 2174 if other is NotImplemented: 2175 return other 2176 2177 if context is None: 2178 context = getcontext() 2179 2180 # either argument is a NaN => result is NaN 2181 ans = self._check_nans(other, context) 2182 if ans: 2183 return ans 2184 2185 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) 2186 if not other: 2187 if not self: 2188 return context._raise_error(InvalidOperation, '0 ** 0') 2189 else: 2190 return _One 2191 2192 # result has sign 1 iff self._sign is 1 and other is an odd integer 2193 result_sign = 0 2194 if self._sign == 1: 2195 if other._isinteger(): 2196 if not other._iseven(): 2197 result_sign = 1 2198 else: 2199 # -ve**noninteger = NaN 2200 # (-0)**noninteger = 0**noninteger 2201 if self: 2202 return context._raise_error(InvalidOperation, 2203 'x ** y with x negative and y not an integer') 2204 # negate self, without doing any unwanted rounding 2205 self = self.copy_negate() 2206 2207 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity 2208 if not self: 2209 if other._sign == 0: 2210 return _dec_from_triple(result_sign, '0', 0) 2211 else: 2212 return _SignedInfinity[result_sign] 2213 2214 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 2215 if self._isinfinity(): 2216 if other._sign == 0: 2217 return _SignedInfinity[result_sign] 2218 else: 2219 return _dec_from_triple(result_sign, '0', 0) 2220 2221 # 1**other = 1, but the choice of exponent and the flags 2222 # depend on the exponent of self, and on whether other is a 2223 # positive integer, a negative integer, or neither 2224 if self == _One: 2225 if other._isinteger(): 2226 # exp = max(self._exp*max(int(other), 0), 2227 # 1-context.prec) but evaluating int(other) directly 2228 # is dangerous until we know other is small (other 2229 # could be 1e999999999) 2230 if other._sign == 1: 2231 multiplier = 0 2232 elif other > context.prec: 2233 multiplier = context.prec 2234 else: 2235 multiplier = int(other) 2236 2237 exp = self._exp * multiplier 2238 if exp < 1-context.prec: 2239 exp = 1-context.prec 2240 context._raise_error(Rounded) 2241 else: 2242 context._raise_error(Inexact) 2243 context._raise_error(Rounded) 2244 exp = 1-context.prec 2245 2246 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp) 2247 2248 # compute adjusted exponent of self 2249 self_adj = self.adjusted() 2250 2251 # self ** infinity is infinity if self > 1, 0 if self < 1 2252 # self ** -infinity is infinity if self < 1, 0 if self > 1 2253 if other._isinfinity(): 2254 if (other._sign == 0) == (self_adj < 0): 2255 return _dec_from_triple(result_sign, '0', 0) 2256 else: 2257 return _SignedInfinity[result_sign] 2258 2259 # from here on, the result always goes through the call 2260 # to _fix at the end of this function. 2261 ans = None 2262 exact = False 2263 2264 # crude test to catch cases of extreme overflow/underflow. If 2265 # log10(self)*other >= 10**bound and bound >= len(str(Emax)) 2266 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence 2267 # self**other >= 10**(Emax+1), so overflow occurs. The test 2268 # for underflow is similar. 2269 bound = self._log10_exp_bound() + other.adjusted() 2270 if (self_adj >= 0) == (other._sign == 0): 2271 # self > 1 and other +ve, or self < 1 and other -ve 2272 # possibility of overflow 2273 if bound >= len(str(context.Emax)): 2274 ans = _dec_from_triple(result_sign, '1', context.Emax+1) 2275 else: 2276 # self > 1 and other -ve, or self < 1 and other +ve 2277 # possibility of underflow to 0 2278 Etiny = context.Etiny() 2279 if bound >= len(str(-Etiny)): 2280 ans = _dec_from_triple(result_sign, '1', Etiny-1) 2281 2282 # try for an exact result with precision +1 2283 if ans is None: 2284 ans = self._power_exact(other, context.prec + 1) 2285 if ans is not None: 2286 if result_sign == 1: 2287 ans = _dec_from_triple(1, ans._int, ans._exp) 2288 exact = True 2289 2290 # usual case: inexact result, x**y computed directly as exp(y*log(x)) 2291 if ans is None: 2292 p = context.prec 2293 x = _WorkRep(self) 2294 xc, xe = x.int, x.exp 2295 y = _WorkRep(other) 2296 yc, ye = y.int, y.exp 2297 if y.sign == 1: 2298 yc = -yc 2299 2300 # compute correctly rounded result: start with precision +3, 2301 # then increase precision until result is unambiguously roundable 2302 extra = 3 2303 while True: 2304 coeff, exp = _dpower(xc, xe, yc, ye, p+extra) 2305 if coeff % (5*10**(len(str(coeff))-p-1)): 2306 break 2307 extra += 3 2308 2309 ans = _dec_from_triple(result_sign, str(coeff), exp) 2310 2311 # unlike exp, ln and log10, the power function respects the 2312 # rounding mode; no need to switch to ROUND_HALF_EVEN here 2313 2314 # There's a difficulty here when 'other' is not an integer and 2315 # the result is exact. In this case, the specification 2316 # requires that the Inexact flag be raised (in spite of 2317 # exactness), but since the result is exact _fix won't do this 2318 # for us. (Correspondingly, the Underflow signal should also 2319 # be raised for subnormal results.) We can't directly raise 2320 # these signals either before or after calling _fix, since 2321 # that would violate the precedence for signals. So we wrap 2322 # the ._fix call in a temporary context, and reraise 2323 # afterwards. 2324 if exact and not other._isinteger(): 2325 # pad with zeros up to length context.prec+1 if necessary; this 2326 # ensures that the Rounded signal will be raised. 2327 if len(ans._int) <= context.prec: 2328 expdiff = context.prec + 1 - len(ans._int) 2329 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff, 2330 ans._exp-expdiff) 2331 2332 # create a copy of the current context, with cleared flags/traps 2333 newcontext = context.copy() 2334 newcontext.clear_flags() 2335 for exception in _signals: 2336 newcontext.traps[exception] = 0 2337 2338 # round in the new context 2339 ans = ans._fix(newcontext) 2340 2341 # raise Inexact, and if necessary, Underflow 2342 newcontext._raise_error(Inexact) 2343 if newcontext.flags[Subnormal]: 2344 newcontext._raise_error(Underflow) 2345 2346 # propagate signals to the original context; _fix could 2347 # have raised any of Overflow, Underflow, Subnormal, 2348 # Inexact, Rounded, Clamped. Overflow needs the correct 2349 # arguments. Note that the order of the exceptions is 2350 # important here. 2351 if newcontext.flags[Overflow]: 2352 context._raise_error(Overflow, 'above Emax', ans._sign) 2353 for exception in Underflow, Subnormal, Inexact, Rounded, Clamped: 2354 if newcontext.flags[exception]: 2355 context._raise_error(exception) 2356 2357 else: 2358 ans = ans._fix(context) 2359 2360 return ans 2361 2362 def __rpow__(self, other, context=None): 2363 """Swaps self/other and returns __pow__.""" 2364 other = _convert_other(other) 2365 if other is NotImplemented: 2366 return other 2367 return other.__pow__(self, context=context) 2368 2369 def normalize(self, context=None): 2370 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" 2371 2372 if context is None: 2373 context = getcontext() 2374 2375 if self._is_special: 2376 ans = self._check_nans(context=context) 2377 if ans: 2378 return ans 2379 2380 dup = self._fix(context) 2381 if dup._isinfinity(): 2382 return dup 2383 2384 if not dup: 2385 return _dec_from_triple(dup._sign, '0', 0) 2386 exp_max = [context.Emax, context.Etop()][context._clamp] 2387 end = len(dup._int) 2388 exp = dup._exp 2389 while dup._int[end-1] == '0' and exp < exp_max: 2390 exp += 1 2391 end -= 1 2392 return _dec_from_triple(dup._sign, dup._int[:end], exp) 2393 2394 def quantize(self, exp, rounding=None, context=None, watchexp=True): 2395 """Quantize self so its exponent is the same as that of exp. 2396 2397 Similar to self._rescale(exp._exp) but with error checking. 2398 """ 2399 exp = _convert_other(exp, raiseit=True) 2400 2401 if context is None: 2402 context = getcontext() 2403 if rounding is None: 2404 rounding = context.rounding 2405 2406 if self._is_special or exp._is_special: 2407 ans = self._check_nans(exp, context) 2408 if ans: 2409 return ans 2410 2411 if exp._isinfinity() or self._isinfinity(): 2412 if exp._isinfinity() and self._isinfinity(): 2413 return Decimal(self) # if both are inf, it is OK 2414 return context._raise_error(InvalidOperation, 2415 'quantize with one INF') 2416 2417 # if we're not watching exponents, do a simple rescale 2418 if not watchexp: 2419 ans = self._rescale(exp._exp, rounding) 2420 # raise Inexact and Rounded where appropriate 2421 if ans._exp > self._exp: 2422 context._raise_error(Rounded) 2423 if ans != self: 2424 context._raise_error(Inexact) 2425 return ans 2426 2427 # exp._exp should be between Etiny and Emax 2428 if not (context.Etiny() <= exp._exp <= context.Emax): 2429 return context._raise_error(InvalidOperation, 2430 'target exponent out of bounds in quantize') 2431 2432 if not self: 2433 ans = _dec_from_triple(self._sign, '0', exp._exp) 2434 return ans._fix(context) 2435 2436 self_adjusted = self.adjusted() 2437 if self_adjusted > context.Emax: 2438 return context._raise_error(InvalidOperation, 2439 'exponent of quantize result too large for current context') 2440 if self_adjusted - exp._exp + 1 > context.prec: 2441 return context._raise_error(InvalidOperation, 2442 'quantize result has too many digits for current context') 2443 2444 ans = self._rescale(exp._exp, rounding) 2445 if ans.adjusted() > context.Emax: 2446 return context._raise_error(InvalidOperation, 2447 'exponent of quantize result too large for current context') 2448 if len(ans._int) > context.prec: 2449 return context._raise_error(InvalidOperation, 2450 'quantize result has too many digits for current context') 2451 2452 # raise appropriate flags 2453 if ans and ans.adjusted() < context.Emin: 2454 context._raise_error(Subnormal) 2455 if ans._exp > self._exp: 2456 if ans != self: 2457 context._raise_error(Inexact) 2458 context._raise_error(Rounded) 2459 2460 # call to fix takes care of any necessary folddown, and 2461 # signals Clamped if necessary 2462 ans = ans._fix(context) 2463 return ans 2464 2465 def same_quantum(self, other): 2466 """Return True if self and other have the same exponent; otherwise 2467 return False. 2468 2469 If either operand is a special value, the following rules are used: 2470 * return True if both operands are infinities 2471 * return True if both operands are NaNs 2472 * otherwise, return False. 2473 """ 2474 other = _convert_other(other, raiseit=True) 2475 if self._is_special or other._is_special: 2476 return (self.is_nan() and other.is_nan() or 2477 self.is_infinite() and other.is_infinite()) 2478 return self._exp == other._exp 2479 2480 def _rescale(self, exp, rounding): 2481 """Rescale self so that the exponent is exp, either by padding with zeros 2482 or by truncating digits, using the given rounding mode. 2483 2484 Specials are returned without change. This operation is 2485 quiet: it raises no flags, and uses no information from the 2486 context. 2487 2488 exp = exp to scale to (an integer) 2489 rounding = rounding mode 2490 """ 2491 if self._is_special: 2492 return Decimal(self) 2493 if not self: 2494 return _dec_from_triple(self._sign, '0', exp) 2495 2496 if self._exp >= exp: 2497 # pad answer with zeros if necessary 2498 return _dec_from_triple(self._sign, 2499 self._int + '0'*(self._exp - exp), exp) 2500 2501 # too many digits; round and lose data. If self.adjusted() < 2502 # exp-1, replace self by 10**(exp-1) before rounding 2503 digits = len(self._int) + self._exp - exp 2504 if digits < 0: 2505 self = _dec_from_triple(self._sign, '1', exp-1) 2506 digits = 0 2507 this_function = self._pick_rounding_function[rounding] 2508 changed = this_function(self, digits) 2509 coeff = self._int[:digits] or '0' 2510 if changed == 1: 2511 coeff = str(int(coeff)+1) 2512 return _dec_from_triple(self._sign, coeff, exp) 2513 2514 def _round(self, places, rounding): 2515 """Round a nonzero, nonspecial Decimal to a fixed number of 2516 significant figures, using the given rounding mode. 2517 2518 Infinities, NaNs and zeros are returned unaltered. 2519 2520 This operation is quiet: it raises no flags, and uses no 2521 information from the context. 2522 2523 """ 2524 if places <= 0: 2525 raise ValueError("argument should be at least 1 in _round") 2526 if self._is_special or not self: 2527 return Decimal(self) 2528 ans = self._rescale(self.adjusted()+1-places, rounding) 2529 # it can happen that the rescale alters the adjusted exponent; 2530 # for example when rounding 99.97 to 3 significant figures. 2531 # When this happens we end up with an extra 0 at the end of 2532 # the number; a second rescale fixes this. 2533 if ans.adjusted() != self.adjusted(): 2534 ans = ans._rescale(ans.adjusted()+1-places, rounding) 2535 return ans 2536 2537 def to_integral_exact(self, rounding=None, context=None): 2538 """Rounds to a nearby integer. 2539 2540 If no rounding mode is specified, take the rounding mode from 2541 the context. This method raises the Rounded and Inexact flags 2542 when appropriate. 2543 2544 See also: to_integral_value, which does exactly the same as 2545 this method except that it doesn't raise Inexact or Rounded. 2546 """ 2547 if self._is_special: 2548 ans = self._check_nans(context=context) 2549 if ans: 2550 return ans 2551 return Decimal(self) 2552 if self._exp >= 0: 2553 return Decimal(self) 2554 if not self: 2555 return _dec_from_triple(self._sign, '0', 0) 2556 if context is None: 2557 context = getcontext() 2558 if rounding is None: 2559 rounding = context.rounding 2560 ans = self._rescale(0, rounding) 2561 if ans != self: 2562 context._raise_error(Inexact) 2563 context._raise_error(Rounded) 2564 return ans 2565 2566 def to_integral_value(self, rounding=None, context=None): 2567 """Rounds to the nearest integer, without raising inexact, rounded.""" 2568 if context is None: 2569 context = getcontext() 2570 if rounding is None: 2571 rounding = context.rounding 2572 if self._is_special: 2573 ans = self._check_nans(context=context) 2574 if ans: 2575 return ans 2576 return Decimal(self) 2577 if self._exp >= 0: 2578 return Decimal(self) 2579 else: 2580 return self._rescale(0, rounding) 2581 2582 # the method name changed, but we provide also the old one, for compatibility 2583 to_integral = to_integral_value 2584 2585 def sqrt(self, context=None): 2586 """Return the square root of self.""" 2587 if context is None: 2588 context = getcontext() 2589 2590 if self._is_special: 2591 ans = self._check_nans(context=context) 2592 if ans: 2593 return ans 2594 2595 if self._isinfinity() and self._sign == 0: 2596 return Decimal(self) 2597 2598 if not self: 2599 # exponent = self._exp // 2. sqrt(-0) = -0 2600 ans = _dec_from_triple(self._sign, '0', self._exp // 2) 2601 return ans._fix(context) 2602 2603 if self._sign == 1: 2604 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') 2605 2606 # At this point self represents a positive number. Let p be 2607 # the desired precision and express self in the form c*100**e 2608 # with c a positive real number and e an integer, c and e 2609 # being chosen so that 100**(p-1) <= c < 100**p. Then the 2610 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1) 2611 # <= sqrt(c) < 10**p, so the closest representable Decimal at 2612 # precision p is n*10**e where n = round_half_even(sqrt(c)), 2613 # the closest integer to sqrt(c) with the even integer chosen 2614 # in the case of a tie. 2615 # 2616 # To ensure correct rounding in all cases, we use the 2617 # following trick: we compute the square root to an extra 2618 # place (precision p+1 instead of precision p), rounding down. 2619 # Then, if the result is inexact and its last digit is 0 or 5, 2620 # we increase the last digit to 1 or 6 respectively; if it's 2621 # exact we leave the last digit alone. Now the final round to 2622 # p places (or fewer in the case of underflow) will round 2623 # correctly and raise the appropriate flags. 2624 2625 # use an extra digit of precision 2626 prec = context.prec+1 2627 2628 # write argument in the form c*100**e where e = self._exp//2 2629 # is the 'ideal' exponent, to be used if the square root is 2630 # exactly representable. l is the number of 'digits' of c in 2631 # base 100, so that 100**(l-1) <= c < 100**l. 2632 op = _WorkRep(self) 2633 e = op.exp >> 1 2634 if op.exp & 1: 2635 c = op.int * 10 2636 l = (len(self._int) >> 1) + 1 2637 else: 2638 c = op.int 2639 l = len(self._int)+1 >> 1 2640 2641 # rescale so that c has exactly prec base 100 'digits' 2642 shift = prec-l 2643 if shift >= 0: 2644 c *= 100**shift 2645 exact = True 2646 else: 2647 c, remainder = divmod(c, 100**-shift) 2648 exact = not remainder 2649 e -= shift 2650 2651 # find n = floor(sqrt(c)) using Newton's method 2652 n = 10**prec 2653 while True: 2654 q = c//n 2655 if n <= q: 2656 break 2657 else: 2658 n = n + q >> 1 2659 exact = exact and n*n == c 2660 2661 if exact: 2662 # result is exact; rescale to use ideal exponent e 2663 if shift >= 0: 2664 # assert n % 10**shift == 0 2665 n //= 10**shift 2666 else: 2667 n *= 10**-shift 2668 e += shift 2669 else: 2670 # result is not exact; fix last digit as described above 2671 if n % 5 == 0: 2672 n += 1 2673 2674 ans = _dec_from_triple(0, str(n), e) 2675 2676 # round, and fit to current context 2677 context = context._shallow_copy() 2678 rounding = context._set_rounding(ROUND_HALF_EVEN) 2679 ans = ans._fix(context) 2680 context.rounding = rounding 2681 2682 return ans 2683 2684 def max(self, other, context=None): 2685 """Returns the larger value. 2686 2687 Like max(self, other) except if one is not a number, returns 2688 NaN (and signals if one is sNaN). Also rounds. 2689 """ 2690 other = _convert_other(other, raiseit=True) 2691 2692 if context is None: 2693 context = getcontext() 2694 2695 if self._is_special or other._is_special: 2696 # If one operand is a quiet NaN and the other is number, then the 2697 # number is always returned 2698 sn = self._isnan() 2699 on = other._isnan() 2700 if sn or on: 2701 if on == 1 and sn == 0: 2702 return self._fix(context) 2703 if sn == 1 and on == 0: 2704 return other._fix(context) 2705 return self._check_nans(other, context) 2706 2707 c = self._cmp(other) 2708 if c == 0: 2709 # If both operands are finite and equal in numerical value 2710 # then an ordering is applied: 2711 # 2712 # If the signs differ then max returns the operand with the 2713 # positive sign and min returns the operand with the negative sign 2714 # 2715 # If the signs are the same then the exponent is used to select 2716 # the result. This is exactly the ordering used in compare_total. 2717 c = self.compare_total(other) 2718 2719 if c == -1: 2720 ans = other 2721 else: 2722 ans = self 2723 2724 return ans._fix(context) 2725 2726 def min(self, other, context=None): 2727 """Returns the smaller value. 2728 2729 Like min(self, other) except if one is not a number, returns 2730 NaN (and signals if one is sNaN). Also rounds. 2731 """ 2732 other = _convert_other(other, raiseit=True) 2733 2734 if context is None: 2735 context = getcontext() 2736 2737 if self._is_special or other._is_special: 2738 # If one operand is a quiet NaN and the other is number, then the 2739 # number is always returned 2740 sn = self._isnan() 2741 on = other._isnan() 2742 if sn or on: 2743 if on == 1 and sn == 0: 2744 return self._fix(context) 2745 if sn == 1 and on == 0: 2746 return other._fix(context) 2747 return self._check_nans(other, context) 2748 2749 c = self._cmp(other) 2750 if c == 0: 2751 c = self.compare_total(other) 2752 2753 if c == -1: 2754 ans = self 2755 else: 2756 ans = other 2757 2758 return ans._fix(context) 2759 2760 def _isinteger(self): 2761 """Returns whether self is an integer""" 2762 if self._is_special: 2763 return False 2764 if self._exp >= 0: 2765 return True 2766 rest = self._int[self._exp:] 2767 return rest == '0'*len(rest) 2768 2769 def _iseven(self): 2770 """Returns True if self is even. Assumes self is an integer.""" 2771 if not self or self._exp > 0: 2772 return True 2773 return self._int[-1+self._exp] in '02468' 2774 2775 def adjusted(self): 2776 """Return the adjusted exponent of self""" 2777 try: 2778 return self._exp + len(self._int) - 1 2779 # If NaN or Infinity, self._exp is string 2780 except TypeError: 2781 return 0 2782 2783 def canonical(self, context=None): 2784 """Returns the same Decimal object. 2785 2786 As we do not have different encodings for the same number, the 2787 received object already is in its canonical form. 2788 """ 2789 return self 2790 2791 def compare_signal(self, other, context=None): 2792 """Compares self to the other operand numerically. 2793 2794 It's pretty much like compare(), but all NaNs signal, with signaling 2795 NaNs taking precedence over quiet NaNs. 2796 """ 2797 other = _convert_other(other, raiseit = True) 2798 ans = self._compare_check_nans(other, context) 2799 if ans: 2800 return ans 2801 return self.compare(other, context=context) 2802 2803 def compare_total(self, other): 2804 """Compares self to other using the abstract representations. 2805 2806 This is not like the standard compare, which use their numerical 2807 value. Note that a total ordering is defined for all possible abstract 2808 representations. 2809 """ 2810 other = _convert_other(other, raiseit=True) 2811 2812 # if one is negative and the other is positive, it's easy 2813 if self._sign and not other._sign: 2814 return _NegativeOne 2815 if not self._sign and other._sign: 2816 return _One 2817 sign = self._sign 2818 2819 # let's handle both NaN types 2820 self_nan = self._isnan() 2821 other_nan = other._isnan() 2822 if self_nan or other_nan: 2823 if self_nan == other_nan: 2824 # compare payloads as though they're integers 2825 self_key = len(self._int), self._int 2826 other_key = len(other._int), other._int 2827 if self_key < other_key: 2828 if sign: 2829 return _One 2830 else: 2831 return _NegativeOne 2832 if self_key > other_key: 2833 if sign: 2834 return _NegativeOne 2835 else: 2836 return _One 2837 return _Zero 2838 2839 if sign: 2840 if self_nan == 1: 2841 return _NegativeOne 2842 if other_nan == 1: 2843 return _One 2844 if self_nan == 2: 2845 return _NegativeOne 2846 if other_nan == 2: 2847 return _One 2848 else: 2849 if self_nan == 1: 2850 return _One 2851 if other_nan == 1: 2852 return _NegativeOne 2853 if self_nan == 2: 2854 return _One 2855 if other_nan == 2: 2856 return _NegativeOne 2857 2858 if self < other: 2859 return _NegativeOne 2860 if self > other: 2861 return _One 2862 2863 if self._exp < other._exp: 2864 if sign: 2865 return _One 2866 else: 2867 return _NegativeOne 2868 if self._exp > other._exp: 2869 if sign: 2870 return _NegativeOne 2871 else: 2872 return _One 2873 return _Zero 2874 2875 2876 def compare_total_mag(self, other): 2877 """Compares self to other using abstract repr., ignoring sign. 2878 2879 Like compare_total, but with operand's sign ignored and assumed to be 0. 2880 """ 2881 other = _convert_other(other, raiseit=True) 2882 2883 s = self.copy_abs() 2884 o = other.copy_abs() 2885 return s.compare_total(o) 2886 2887 def copy_abs(self): 2888 """Returns a copy with the sign set to 0. """ 2889 return _dec_from_triple(0, self._int, self._exp, self._is_special) 2890 2891 def copy_negate(self): 2892 """Returns a copy with the sign inverted.""" 2893 if self._sign: 2894 return _dec_from_triple(0, self._int, self._exp, self._is_special) 2895 else: 2896 return _dec_from_triple(1, self._int, self._exp, self._is_special) 2897 2898 def copy_sign(self, other): 2899 """Returns self with the sign of other.""" 2900 other = _convert_other(other, raiseit=True) 2901 return _dec_from_triple(other._sign, self._int, 2902 self._exp, self._is_special) 2903 2904 def exp(self, context=None): 2905 """Returns e ** self.""" 2906 2907 if context is None: 2908 context = getcontext() 2909 2910 # exp(NaN) = NaN 2911 ans = self._check_nans(context=context) 2912 if ans: 2913 return ans 2914 2915 # exp(-Infinity) = 0 2916 if self._isinfinity() == -1: 2917 return _Zero 2918 2919 # exp(0) = 1 2920 if not self: 2921 return _One 2922 2923 # exp(Infinity) = Infinity 2924 if self._isinfinity() == 1: 2925 return Decimal(self) 2926 2927 # the result is now guaranteed to be inexact (the true 2928 # mathematical result is transcendental). There's no need to 2929 # raise Rounded and Inexact here---they'll always be raised as 2930 # a result of the call to _fix. 2931 p = context.prec 2932 adj = self.adjusted() 2933 2934 # we only need to do any computation for quite a small range 2935 # of adjusted exponents---for example, -29 <= adj <= 10 for 2936 # the default context. For smaller exponent the result is 2937 # indistinguishable from 1 at the given precision, while for 2938 # larger exponent the result either overflows or underflows. 2939 if self._sign == 0 and adj > len(str((context.Emax+1)*3)): 2940 # overflow 2941 ans = _dec_from_triple(0, '1', context.Emax+1) 2942 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)): 2943 # underflow to 0 2944 ans = _dec_from_triple(0, '1', context.Etiny()-1) 2945 elif self._sign == 0 and adj < -p: 2946 # p+1 digits; final round will raise correct flags 2947 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p) 2948 elif self._sign == 1 and adj < -p-1: 2949 # p+1 digits; final round will raise correct flags 2950 ans = _dec_from_triple(0, '9'*(p+1), -p-1) 2951 # general case 2952 else: 2953 op = _WorkRep(self) 2954 c, e = op.int, op.exp 2955 if op.sign == 1: 2956 c = -c 2957 2958 # compute correctly rounded result: increase precision by 2959 # 3 digits at a time until we get an unambiguously 2960 # roundable result 2961 extra = 3 2962 while True: 2963 coeff, exp = _dexp(c, e, p+extra) 2964 if coeff % (5*10**(len(str(coeff))-p-1)): 2965 break 2966 extra += 3 2967 2968 ans = _dec_from_triple(0, str(coeff), exp) 2969 2970 # at this stage, ans should round correctly with *any* 2971 # rounding mode, not just with ROUND_HALF_EVEN 2972 context = context._shallow_copy() 2973 rounding = context._set_rounding(ROUND_HALF_EVEN) 2974 ans = ans._fix(context) 2975 context.rounding = rounding 2976 2977 return ans 2978 2979 def is_canonical(self): 2980 """Return True if self is canonical; otherwise return False. 2981 2982 Currently, the encoding of a Decimal instance is always 2983 canonical, so this method returns True for any Decimal. 2984 """ 2985 return True 2986 2987 def is_finite(self): 2988 """Return True if self is finite; otherwise return False. 2989 2990 A Decimal instance is considered finite if it is neither 2991 infinite nor a NaN. 2992 """ 2993 return not self._is_special 2994 2995 def is_infinite(self): 2996 """Return True if self is infinite; otherwise return False.""" 2997 return self._exp == 'F' 2998 2999 def is_nan(self): 3000 """Return True if self is a qNaN or sNaN; otherwise return False.""" 3001 return self._exp in ('n', 'N') 3002 3003 def is_normal(self, context=None): 3004 """Return True if self is a normal number; otherwise return False.""" 3005 if self._is_special or not self: 3006 return False 3007 if context is None: 3008 context = getcontext() 3009 return context.Emin <= self.adjusted() 3010 3011 def is_qnan(self): 3012 """Return True if self is a quiet NaN; otherwise return False.""" 3013 return self._exp == 'n' 3014 3015 def is_signed(self): 3016 """Return True if self is negative; otherwise return False.""" 3017 return self._sign == 1 3018 3019 def is_snan(self): 3020 """Return True if self is a signaling NaN; otherwise return False.""" 3021 return self._exp == 'N' 3022 3023 def is_subnormal(self, context=None): 3024 """Return True if self is subnormal; otherwise return False.""" 3025 if self._is_special or not self: 3026 return False 3027 if context is None: 3028 context = getcontext() 3029 return self.adjusted() < context.Emin 3030 3031 def is_zero(self): 3032 """Return True if self is a zero; otherwise return False.""" 3033 return not self._is_special and self._int == '0' 3034 3035 def _ln_exp_bound(self): 3036 """Compute a lower bound for the adjusted exponent of self.ln(). 3037 In other words, compute r such that self.ln() >= 10**r. Assumes 3038 that self is finite and positive and that self != 1. 3039 """ 3040 3041 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1 3042 adj = self._exp + len(self._int) - 1 3043 if adj >= 1: 3044 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10) 3045 return len(str(adj*23//10)) - 1 3046 if adj <= -2: 3047 # argument <= 0.1 3048 return len(str((-1-adj)*23//10)) - 1 3049 op = _WorkRep(self) 3050 c, e = op.int, op.exp 3051 if adj == 0: 3052 # 1 < self < 10 3053 num = str(c-10**-e) 3054 den = str(c) 3055 return len(num) - len(den) - (num < den) 3056 # adj == -1, 0.1 <= self < 1 3057 return e + len(str(10**-e - c)) - 1 3058 3059 3060 def ln(self, context=None): 3061 """Returns the natural (base e) logarithm of self.""" 3062 3063 if context is None: 3064 context = getcontext() 3065 3066 # ln(NaN) = NaN 3067 ans = self._check_nans(context=context) 3068 if ans: 3069 return ans 3070 3071 # ln(0.0) == -Infinity 3072 if not self: 3073 return _NegativeInfinity 3074 3075 # ln(Infinity) = Infinity 3076 if self._isinfinity() == 1: 3077 return _Infinity 3078 3079 # ln(1.0) == 0.0 3080 if self == _One: 3081 return _Zero 3082 3083 # ln(negative) raises InvalidOperation 3084 if self._sign == 1: 3085 return context._raise_error(InvalidOperation, 3086 'ln of a negative value') 3087 3088 # result is irrational, so necessarily inexact 3089 op = _WorkRep(self) 3090 c, e = op.int, op.exp 3091 p = context.prec 3092 3093 # correctly rounded result: repeatedly increase precision by 3 3094 # until we get an unambiguously roundable result 3095 places = p - self._ln_exp_bound() + 2 # at least p+3 places 3096 while True: 3097 coeff = _dlog(c, e, places) 3098 # assert len(str(abs(coeff)))-p >= 1 3099 if coeff % (5*10**(len(str(abs(coeff)))-p-1)): 3100 break 3101 places += 3 3102 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) 3103 3104 context = context._shallow_copy() 3105 rounding = context._set_rounding(ROUND_HALF_EVEN) 3106 ans = ans._fix(context) 3107 context.rounding = rounding 3108 return ans 3109 3110 def _log10_exp_bound(self): 3111 """Compute a lower bound for the adjusted exponent of self.log10(). 3112 In other words, find r such that self.log10() >= 10**r. 3113 Assumes that self is finite and positive and that self != 1. 3114 """ 3115 3116 # For x >= 10 or x < 0.1 we only need a bound on the integer 3117 # part of log10(self), and this comes directly from the 3118 # exponent of x. For 0.1 <= x <= 10 we use the inequalities 3119 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| > 3120 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0 3121 3122 adj = self._exp + len(self._int) - 1 3123 if adj >= 1: 3124 # self >= 10 3125 return len(str(adj))-1 3126 if adj <= -2: 3127 # self < 0.1 3128 return len(str(-1-adj))-1 3129 op = _WorkRep(self) 3130 c, e = op.int, op.exp 3131 if adj == 0: 3132 # 1 < self < 10 3133 num = str(c-10**-e) 3134 den = str(231*c) 3135 return len(num) - len(den) - (num < den) + 2 3136 # adj == -1, 0.1 <= self < 1 3137 num = str(10**-e-c) 3138 return len(num) + e - (num < "231") - 1 3139 3140 def log10(self, context=None): 3141 """Returns the base 10 logarithm of self.""" 3142 3143 if context is None: 3144 context = getcontext() 3145 3146 # log10(NaN) = NaN 3147 ans = self._check_nans(context=context) 3148 if ans: 3149 return ans 3150 3151 # log10(0.0) == -Infinity 3152 if not self: 3153 return _NegativeInfinity 3154 3155 # log10(Infinity) = Infinity 3156 if self._isinfinity() == 1: 3157 return _Infinity 3158 3159 # log10(negative or -Infinity) raises InvalidOperation 3160 if self._sign == 1: 3161 return context._raise_error(InvalidOperation, 3162 'log10 of a negative value') 3163 3164 # log10(10**n) = n 3165 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1): 3166 # answer may need rounding 3167 ans = Decimal(self._exp + len(self._int) - 1) 3168 else: 3169 # result is irrational, so necessarily inexact 3170 op = _WorkRep(self) 3171 c, e = op.int, op.exp 3172 p = context.prec 3173 3174 # correctly rounded result: repeatedly increase precision 3175 # until result is unambiguously roundable 3176 places = p-self._log10_exp_bound()+2 3177 while True: 3178 coeff = _dlog10(c, e, places) 3179 # assert len(str(abs(coeff)))-p >= 1 3180 if coeff % (5*10**(len(str(abs(coeff)))-p-1)): 3181 break 3182 places += 3 3183 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) 3184 3185 context = context._shallow_copy() 3186 rounding = context._set_rounding(ROUND_HALF_EVEN) 3187 ans = ans._fix(context) 3188 context.rounding = rounding 3189 return ans 3190 3191 def logb(self, context=None): 3192 """ Returns the exponent of the magnitude of self's MSD. 3193 3194 The result is the integer which is the exponent of the magnitude 3195 of the most significant digit of self (as though it were truncated 3196 to a single digit while maintaining the value of that digit and 3197 without limiting the resulting exponent). 3198 """ 3199 # logb(NaN) = NaN 3200 ans = self._check_nans(context=context) 3201 if ans: 3202 return ans 3203 3204 if context is None: 3205 context = getcontext() 3206 3207 # logb(+/-Inf) = +Inf 3208 if self._isinfinity(): 3209 return _Infinity 3210 3211 # logb(0) = -Inf, DivisionByZero 3212 if not self: 3213 return context._raise_error(DivisionByZero, 'logb(0)', 1) 3214 3215 # otherwise, simply return the adjusted exponent of self, as a 3216 # Decimal. Note that no attempt is made to fit the result 3217 # into the current context. 3218 ans = Decimal(self.adjusted()) 3219 return ans._fix(context) 3220 3221 def _islogical(self): 3222 """Return True if self is a logical operand. 3223 3224 For being logical, it must be a finite number with a sign of 0, 3225 an exponent of 0, and a coefficient whose digits must all be 3226 either 0 or 1. 3227 """ 3228 if self._sign != 0 or self._exp != 0: 3229 return False 3230 for dig in self._int: 3231 if dig not in '01': 3232 return False 3233 return True 3234 3235 def _fill_logical(self, context, opa, opb): 3236 dif = context.prec - len(opa) 3237 if dif > 0: 3238 opa = '0'*dif + opa 3239 elif dif < 0: 3240 opa = opa[-context.prec:] 3241 dif = context.prec - len(opb) 3242 if dif > 0: 3243 opb = '0'*dif + opb 3244 elif dif < 0: 3245 opb = opb[-context.prec:] 3246 return opa, opb 3247 3248 def logical_and(self, other, context=None): 3249 """Applies an 'and' operation between self and other's digits.""" 3250 if context is None: 3251 context = getcontext() 3252 3253 other = _convert_other(other, raiseit=True) 3254 3255 if not self._islogical() or not other._islogical(): 3256 return context._raise_error(InvalidOperation) 3257 3258 # fill to context.prec 3259 (opa, opb) = self._fill_logical(context, self._int, other._int) 3260 3261 # make the operation, and clean starting zeroes 3262 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)]) 3263 return _dec_from_triple(0, result.lstrip('0') or '0', 0) 3264 3265 def logical_invert(self, context=None): 3266 """Invert all its digits.""" 3267 if context is None: 3268 context = getcontext() 3269 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0), 3270 context) 3271 3272 def logical_or(self, other, context=None): 3273 """Applies an 'or' operation between self and other's digits.""" 3274 if context is None: 3275 context = getcontext() 3276 3277 other = _convert_other(other, raiseit=True) 3278 3279 if not self._islogical() or not other._islogical(): 3280 return context._raise_error(InvalidOperation) 3281 3282 # fill to context.prec 3283 (opa, opb) = self._fill_logical(context, self._int, other._int) 3284 3285 # make the operation, and clean starting zeroes 3286 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)]) 3287 return _dec_from_triple(0, result.lstrip('0') or '0', 0) 3288 3289 def logical_xor(self, other, context=None): 3290 """Applies an 'xor' operation between self and other's digits.""" 3291 if context is None: 3292 context = getcontext() 3293 3294 other = _convert_other(other, raiseit=True) 3295 3296 if not self._islogical() or not other._islogical(): 3297 return context._raise_error(InvalidOperation) 3298 3299 # fill to context.prec 3300 (opa, opb) = self._fill_logical(context, self._int, other._int) 3301 3302 # make the operation, and clean starting zeroes 3303 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)]) 3304 return _dec_from_triple(0, result.lstrip('0') or '0', 0) 3305 3306 def max_mag(self, other, context=None): 3307 """Compares the values numerically with their sign ignored.""" 3308 other = _convert_other(other, raiseit=True) 3309 3310 if context is None: 3311 context = getcontext() 3312 3313 if self._is_special or other._is_special: 3314 # If one operand is a quiet NaN and the other is number, then the 3315 # number is always returned 3316 sn = self._isnan() 3317 on = other._isnan() 3318 if sn or on: 3319 if on == 1 and sn == 0: 3320 return self._fix(context) 3321 if sn == 1 and on == 0: 3322 return other._fix(context) 3323 return self._check_nans(other, context) 3324 3325 c = self.copy_abs()._cmp(other.copy_abs()) 3326 if c == 0: 3327 c = self.compare_total(other) 3328 3329 if c == -1: 3330 ans = other 3331 else: 3332 ans = self 3333 3334 return ans._fix(context) 3335 3336 def min_mag(self, other, context=None): 3337 """Compares the values numerically with their sign ignored.""" 3338 other = _convert_other(other, raiseit=True) 3339 3340 if context is None: 3341 context = getcontext() 3342 3343 if self._is_special or other._is_special: 3344 # If one operand is a quiet NaN and the other is number, then the 3345 # number is always returned 3346 sn = self._isnan() 3347 on = other._isnan() 3348 if sn or on: 3349 if on == 1 and sn == 0: 3350 return self._fix(context) 3351 if sn == 1 and on == 0: 3352 return other._fix(context) 3353 return self._check_nans(other, context) 3354 3355 c = self.copy_abs()._cmp(other.copy_abs()) 3356 if c == 0: 3357 c = self.compare_total(other) 3358 3359 if c == -1: 3360 ans = self 3361 else: 3362 ans = other 3363 3364 return ans._fix(context) 3365 3366 def next_minus(self, context=None): 3367 """Returns the largest representable number smaller than itself.""" 3368 if context is None: 3369 context = getcontext() 3370 3371 ans = self._check_nans(context=context) 3372 if ans: 3373 return ans 3374 3375 if self._isinfinity() == -1: 3376 return _NegativeInfinity 3377 if self._isinfinity() == 1: 3378 return _dec_from_triple(0, '9'*context.prec, context.Etop()) 3379 3380 context = context.copy() 3381 context._set_rounding(ROUND_FLOOR) 3382 context._ignore_all_flags() 3383 new_self = self._fix(context) 3384 if new_self != self: 3385 return new_self 3386 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1), 3387 context) 3388 3389 def next_plus(self, context=None): 3390 """Returns the smallest representable number larger than itself.""" 3391 if context is None: 3392 context = getcontext() 3393 3394 ans = self._check_nans(context=context) 3395 if ans: 3396 return ans 3397 3398 if self._isinfinity() == 1: 3399 return _Infinity 3400 if self._isinfinity() == -1: 3401 return _dec_from_triple(1, '9'*context.prec, context.Etop()) 3402 3403 context = context.copy() 3404 context._set_rounding(ROUND_CEILING) 3405 context._ignore_all_flags() 3406 new_self = self._fix(context) 3407 if new_self != self: 3408 return new_self 3409 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1), 3410 context) 3411 3412 def next_toward(self, other, context=None): 3413 """Returns the number closest to self, in the direction towards other. 3414 3415 The result is the closest representable number to self 3416 (excluding self) that is in the direction towards other, 3417 unless both have the same value. If the two operands are 3418 numerically equal, then the result is a copy of self with the 3419 sign set to be the same as the sign of other. 3420 """ 3421 other = _convert_other(other, raiseit=True) 3422 3423 if context is None: 3424 context = getcontext() 3425 3426 ans = self._check_nans(other, context) 3427 if ans: 3428 return ans 3429 3430 comparison = self._cmp(other) 3431 if comparison == 0: 3432 return self.copy_sign(other) 3433 3434 if comparison == -1: 3435 ans = self.next_plus(context) 3436 else: # comparison == 1 3437 ans = self.next_minus(context) 3438 3439 # decide which flags to raise using value of ans 3440 if ans._isinfinity(): 3441 context._raise_error(Overflow, 3442 'Infinite result from next_toward', 3443 ans._sign) 3444 context._raise_error(Inexact) 3445 context._raise_error(Rounded) 3446 elif ans.adjusted() < context.Emin: 3447 context._raise_error(Underflow) 3448 context._raise_error(Subnormal) 3449 context._raise_error(Inexact) 3450 context._raise_error(Rounded) 3451 # if precision == 1 then we don't raise Clamped for a 3452 # result 0E-Etiny. 3453 if not ans: 3454 context._raise_error(Clamped) 3455 3456 return ans 3457 3458 def number_class(self, context=None): 3459 """Returns an indication of the class of self. 3460 3461 The class is one of the following strings: 3462 sNaN 3463 NaN 3464 -Infinity 3465 -Normal 3466 -Subnormal 3467 -Zero 3468 +Zero 3469 +Subnormal 3470 +Normal 3471 +Infinity 3472 """ 3473 if self.is_snan(): 3474 return "sNaN" 3475 if self.is_qnan(): 3476 return "NaN" 3477 inf = self._isinfinity() 3478 if inf == 1: 3479 return "+Infinity" 3480 if inf == -1: 3481 return "-Infinity" 3482 if self.is_zero(): 3483 if self._sign: 3484 return "-Zero" 3485 else: 3486 return "+Zero" 3487 if context is None: 3488 context = getcontext() 3489 if self.is_subnormal(context=context): 3490 if self._sign: 3491 return "-Subnormal" 3492 else: 3493 return "+Subnormal" 3494 # just a normal, regular, boring number, :) 3495 if self._sign: 3496 return "-Normal" 3497 else: 3498 return "+Normal" 3499 3500 def radix(self): 3501 """Just returns 10, as this is Decimal, :)""" 3502 return Decimal(10) 3503 3504 def rotate(self, other, context=None): 3505 """Returns a rotated copy of self, value-of-other times.""" 3506 if context is None: 3507 context = getcontext() 3508 3509 other = _convert_other(other, raiseit=True) 3510 3511 ans = self._check_nans(other, context) 3512 if ans: 3513 return ans 3514 3515 if other._exp != 0: 3516 return context._raise_error(InvalidOperation) 3517 if not (-context.prec <= int(other) <= context.prec): 3518 return context._raise_error(InvalidOperation) 3519 3520 if self._isinfinity(): 3521 return Decimal(self) 3522 3523 # get values, pad if necessary 3524 torot = int(other) 3525 rotdig = self._int 3526 topad = context.prec - len(rotdig) 3527 if topad > 0: 3528 rotdig = '0'*topad + rotdig 3529 elif topad < 0: 3530 rotdig = rotdig[-topad:] 3531 3532 # let's rotate! 3533 rotated = rotdig[torot:] + rotdig[:torot] 3534 return _dec_from_triple(self._sign, 3535 rotated.lstrip('0') or '0', self._exp) 3536 3537 def scaleb(self, other, context=None): 3538 """Returns self operand after adding the second value to its exp.""" 3539 if context is None: 3540 context = getcontext() 3541 3542 other = _convert_other(other, raiseit=True) 3543 3544 ans = self._check_nans(other, context) 3545 if ans: 3546 return ans 3547 3548 if other._exp != 0: 3549 return context._raise_error(InvalidOperation) 3550 liminf = -2 * (context.Emax + context.prec) 3551 limsup = 2 * (context.Emax + context.prec) 3552 if not (liminf <= int(other) <= limsup): 3553 return context._raise_error(InvalidOperation) 3554 3555 if self._isinfinity(): 3556 return Decimal(self) 3557 3558 d = _dec_from_triple(self._sign, self._int, self._exp + int(other)) 3559 d = d._fix(context) 3560 return d 3561 3562 def shift(self, other, context=None): 3563 """Returns a shifted copy of self, value-of-other times.""" 3564 if context is None: 3565 context = getcontext() 3566 3567 other = _convert_other(other, raiseit=True) 3568 3569 ans = self._check_nans(other, context) 3570 if ans: 3571 return ans 3572 3573 if other._exp != 0: 3574 return context._raise_error(InvalidOperation) 3575 if not (-context.prec <= int(other) <= context.prec): 3576 return context._raise_error(InvalidOperation) 3577 3578 if self._isinfinity(): 3579 return Decimal(self) 3580 3581 # get values, pad if necessary 3582 torot = int(other) 3583 rotdig = self._int 3584 topad = context.prec - len(rotdig) 3585 if topad > 0: 3586 rotdig = '0'*topad + rotdig 3587 elif topad < 0: 3588 rotdig = rotdig[-topad:] 3589 3590 # let's shift! 3591 if torot < 0: 3592 shifted = rotdig[:torot] 3593 else: 3594 shifted = rotdig + '0'*torot 3595 shifted = shifted[-context.prec:] 3596 3597 return _dec_from_triple(self._sign, 3598 shifted.lstrip('0') or '0', self._exp) 3599 3600 # Support for pickling, copy, and deepcopy 3601 def __reduce__(self): 3602 return (self.__class__, (str(self),)) 3603 3604 def __copy__(self): 3605 if type(self) is Decimal: 3606 return self # I'm immutable; therefore I am my own clone 3607 return self.__class__(str(self)) 3608 3609 def __deepcopy__(self, memo): 3610 if type(self) is Decimal: 3611 return self # My components are also immutable 3612 return self.__class__(str(self)) 3613 3614 # PEP 3101 support. the _localeconv keyword argument should be 3615 # considered private: it's provided for ease of testing only. 3616 def __format__(self, specifier, context=None, _localeconv=None): 3617 """Format a Decimal instance according to the given specifier. 3618 3619 The specifier should be a standard format specifier, with the 3620 form described in PEP 3101. Formatting types 'e', 'E', 'f', 3621 'F', 'g', 'G', 'n' and '%' are supported. If the formatting 3622 type is omitted it defaults to 'g' or 'G', depending on the 3623 value of context.capitals. 3624 """ 3625 3626 # Note: PEP 3101 says that if the type is not present then 3627 # there should be at least one digit after the decimal point. 3628 # We take the liberty of ignoring this requirement for 3629 # Decimal---it's presumably there to make sure that 3630 # format(float, '') behaves similarly to str(float). 3631 if context is None: 3632 context = getcontext() 3633 3634 spec = _parse_format_specifier(specifier, _localeconv=_localeconv) 3635 3636 # special values don't care about the type or precision 3637 if self._is_special: 3638 sign = _format_sign(self._sign, spec) 3639 body = str(self.copy_abs()) 3640 return _format_align(sign, body, spec) 3641 3642 # a type of None defaults to 'g' or 'G', depending on context 3643 if spec['type'] is None: 3644 spec['type'] = ['g', 'G'][context.capitals] 3645 3646 # if type is '%', adjust exponent of self accordingly 3647 if spec['type'] == '%': 3648 self = _dec_from_triple(self._sign, self._int, self._exp+2) 3649 3650 # round if necessary, taking rounding mode from the context 3651 rounding = context.rounding 3652 precision = spec['precision'] 3653 if precision is not None: 3654 if spec['type'] in 'eE': 3655 self = self._round(precision+1, rounding) 3656 elif spec['type'] in 'fF%': 3657 self = self._rescale(-precision, rounding) 3658 elif spec['type'] in 'gG' and len(self._int) > precision: 3659 self = self._round(precision, rounding) 3660 # special case: zeros with a positive exponent can't be 3661 # represented in fixed point; rescale them to 0e0. 3662 if not self and self._exp > 0 and spec['type'] in 'fF%': 3663 self = self._rescale(0, rounding) 3664 3665 # figure out placement of the decimal point 3666 leftdigits = self._exp + len(self._int) 3667 if spec['type'] in 'eE': 3668 if not self and precision is not None: 3669 dotplace = 1 - precision 3670 else: 3671 dotplace = 1 3672 elif spec['type'] in 'fF%': 3673 dotplace = leftdigits 3674 elif spec['type'] in 'gG': 3675 if self._exp <= 0 and leftdigits > -6: 3676 dotplace = leftdigits 3677 else: 3678 dotplace = 1 3679 3680 # find digits before and after decimal point, and get exponent 3681 if dotplace < 0: 3682 intpart = '0' 3683 fracpart = '0'*(-dotplace) + self._int 3684 elif dotplace > len(self._int): 3685 intpart = self._int + '0'*(dotplace-len(self._int)) 3686 fracpart = '' 3687 else: 3688 intpart = self._int[:dotplace] or '0' 3689 fracpart = self._int[dotplace:] 3690 exp = leftdigits-dotplace 3691 3692 # done with the decimal-specific stuff; hand over the rest 3693 # of the formatting to the _format_number function 3694 return _format_number(self._sign, intpart, fracpart, exp, spec) 3695 3696def _dec_from_triple(sign, coefficient, exponent, special=False): 3697 """Create a decimal instance directly, without any validation, 3698 normalization (e.g. removal of leading zeros) or argument 3699 conversion. 3700 3701 This function is for *internal use only*. 3702 """ 3703 3704 self = object.__new__(Decimal) 3705 self._sign = sign 3706 self._int = coefficient 3707 self._exp = exponent 3708 self._is_special = special 3709 3710 return self 3711 3712# Register Decimal as a kind of Number (an abstract base class). 3713# However, do not register it as Real (because Decimals are not 3714# interoperable with floats). 3715_numbers.Number.register(Decimal) 3716 3717 3718##### Context class ####################################################### 3719 3720class _ContextManager(object): 3721 """Context manager class to support localcontext(). 3722 3723 Sets a copy of the supplied context in __enter__() and restores 3724 the previous decimal context in __exit__() 3725 """ 3726 def __init__(self, new_context): 3727 self.new_context = new_context.copy() 3728 def __enter__(self): 3729 self.saved_context = getcontext() 3730 setcontext(self.new_context) 3731 return self.new_context 3732 def __exit__(self, t, v, tb): 3733 setcontext(self.saved_context) 3734 3735class Context(object): 3736 """Contains the context for a Decimal instance. 3737 3738 Contains: 3739 prec - precision (for use in rounding, division, square roots..) 3740 rounding - rounding type (how you round) 3741 traps - If traps[exception] = 1, then the exception is 3742 raised when it is caused. Otherwise, a value is 3743 substituted in. 3744 flags - When an exception is caused, flags[exception] is set. 3745 (Whether or not the trap_enabler is set) 3746 Should be reset by user of Decimal instance. 3747 Emin - Minimum exponent 3748 Emax - Maximum exponent 3749 capitals - If 1, 1*10^1 is printed as 1E+1. 3750 If 0, printed as 1e1 3751 _clamp - If 1, change exponents if too high (Default 0) 3752 """ 3753 3754 def __init__(self, prec=None, rounding=None, 3755 traps=None, flags=None, 3756 Emin=None, Emax=None, 3757 capitals=None, _clamp=0, 3758 _ignored_flags=None): 3759 # Set defaults; for everything except flags and _ignored_flags, 3760 # inherit from DefaultContext. 3761 try: 3762 dc = DefaultContext 3763 except NameError: 3764 pass 3765 3766 self.prec = prec if prec is not None else dc.prec 3767 self.rounding = rounding if rounding is not None else dc.rounding 3768 self.Emin = Emin if Emin is not None else dc.Emin 3769 self.Emax = Emax if Emax is not None else dc.Emax 3770 self.capitals = capitals if capitals is not None else dc.capitals 3771 self._clamp = _clamp if _clamp is not None else dc._clamp 3772 3773 if _ignored_flags is None: 3774 self._ignored_flags = [] 3775 else: 3776 self._ignored_flags = _ignored_flags 3777 3778 if traps is None: 3779 self.traps = dc.traps.copy() 3780 elif not isinstance(traps, dict): 3781 self.traps = dict((s, int(s in traps)) for s in _signals) 3782 else: 3783 self.traps = traps 3784 3785 if flags is None: 3786 self.flags = dict.fromkeys(_signals, 0) 3787 elif not isinstance(flags, dict): 3788 self.flags = dict((s, int(s in flags)) for s in _signals) 3789 else: 3790 self.flags = flags 3791 3792 def __repr__(self): 3793 """Show the current context.""" 3794 s = [] 3795 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, ' 3796 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d' 3797 % vars(self)) 3798 names = [f.__name__ for f, v in self.flags.items() if v] 3799 s.append('flags=[' + ', '.join(names) + ']') 3800 names = [t.__name__ for t, v in self.traps.items() if v] 3801 s.append('traps=[' + ', '.join(names) + ']') 3802 return ', '.join(s) + ')' 3803 3804 def clear_flags(self): 3805 """Reset all flags to zero""" 3806 for flag in self.flags: 3807 self.flags[flag] = 0 3808 3809 def _shallow_copy(self): 3810 """Returns a shallow copy from self.""" 3811 nc = Context(self.prec, self.rounding, self.traps, 3812 self.flags, self.Emin, self.Emax, 3813 self.capitals, self._clamp, self._ignored_flags) 3814 return nc 3815 3816 def copy(self): 3817 """Returns a deep copy from self.""" 3818 nc = Context(self.prec, self.rounding, self.traps.copy(), 3819 self.flags.copy(), self.Emin, self.Emax, 3820 self.capitals, self._clamp, self._ignored_flags) 3821 return nc 3822 __copy__ = copy 3823 3824 def _raise_error(self, condition, explanation = None, *args): 3825 """Handles an error 3826 3827 If the flag is in _ignored_flags, returns the default response. 3828 Otherwise, it sets the flag, then, if the corresponding 3829 trap_enabler is set, it reraises the exception. Otherwise, it returns 3830 the default value after setting the flag. 3831 """ 3832 error = _condition_map.get(condition, condition) 3833 if error in self._ignored_flags: 3834 # Don't touch the flag 3835 return error().handle(self, *args) 3836 3837 self.flags[error] = 1 3838 if not self.traps[error]: 3839 # The errors define how to handle themselves. 3840 return condition().handle(self, *args) 3841 3842 # Errors should only be risked on copies of the context 3843 # self._ignored_flags = [] 3844 raise error(explanation) 3845 3846 def _ignore_all_flags(self): 3847 """Ignore all flags, if they are raised""" 3848 return self._ignore_flags(*_signals) 3849 3850 def _ignore_flags(self, *flags): 3851 """Ignore the flags, if they are raised""" 3852 # Do not mutate-- This way, copies of a context leave the original 3853 # alone. 3854 self._ignored_flags = (self._ignored_flags + list(flags)) 3855 return list(flags) 3856 3857 def _regard_flags(self, *flags): 3858 """Stop ignoring the flags, if they are raised""" 3859 if flags and isinstance(flags[0], (tuple,list)): 3860 flags = flags[0] 3861 for flag in flags: 3862 self._ignored_flags.remove(flag) 3863 3864 # We inherit object.__hash__, so we must deny this explicitly 3865 __hash__ = None 3866 3867 def Etiny(self): 3868 """Returns Etiny (= Emin - prec + 1)""" 3869 return int(self.Emin - self.prec + 1) 3870 3871 def Etop(self): 3872 """Returns maximum exponent (= Emax - prec + 1)""" 3873 return int(self.Emax - self.prec + 1) 3874 3875 def _set_rounding(self, type): 3876 """Sets the rounding type. 3877 3878 Sets the rounding type, and returns the current (previous) 3879 rounding type. Often used like: 3880 3881 context = context.copy() 3882 # so you don't change the calling context 3883 # if an error occurs in the middle. 3884 rounding = context._set_rounding(ROUND_UP) 3885 val = self.__sub__(other, context=context) 3886 context._set_rounding(rounding) 3887 3888 This will make it round up for that operation. 3889 """ 3890 rounding = self.rounding 3891 self.rounding= type 3892 return rounding 3893 3894 def create_decimal(self, num='0'): 3895 """Creates a new Decimal instance but using self as context. 3896 3897 This method implements the to-number operation of the 3898 IBM Decimal specification.""" 3899 3900 if isinstance(num, basestring) and num != num.strip(): 3901 return self._raise_error(ConversionSyntax, 3902 "no trailing or leading whitespace is " 3903 "permitted.") 3904 3905 d = Decimal(num, context=self) 3906 if d._isnan() and len(d._int) > self.prec - self._clamp: 3907 return self._raise_error(ConversionSyntax, 3908 "diagnostic info too long in NaN") 3909 return d._fix(self) 3910 3911 def create_decimal_from_float(self, f): 3912 """Creates a new Decimal instance from a float but rounding using self 3913 as the context. 3914 3915 >>> context = Context(prec=5, rounding=ROUND_DOWN) 3916 >>> context.create_decimal_from_float(3.1415926535897932) 3917 Decimal('3.1415') 3918 >>> context = Context(prec=5, traps=[Inexact]) 3919 >>> context.create_decimal_from_float(3.1415926535897932) 3920 Traceback (most recent call last): 3921 ... 3922 Inexact: None 3923 3924 """ 3925 d = Decimal.from_float(f) # An exact conversion 3926 return d._fix(self) # Apply the context rounding 3927 3928 # Methods 3929 def abs(self, a): 3930 """Returns the absolute value of the operand. 3931 3932 If the operand is negative, the result is the same as using the minus 3933 operation on the operand. Otherwise, the result is the same as using 3934 the plus operation on the operand. 3935 3936 >>> ExtendedContext.abs(Decimal('2.1')) 3937 Decimal('2.1') 3938 >>> ExtendedContext.abs(Decimal('-100')) 3939 Decimal('100') 3940 >>> ExtendedContext.abs(Decimal('101.5')) 3941 Decimal('101.5') 3942 >>> ExtendedContext.abs(Decimal('-101.5')) 3943 Decimal('101.5') 3944 >>> ExtendedContext.abs(-1) 3945 Decimal('1') 3946 """ 3947 a = _convert_other(a, raiseit=True) 3948 return a.__abs__(context=self) 3949 3950 def add(self, a, b): 3951 """Return the sum of the two operands. 3952 3953 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) 3954 Decimal('19.00') 3955 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) 3956 Decimal('1.02E+4') 3957 >>> ExtendedContext.add(1, Decimal(2)) 3958 Decimal('3') 3959 >>> ExtendedContext.add(Decimal(8), 5) 3960 Decimal('13') 3961 >>> ExtendedContext.add(5, 5) 3962 Decimal('10') 3963 """ 3964 a = _convert_other(a, raiseit=True) 3965 r = a.__add__(b, context=self) 3966 if r is NotImplemented: 3967 raise TypeError("Unable to convert %s to Decimal" % b) 3968 else: 3969 return r 3970 3971 def _apply(self, a): 3972 return str(a._fix(self)) 3973 3974 def canonical(self, a): 3975 """Returns the same Decimal object. 3976 3977 As we do not have different encodings for the same number, the 3978 received object already is in its canonical form. 3979 3980 >>> ExtendedContext.canonical(Decimal('2.50')) 3981 Decimal('2.50') 3982 """ 3983 return a.canonical(context=self) 3984 3985 def compare(self, a, b): 3986 """Compares values numerically. 3987 3988 If the signs of the operands differ, a value representing each operand 3989 ('-1' if the operand is less than zero, '0' if the operand is zero or 3990 negative zero, or '1' if the operand is greater than zero) is used in 3991 place of that operand for the comparison instead of the actual 3992 operand. 3993 3994 The comparison is then effected by subtracting the second operand from 3995 the first and then returning a value according to the result of the 3996 subtraction: '-1' if the result is less than zero, '0' if the result is 3997 zero or negative zero, or '1' if the result is greater than zero. 3998 3999 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) 4000 Decimal('-1') 4001 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) 4002 Decimal('0') 4003 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) 4004 Decimal('0') 4005 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) 4006 Decimal('1') 4007 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) 4008 Decimal('1') 4009 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) 4010 Decimal('-1') 4011 >>> ExtendedContext.compare(1, 2) 4012 Decimal('-1') 4013 >>> ExtendedContext.compare(Decimal(1), 2) 4014 Decimal('-1') 4015 >>> ExtendedContext.compare(1, Decimal(2)) 4016 Decimal('-1') 4017 """ 4018 a = _convert_other(a, raiseit=True) 4019 return a.compare(b, context=self) 4020 4021 def compare_signal(self, a, b): 4022 """Compares the values of the two operands numerically. 4023 4024 It's pretty much like compare(), but all NaNs signal, with signaling 4025 NaNs taking precedence over quiet NaNs. 4026 4027 >>> c = ExtendedContext 4028 >>> c.compare_signal(Decimal('2.1'), Decimal('3')) 4029 Decimal('-1') 4030 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) 4031 Decimal('0') 4032 >>> c.flags[InvalidOperation] = 0 4033 >>> print c.flags[InvalidOperation] 4034 0 4035 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) 4036 Decimal('NaN') 4037 >>> print c.flags[InvalidOperation] 4038 1 4039 >>> c.flags[InvalidOperation] = 0 4040 >>> print c.flags[InvalidOperation] 4041 0 4042 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) 4043 Decimal('NaN') 4044 >>> print c.flags[InvalidOperation] 4045 1 4046 >>> c.compare_signal(-1, 2) 4047 Decimal('-1') 4048 >>> c.compare_signal(Decimal(-1), 2) 4049 Decimal('-1') 4050 >>> c.compare_signal(-1, Decimal(2)) 4051 Decimal('-1') 4052 """ 4053 a = _convert_other(a, raiseit=True) 4054 return a.compare_signal(b, context=self) 4055 4056 def compare_total(self, a, b): 4057 """Compares two operands using their abstract representation. 4058 4059 This is not like the standard compare, which use their numerical 4060 value. Note that a total ordering is defined for all possible abstract 4061 representations. 4062 4063 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) 4064 Decimal('-1') 4065 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) 4066 Decimal('-1') 4067 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) 4068 Decimal('-1') 4069 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) 4070 Decimal('0') 4071 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) 4072 Decimal('1') 4073 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) 4074 Decimal('-1') 4075 >>> ExtendedContext.compare_total(1, 2) 4076 Decimal('-1') 4077 >>> ExtendedContext.compare_total(Decimal(1), 2) 4078 Decimal('-1') 4079 >>> ExtendedContext.compare_total(1, Decimal(2)) 4080 Decimal('-1') 4081 """ 4082 a = _convert_other(a, raiseit=True) 4083 return a.compare_total(b) 4084 4085 def compare_total_mag(self, a, b): 4086 """Compares two operands using their abstract representation ignoring sign. 4087 4088 Like compare_total, but with operand's sign ignored and assumed to be 0. 4089 """ 4090 a = _convert_other(a, raiseit=True) 4091 return a.compare_total_mag(b) 4092 4093 def copy_abs(self, a): 4094 """Returns a copy of the operand with the sign set to 0. 4095 4096 >>> ExtendedContext.copy_abs(Decimal('2.1')) 4097 Decimal('2.1') 4098 >>> ExtendedContext.copy_abs(Decimal('-100')) 4099 Decimal('100') 4100 >>> ExtendedContext.copy_abs(-1) 4101 Decimal('1') 4102 """ 4103 a = _convert_other(a, raiseit=True) 4104 return a.copy_abs() 4105 4106 def copy_decimal(self, a): 4107 """Returns a copy of the decimal object. 4108 4109 >>> ExtendedContext.copy_decimal(Decimal('2.1')) 4110 Decimal('2.1') 4111 >>> ExtendedContext.copy_decimal(Decimal('-1.00')) 4112 Decimal('-1.00') 4113 >>> ExtendedContext.copy_decimal(1) 4114 Decimal('1') 4115 """ 4116 a = _convert_other(a, raiseit=True) 4117 return Decimal(a) 4118 4119 def copy_negate(self, a): 4120 """Returns a copy of the operand with the sign inverted. 4121 4122 >>> ExtendedContext.copy_negate(Decimal('101.5')) 4123 Decimal('-101.5') 4124 >>> ExtendedContext.copy_negate(Decimal('-101.5')) 4125 Decimal('101.5') 4126 >>> ExtendedContext.copy_negate(1) 4127 Decimal('-1') 4128 """ 4129 a = _convert_other(a, raiseit=True) 4130 return a.copy_negate() 4131 4132 def copy_sign(self, a, b): 4133 """Copies the second operand's sign to the first one. 4134 4135 In detail, it returns a copy of the first operand with the sign 4136 equal to the sign of the second operand. 4137 4138 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) 4139 Decimal('1.50') 4140 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) 4141 Decimal('1.50') 4142 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) 4143 Decimal('-1.50') 4144 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) 4145 Decimal('-1.50') 4146 >>> ExtendedContext.copy_sign(1, -2) 4147 Decimal('-1') 4148 >>> ExtendedContext.copy_sign(Decimal(1), -2) 4149 Decimal('-1') 4150 >>> ExtendedContext.copy_sign(1, Decimal(-2)) 4151 Decimal('-1') 4152 """ 4153 a = _convert_other(a, raiseit=True) 4154 return a.copy_sign(b) 4155 4156 def divide(self, a, b): 4157 """Decimal division in a specified context. 4158 4159 >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) 4160 Decimal('0.333333333') 4161 >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) 4162 Decimal('0.666666667') 4163 >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) 4164 Decimal('2.5') 4165 >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) 4166 Decimal('0.1') 4167 >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) 4168 Decimal('1') 4169 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) 4170 Decimal('4.00') 4171 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) 4172 Decimal('1.20') 4173 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) 4174 Decimal('10') 4175 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) 4176 Decimal('1000') 4177 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) 4178 Decimal('1.20E+6') 4179 >>> ExtendedContext.divide(5, 5) 4180 Decimal('1') 4181 >>> ExtendedContext.divide(Decimal(5), 5) 4182 Decimal('1') 4183 >>> ExtendedContext.divide(5, Decimal(5)) 4184 Decimal('1') 4185 """ 4186 a = _convert_other(a, raiseit=True) 4187 r = a.__div__(b, context=self) 4188 if r is NotImplemented: 4189 raise TypeError("Unable to convert %s to Decimal" % b) 4190 else: 4191 return r 4192 4193 def divide_int(self, a, b): 4194 """Divides two numbers and returns the integer part of the result. 4195 4196 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) 4197 Decimal('0') 4198 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) 4199 Decimal('3') 4200 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) 4201 Decimal('3') 4202 >>> ExtendedContext.divide_int(10, 3) 4203 Decimal('3') 4204 >>> ExtendedContext.divide_int(Decimal(10), 3) 4205 Decimal('3') 4206 >>> ExtendedContext.divide_int(10, Decimal(3)) 4207 Decimal('3') 4208 """ 4209 a = _convert_other(a, raiseit=True) 4210 r = a.__floordiv__(b, context=self) 4211 if r is NotImplemented: 4212 raise TypeError("Unable to convert %s to Decimal" % b) 4213 else: 4214 return r 4215 4216 def divmod(self, a, b): 4217 """Return (a // b, a % b). 4218 4219 >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) 4220 (Decimal('2'), Decimal('2')) 4221 >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) 4222 (Decimal('2'), Decimal('0')) 4223 >>> ExtendedContext.divmod(8, 4) 4224 (Decimal('2'), Decimal('0')) 4225 >>> ExtendedContext.divmod(Decimal(8), 4) 4226 (Decimal('2'), Decimal('0')) 4227 >>> ExtendedContext.divmod(8, Decimal(4)) 4228 (Decimal('2'), Decimal('0')) 4229 """ 4230 a = _convert_other(a, raiseit=True) 4231 r = a.__divmod__(b, context=self) 4232 if r is NotImplemented: 4233 raise TypeError("Unable to convert %s to Decimal" % b) 4234 else: 4235 return r 4236 4237 def exp(self, a): 4238 """Returns e ** a. 4239 4240 >>> c = ExtendedContext.copy() 4241 >>> c.Emin = -999 4242 >>> c.Emax = 999 4243 >>> c.exp(Decimal('-Infinity')) 4244 Decimal('0') 4245 >>> c.exp(Decimal('-1')) 4246 Decimal('0.367879441') 4247 >>> c.exp(Decimal('0')) 4248 Decimal('1') 4249 >>> c.exp(Decimal('1')) 4250 Decimal('2.71828183') 4251 >>> c.exp(Decimal('0.693147181')) 4252 Decimal('2.00000000') 4253 >>> c.exp(Decimal('+Infinity')) 4254 Decimal('Infinity') 4255 >>> c.exp(10) 4256 Decimal('22026.4658') 4257 """ 4258 a =_convert_other(a, raiseit=True) 4259 return a.exp(context=self) 4260 4261 def fma(self, a, b, c): 4262 """Returns a multiplied by b, plus c. 4263 4264 The first two operands are multiplied together, using multiply, 4265 the third operand is then added to the result of that 4266 multiplication, using add, all with only one final rounding. 4267 4268 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) 4269 Decimal('22') 4270 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) 4271 Decimal('-8') 4272 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) 4273 Decimal('1.38435736E+12') 4274 >>> ExtendedContext.fma(1, 3, 4) 4275 Decimal('7') 4276 >>> ExtendedContext.fma(1, Decimal(3), 4) 4277 Decimal('7') 4278 >>> ExtendedContext.fma(1, 3, Decimal(4)) 4279 Decimal('7') 4280 """ 4281 a = _convert_other(a, raiseit=True) 4282 return a.fma(b, c, context=self) 4283 4284 def is_canonical(self, a): 4285 """Return True if the operand is canonical; otherwise return False. 4286 4287 Currently, the encoding of a Decimal instance is always 4288 canonical, so this method returns True for any Decimal. 4289 4290 >>> ExtendedContext.is_canonical(Decimal('2.50')) 4291 True 4292 """ 4293 return a.is_canonical() 4294 4295 def is_finite(self, a): 4296 """Return True if the operand is finite; otherwise return False. 4297 4298 A Decimal instance is considered finite if it is neither 4299 infinite nor a NaN. 4300 4301 >>> ExtendedContext.is_finite(Decimal('2.50')) 4302 True 4303 >>> ExtendedContext.is_finite(Decimal('-0.3')) 4304 True 4305 >>> ExtendedContext.is_finite(Decimal('0')) 4306 True 4307 >>> ExtendedContext.is_finite(Decimal('Inf')) 4308 False 4309 >>> ExtendedContext.is_finite(Decimal('NaN')) 4310 False 4311 >>> ExtendedContext.is_finite(1) 4312 True 4313 """ 4314 a = _convert_other(a, raiseit=True) 4315 return a.is_finite() 4316 4317 def is_infinite(self, a): 4318 """Return True if the operand is infinite; otherwise return False. 4319 4320 >>> ExtendedContext.is_infinite(Decimal('2.50')) 4321 False 4322 >>> ExtendedContext.is_infinite(Decimal('-Inf')) 4323 True 4324 >>> ExtendedContext.is_infinite(Decimal('NaN')) 4325 False 4326 >>> ExtendedContext.is_infinite(1) 4327 False 4328 """ 4329 a = _convert_other(a, raiseit=True) 4330 return a.is_infinite() 4331 4332 def is_nan(self, a): 4333 """Return True if the operand is a qNaN or sNaN; 4334 otherwise return False. 4335 4336 >>> ExtendedContext.is_nan(Decimal('2.50')) 4337 False 4338 >>> ExtendedContext.is_nan(Decimal('NaN')) 4339 True 4340 >>> ExtendedContext.is_nan(Decimal('-sNaN')) 4341 True 4342 >>> ExtendedContext.is_nan(1) 4343 False 4344 """ 4345 a = _convert_other(a, raiseit=True) 4346 return a.is_nan() 4347 4348 def is_normal(self, a): 4349 """Return True if the operand is a normal number; 4350 otherwise return False. 4351 4352 >>> c = ExtendedContext.copy() 4353 >>> c.Emin = -999 4354 >>> c.Emax = 999 4355 >>> c.is_normal(Decimal('2.50')) 4356 True 4357 >>> c.is_normal(Decimal('0.1E-999')) 4358 False 4359 >>> c.is_normal(Decimal('0.00')) 4360 False 4361 >>> c.is_normal(Decimal('-Inf')) 4362 False 4363 >>> c.is_normal(Decimal('NaN')) 4364 False 4365 >>> c.is_normal(1) 4366 True 4367 """ 4368 a = _convert_other(a, raiseit=True) 4369 return a.is_normal(context=self) 4370 4371 def is_qnan(self, a): 4372 """Return True if the operand is a quiet NaN; otherwise return False. 4373 4374 >>> ExtendedContext.is_qnan(Decimal('2.50')) 4375 False 4376 >>> ExtendedContext.is_qnan(Decimal('NaN')) 4377 True 4378 >>> ExtendedContext.is_qnan(Decimal('sNaN')) 4379 False 4380 >>> ExtendedContext.is_qnan(1) 4381 False 4382 """ 4383 a = _convert_other(a, raiseit=True) 4384 return a.is_qnan() 4385 4386 def is_signed(self, a): 4387 """Return True if the operand is negative; otherwise return False. 4388 4389 >>> ExtendedContext.is_signed(Decimal('2.50')) 4390 False 4391 >>> ExtendedContext.is_signed(Decimal('-12')) 4392 True 4393 >>> ExtendedContext.is_signed(Decimal('-0')) 4394 True 4395 >>> ExtendedContext.is_signed(8) 4396 False 4397 >>> ExtendedContext.is_signed(-8) 4398 True 4399 """ 4400 a = _convert_other(a, raiseit=True) 4401 return a.is_signed() 4402 4403 def is_snan(self, a): 4404 """Return True if the operand is a signaling NaN; 4405 otherwise return False. 4406 4407 >>> ExtendedContext.is_snan(Decimal('2.50')) 4408 False 4409 >>> ExtendedContext.is_snan(Decimal('NaN')) 4410 False 4411 >>> ExtendedContext.is_snan(Decimal('sNaN')) 4412 True 4413 >>> ExtendedContext.is_snan(1) 4414 False 4415 """ 4416 a = _convert_other(a, raiseit=True) 4417 return a.is_snan() 4418 4419 def is_subnormal(self, a): 4420 """Return True if the operand is subnormal; otherwise return False. 4421 4422 >>> c = ExtendedContext.copy() 4423 >>> c.Emin = -999 4424 >>> c.Emax = 999 4425 >>> c.is_subnormal(Decimal('2.50')) 4426 False 4427 >>> c.is_subnormal(Decimal('0.1E-999')) 4428 True 4429 >>> c.is_subnormal(Decimal('0.00')) 4430 False 4431 >>> c.is_subnormal(Decimal('-Inf')) 4432 False 4433 >>> c.is_subnormal(Decimal('NaN')) 4434 False 4435 >>> c.is_subnormal(1) 4436 False 4437 """ 4438 a = _convert_other(a, raiseit=True) 4439 return a.is_subnormal(context=self) 4440 4441 def is_zero(self, a): 4442 """Return True if the operand is a zero; otherwise return False. 4443 4444 >>> ExtendedContext.is_zero(Decimal('0')) 4445 True 4446 >>> ExtendedContext.is_zero(Decimal('2.50')) 4447 False 4448 >>> ExtendedContext.is_zero(Decimal('-0E+2')) 4449 True 4450 >>> ExtendedContext.is_zero(1) 4451 False 4452 >>> ExtendedContext.is_zero(0) 4453 True 4454 """ 4455 a = _convert_other(a, raiseit=True) 4456 return a.is_zero() 4457 4458 def ln(self, a): 4459 """Returns the natural (base e) logarithm of the operand. 4460 4461 >>> c = ExtendedContext.copy() 4462 >>> c.Emin = -999 4463 >>> c.Emax = 999 4464 >>> c.ln(Decimal('0')) 4465 Decimal('-Infinity') 4466 >>> c.ln(Decimal('1.000')) 4467 Decimal('0') 4468 >>> c.ln(Decimal('2.71828183')) 4469 Decimal('1.00000000') 4470 >>> c.ln(Decimal('10')) 4471 Decimal('2.30258509') 4472 >>> c.ln(Decimal('+Infinity')) 4473 Decimal('Infinity') 4474 >>> c.ln(1) 4475 Decimal('0') 4476 """ 4477 a = _convert_other(a, raiseit=True) 4478 return a.ln(context=self) 4479 4480 def log10(self, a): 4481 """Returns the base 10 logarithm of the operand. 4482 4483 >>> c = ExtendedContext.copy() 4484 >>> c.Emin = -999 4485 >>> c.Emax = 999 4486 >>> c.log10(Decimal('0')) 4487 Decimal('-Infinity') 4488 >>> c.log10(Decimal('0.001')) 4489 Decimal('-3') 4490 >>> c.log10(Decimal('1.000')) 4491 Decimal('0') 4492 >>> c.log10(Decimal('2')) 4493 Decimal('0.301029996') 4494 >>> c.log10(Decimal('10')) 4495 Decimal('1') 4496 >>> c.log10(Decimal('70')) 4497 Decimal('1.84509804') 4498 >>> c.log10(Decimal('+Infinity')) 4499 Decimal('Infinity') 4500 >>> c.log10(0) 4501 Decimal('-Infinity') 4502 >>> c.log10(1) 4503 Decimal('0') 4504 """ 4505 a = _convert_other(a, raiseit=True) 4506 return a.log10(context=self) 4507 4508 def logb(self, a): 4509 """ Returns the exponent of the magnitude of the operand's MSD. 4510 4511 The result is the integer which is the exponent of the magnitude 4512 of the most significant digit of the operand (as though the 4513 operand were truncated to a single digit while maintaining the 4514 value of that digit and without limiting the resulting exponent). 4515 4516 >>> ExtendedContext.logb(Decimal('250')) 4517 Decimal('2') 4518 >>> ExtendedContext.logb(Decimal('2.50')) 4519 Decimal('0') 4520 >>> ExtendedContext.logb(Decimal('0.03')) 4521 Decimal('-2') 4522 >>> ExtendedContext.logb(Decimal('0')) 4523 Decimal('-Infinity') 4524 >>> ExtendedContext.logb(1) 4525 Decimal('0') 4526 >>> ExtendedContext.logb(10) 4527 Decimal('1') 4528 >>> ExtendedContext.logb(100) 4529 Decimal('2') 4530 """ 4531 a = _convert_other(a, raiseit=True) 4532 return a.logb(context=self) 4533 4534 def logical_and(self, a, b): 4535 """Applies the logical operation 'and' between each operand's digits. 4536 4537 The operands must be both logical numbers. 4538 4539 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) 4540 Decimal('0') 4541 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) 4542 Decimal('0') 4543 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) 4544 Decimal('0') 4545 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) 4546 Decimal('1') 4547 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) 4548 Decimal('1000') 4549 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) 4550 Decimal('10') 4551 >>> ExtendedContext.logical_and(110, 1101) 4552 Decimal('100') 4553 >>> ExtendedContext.logical_and(Decimal(110), 1101) 4554 Decimal('100') 4555 >>> ExtendedContext.logical_and(110, Decimal(1101)) 4556 Decimal('100') 4557 """ 4558 a = _convert_other(a, raiseit=True) 4559 return a.logical_and(b, context=self) 4560 4561 def logical_invert(self, a): 4562 """Invert all the digits in the operand. 4563 4564 The operand must be a logical number. 4565 4566 >>> ExtendedContext.logical_invert(Decimal('0')) 4567 Decimal('111111111') 4568 >>> ExtendedContext.logical_invert(Decimal('1')) 4569 Decimal('111111110') 4570 >>> ExtendedContext.logical_invert(Decimal('111111111')) 4571 Decimal('0') 4572 >>> ExtendedContext.logical_invert(Decimal('101010101')) 4573 Decimal('10101010') 4574 >>> ExtendedContext.logical_invert(1101) 4575 Decimal('111110010') 4576 """ 4577 a = _convert_other(a, raiseit=True) 4578 return a.logical_invert(context=self) 4579 4580 def logical_or(self, a, b): 4581 """Applies the logical operation 'or' between each operand's digits. 4582 4583 The operands must be both logical numbers. 4584 4585 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) 4586 Decimal('0') 4587 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) 4588 Decimal('1') 4589 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) 4590 Decimal('1') 4591 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) 4592 Decimal('1') 4593 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) 4594 Decimal('1110') 4595 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) 4596 Decimal('1110') 4597 >>> ExtendedContext.logical_or(110, 1101) 4598 Decimal('1111') 4599 >>> ExtendedContext.logical_or(Decimal(110), 1101) 4600 Decimal('1111') 4601 >>> ExtendedContext.logical_or(110, Decimal(1101)) 4602 Decimal('1111') 4603 """ 4604 a = _convert_other(a, raiseit=True) 4605 return a.logical_or(b, context=self) 4606 4607 def logical_xor(self, a, b): 4608 """Applies the logical operation 'xor' between each operand's digits. 4609 4610 The operands must be both logical numbers. 4611 4612 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) 4613 Decimal('0') 4614 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) 4615 Decimal('1') 4616 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) 4617 Decimal('1') 4618 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) 4619 Decimal('0') 4620 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) 4621 Decimal('110') 4622 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) 4623 Decimal('1101') 4624 >>> ExtendedContext.logical_xor(110, 1101) 4625 Decimal('1011') 4626 >>> ExtendedContext.logical_xor(Decimal(110), 1101) 4627 Decimal('1011') 4628 >>> ExtendedContext.logical_xor(110, Decimal(1101)) 4629 Decimal('1011') 4630 """ 4631 a = _convert_other(a, raiseit=True) 4632 return a.logical_xor(b, context=self) 4633 4634 def max(self, a, b): 4635 """max compares two values numerically and returns the maximum. 4636 4637 If either operand is a NaN then the general rules apply. 4638 Otherwise, the operands are compared as though by the compare 4639 operation. If they are numerically equal then the left-hand operand 4640 is chosen as the result. Otherwise the maximum (closer to positive 4641 infinity) of the two operands is chosen as the result. 4642 4643 >>> ExtendedContext.max(Decimal('3'), Decimal('2')) 4644 Decimal('3') 4645 >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) 4646 Decimal('3') 4647 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) 4648 Decimal('1') 4649 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) 4650 Decimal('7') 4651 >>> ExtendedContext.max(1, 2) 4652 Decimal('2') 4653 >>> ExtendedContext.max(Decimal(1), 2) 4654 Decimal('2') 4655 >>> ExtendedContext.max(1, Decimal(2)) 4656 Decimal('2') 4657 """ 4658 a = _convert_other(a, raiseit=True) 4659 return a.max(b, context=self) 4660 4661 def max_mag(self, a, b): 4662 """Compares the values numerically with their sign ignored. 4663 4664 >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) 4665 Decimal('7') 4666 >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) 4667 Decimal('-10') 4668 >>> ExtendedContext.max_mag(1, -2) 4669 Decimal('-2') 4670 >>> ExtendedContext.max_mag(Decimal(1), -2) 4671 Decimal('-2') 4672 >>> ExtendedContext.max_mag(1, Decimal(-2)) 4673 Decimal('-2') 4674 """ 4675 a = _convert_other(a, raiseit=True) 4676 return a.max_mag(b, context=self) 4677 4678 def min(self, a, b): 4679 """min compares two values numerically and returns the minimum. 4680 4681 If either operand is a NaN then the general rules apply. 4682 Otherwise, the operands are compared as though by the compare 4683 operation. If they are numerically equal then the left-hand operand 4684 is chosen as the result. Otherwise the minimum (closer to negative 4685 infinity) of the two operands is chosen as the result. 4686 4687 >>> ExtendedContext.min(Decimal('3'), Decimal('2')) 4688 Decimal('2') 4689 >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) 4690 Decimal('-10') 4691 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) 4692 Decimal('1.0') 4693 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) 4694 Decimal('7') 4695 >>> ExtendedContext.min(1, 2) 4696 Decimal('1') 4697 >>> ExtendedContext.min(Decimal(1), 2) 4698 Decimal('1') 4699 >>> ExtendedContext.min(1, Decimal(29)) 4700 Decimal('1') 4701 """ 4702 a = _convert_other(a, raiseit=True) 4703 return a.min(b, context=self) 4704 4705 def min_mag(self, a, b): 4706 """Compares the values numerically with their sign ignored. 4707 4708 >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) 4709 Decimal('-2') 4710 >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) 4711 Decimal('-3') 4712 >>> ExtendedContext.min_mag(1, -2) 4713 Decimal('1') 4714 >>> ExtendedContext.min_mag(Decimal(1), -2) 4715 Decimal('1') 4716 >>> ExtendedContext.min_mag(1, Decimal(-2)) 4717 Decimal('1') 4718 """ 4719 a = _convert_other(a, raiseit=True) 4720 return a.min_mag(b, context=self) 4721 4722 def minus(self, a): 4723 """Minus corresponds to unary prefix minus in Python. 4724 4725 The operation is evaluated using the same rules as subtract; the 4726 operation minus(a) is calculated as subtract('0', a) where the '0' 4727 has the same exponent as the operand. 4728 4729 >>> ExtendedContext.minus(Decimal('1.3')) 4730 Decimal('-1.3') 4731 >>> ExtendedContext.minus(Decimal('-1.3')) 4732 Decimal('1.3') 4733 >>> ExtendedContext.minus(1) 4734 Decimal('-1') 4735 """ 4736 a = _convert_other(a, raiseit=True) 4737 return a.__neg__(context=self) 4738 4739 def multiply(self, a, b): 4740 """multiply multiplies two operands. 4741 4742 If either operand is a special value then the general rules apply. 4743 Otherwise, the operands are multiplied together 4744 ('long multiplication'), resulting in a number which may be as long as 4745 the sum of the lengths of the two operands. 4746 4747 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) 4748 Decimal('3.60') 4749 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) 4750 Decimal('21') 4751 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) 4752 Decimal('0.72') 4753 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) 4754 Decimal('-0.0') 4755 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) 4756 Decimal('4.28135971E+11') 4757 >>> ExtendedContext.multiply(7, 7) 4758 Decimal('49') 4759 >>> ExtendedContext.multiply(Decimal(7), 7) 4760 Decimal('49') 4761 >>> ExtendedContext.multiply(7, Decimal(7)) 4762 Decimal('49') 4763 """ 4764 a = _convert_other(a, raiseit=True) 4765 r = a.__mul__(b, context=self) 4766 if r is NotImplemented: 4767 raise TypeError("Unable to convert %s to Decimal" % b) 4768 else: 4769 return r 4770 4771 def next_minus(self, a): 4772 """Returns the largest representable number smaller than a. 4773 4774 >>> c = ExtendedContext.copy() 4775 >>> c.Emin = -999 4776 >>> c.Emax = 999 4777 >>> ExtendedContext.next_minus(Decimal('1')) 4778 Decimal('0.999999999') 4779 >>> c.next_minus(Decimal('1E-1007')) 4780 Decimal('0E-1007') 4781 >>> ExtendedContext.next_minus(Decimal('-1.00000003')) 4782 Decimal('-1.00000004') 4783 >>> c.next_minus(Decimal('Infinity')) 4784 Decimal('9.99999999E+999') 4785 >>> c.next_minus(1) 4786 Decimal('0.999999999') 4787 """ 4788 a = _convert_other(a, raiseit=True) 4789 return a.next_minus(context=self) 4790 4791 def next_plus(self, a): 4792 """Returns the smallest representable number larger than a. 4793 4794 >>> c = ExtendedContext.copy() 4795 >>> c.Emin = -999 4796 >>> c.Emax = 999 4797 >>> ExtendedContext.next_plus(Decimal('1')) 4798 Decimal('1.00000001') 4799 >>> c.next_plus(Decimal('-1E-1007')) 4800 Decimal('-0E-1007') 4801 >>> ExtendedContext.next_plus(Decimal('-1.00000003')) 4802 Decimal('-1.00000002') 4803 >>> c.next_plus(Decimal('-Infinity')) 4804 Decimal('-9.99999999E+999') 4805 >>> c.next_plus(1) 4806 Decimal('1.00000001') 4807 """ 4808 a = _convert_other(a, raiseit=True) 4809 return a.next_plus(context=self) 4810 4811 def next_toward(self, a, b): 4812 """Returns the number closest to a, in direction towards b. 4813 4814 The result is the closest representable number from the first 4815 operand (but not the first operand) that is in the direction 4816 towards the second operand, unless the operands have the same 4817 value. 4818 4819 >>> c = ExtendedContext.copy() 4820 >>> c.Emin = -999 4821 >>> c.Emax = 999 4822 >>> c.next_toward(Decimal('1'), Decimal('2')) 4823 Decimal('1.00000001') 4824 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) 4825 Decimal('-0E-1007') 4826 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) 4827 Decimal('-1.00000002') 4828 >>> c.next_toward(Decimal('1'), Decimal('0')) 4829 Decimal('0.999999999') 4830 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) 4831 Decimal('0E-1007') 4832 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) 4833 Decimal('-1.00000004') 4834 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) 4835 Decimal('-0.00') 4836 >>> c.next_toward(0, 1) 4837 Decimal('1E-1007') 4838 >>> c.next_toward(Decimal(0), 1) 4839 Decimal('1E-1007') 4840 >>> c.next_toward(0, Decimal(1)) 4841 Decimal('1E-1007') 4842 """ 4843 a = _convert_other(a, raiseit=True) 4844 return a.next_toward(b, context=self) 4845 4846 def normalize(self, a): 4847 """normalize reduces an operand to its simplest form. 4848 4849 Essentially a plus operation with all trailing zeros removed from the 4850 result. 4851 4852 >>> ExtendedContext.normalize(Decimal('2.1')) 4853 Decimal('2.1') 4854 >>> ExtendedContext.normalize(Decimal('-2.0')) 4855 Decimal('-2') 4856 >>> ExtendedContext.normalize(Decimal('1.200')) 4857 Decimal('1.2') 4858 >>> ExtendedContext.normalize(Decimal('-120')) 4859 Decimal('-1.2E+2') 4860 >>> ExtendedContext.normalize(Decimal('120.00')) 4861 Decimal('1.2E+2') 4862 >>> ExtendedContext.normalize(Decimal('0.00')) 4863 Decimal('0') 4864 >>> ExtendedContext.normalize(6) 4865 Decimal('6') 4866 """ 4867 a = _convert_other(a, raiseit=True) 4868 return a.normalize(context=self) 4869 4870 def number_class(self, a): 4871 """Returns an indication of the class of the operand. 4872 4873 The class is one of the following strings: 4874 -sNaN 4875 -NaN 4876 -Infinity 4877 -Normal 4878 -Subnormal 4879 -Zero 4880 +Zero 4881 +Subnormal 4882 +Normal 4883 +Infinity 4884 4885 >>> c = Context(ExtendedContext) 4886 >>> c.Emin = -999 4887 >>> c.Emax = 999 4888 >>> c.number_class(Decimal('Infinity')) 4889 '+Infinity' 4890 >>> c.number_class(Decimal('1E-10')) 4891 '+Normal' 4892 >>> c.number_class(Decimal('2.50')) 4893 '+Normal' 4894 >>> c.number_class(Decimal('0.1E-999')) 4895 '+Subnormal' 4896 >>> c.number_class(Decimal('0')) 4897 '+Zero' 4898 >>> c.number_class(Decimal('-0')) 4899 '-Zero' 4900 >>> c.number_class(Decimal('-0.1E-999')) 4901 '-Subnormal' 4902 >>> c.number_class(Decimal('-1E-10')) 4903 '-Normal' 4904 >>> c.number_class(Decimal('-2.50')) 4905 '-Normal' 4906 >>> c.number_class(Decimal('-Infinity')) 4907 '-Infinity' 4908 >>> c.number_class(Decimal('NaN')) 4909 'NaN' 4910 >>> c.number_class(Decimal('-NaN')) 4911 'NaN' 4912 >>> c.number_class(Decimal('sNaN')) 4913 'sNaN' 4914 >>> c.number_class(123) 4915 '+Normal' 4916 """ 4917 a = _convert_other(a, raiseit=True) 4918 return a.number_class(context=self) 4919 4920 def plus(self, a): 4921 """Plus corresponds to unary prefix plus in Python. 4922 4923 The operation is evaluated using the same rules as add; the 4924 operation plus(a) is calculated as add('0', a) where the '0' 4925 has the same exponent as the operand. 4926 4927 >>> ExtendedContext.plus(Decimal('1.3')) 4928 Decimal('1.3') 4929 >>> ExtendedContext.plus(Decimal('-1.3')) 4930 Decimal('-1.3') 4931 >>> ExtendedContext.plus(-1) 4932 Decimal('-1') 4933 """ 4934 a = _convert_other(a, raiseit=True) 4935 return a.__pos__(context=self) 4936 4937 def power(self, a, b, modulo=None): 4938 """Raises a to the power of b, to modulo if given. 4939 4940 With two arguments, compute a**b. If a is negative then b 4941 must be integral. The result will be inexact unless b is 4942 integral and the result is finite and can be expressed exactly 4943 in 'precision' digits. 4944 4945 With three arguments, compute (a**b) % modulo. For the 4946 three argument form, the following restrictions on the 4947 arguments hold: 4948 4949 - all three arguments must be integral 4950 - b must be nonnegative 4951 - at least one of a or b must be nonzero 4952 - modulo must be nonzero and have at most 'precision' digits 4953 4954 The result of pow(a, b, modulo) is identical to the result 4955 that would be obtained by computing (a**b) % modulo with 4956 unbounded precision, but is computed more efficiently. It is 4957 always exact. 4958 4959 >>> c = ExtendedContext.copy() 4960 >>> c.Emin = -999 4961 >>> c.Emax = 999 4962 >>> c.power(Decimal('2'), Decimal('3')) 4963 Decimal('8') 4964 >>> c.power(Decimal('-2'), Decimal('3')) 4965 Decimal('-8') 4966 >>> c.power(Decimal('2'), Decimal('-3')) 4967 Decimal('0.125') 4968 >>> c.power(Decimal('1.7'), Decimal('8')) 4969 Decimal('69.7575744') 4970 >>> c.power(Decimal('10'), Decimal('0.301029996')) 4971 Decimal('2.00000000') 4972 >>> c.power(Decimal('Infinity'), Decimal('-1')) 4973 Decimal('0') 4974 >>> c.power(Decimal('Infinity'), Decimal('0')) 4975 Decimal('1') 4976 >>> c.power(Decimal('Infinity'), Decimal('1')) 4977 Decimal('Infinity') 4978 >>> c.power(Decimal('-Infinity'), Decimal('-1')) 4979 Decimal('-0') 4980 >>> c.power(Decimal('-Infinity'), Decimal('0')) 4981 Decimal('1') 4982 >>> c.power(Decimal('-Infinity'), Decimal('1')) 4983 Decimal('-Infinity') 4984 >>> c.power(Decimal('-Infinity'), Decimal('2')) 4985 Decimal('Infinity') 4986 >>> c.power(Decimal('0'), Decimal('0')) 4987 Decimal('NaN') 4988 4989 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) 4990 Decimal('11') 4991 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) 4992 Decimal('-11') 4993 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) 4994 Decimal('1') 4995 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) 4996 Decimal('11') 4997 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) 4998 Decimal('11729830') 4999 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) 5000 Decimal('-0') 5001 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) 5002 Decimal('1') 5003 >>> ExtendedContext.power(7, 7) 5004 Decimal('823543') 5005 >>> ExtendedContext.power(Decimal(7), 7) 5006 Decimal('823543') 5007 >>> ExtendedContext.power(7, Decimal(7), 2) 5008 Decimal('1') 5009 """ 5010 a = _convert_other(a, raiseit=True) 5011 r = a.__pow__(b, modulo, context=self) 5012 if r is NotImplemented: 5013 raise TypeError("Unable to convert %s to Decimal" % b) 5014 else: 5015 return r 5016 5017 def quantize(self, a, b): 5018 """Returns a value equal to 'a' (rounded), having the exponent of 'b'. 5019 5020 The coefficient of the result is derived from that of the left-hand 5021 operand. It may be rounded using the current rounding setting (if the 5022 exponent is being increased), multiplied by a positive power of ten (if 5023 the exponent is being decreased), or is unchanged (if the exponent is 5024 already equal to that of the right-hand operand). 5025 5026 Unlike other operations, if the length of the coefficient after the 5027 quantize operation would be greater than precision then an Invalid 5028 operation condition is raised. This guarantees that, unless there is 5029 an error condition, the exponent of the result of a quantize is always 5030 equal to that of the right-hand operand. 5031 5032 Also unlike other operations, quantize will never raise Underflow, even 5033 if the result is subnormal and inexact. 5034 5035 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) 5036 Decimal('2.170') 5037 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) 5038 Decimal('2.17') 5039 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) 5040 Decimal('2.2') 5041 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) 5042 Decimal('2') 5043 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) 5044 Decimal('0E+1') 5045 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) 5046 Decimal('-Infinity') 5047 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) 5048 Decimal('NaN') 5049 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) 5050 Decimal('-0') 5051 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) 5052 Decimal('-0E+5') 5053 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) 5054 Decimal('NaN') 5055 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) 5056 Decimal('NaN') 5057 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) 5058 Decimal('217.0') 5059 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) 5060 Decimal('217') 5061 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) 5062 Decimal('2.2E+2') 5063 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) 5064 Decimal('2E+2') 5065 >>> ExtendedContext.quantize(1, 2) 5066 Decimal('1') 5067 >>> ExtendedContext.quantize(Decimal(1), 2) 5068 Decimal('1') 5069 >>> ExtendedContext.quantize(1, Decimal(2)) 5070 Decimal('1') 5071 """ 5072 a = _convert_other(a, raiseit=True) 5073 return a.quantize(b, context=self) 5074 5075 def radix(self): 5076 """Just returns 10, as this is Decimal, :) 5077 5078 >>> ExtendedContext.radix() 5079 Decimal('10') 5080 """ 5081 return Decimal(10) 5082 5083 def remainder(self, a, b): 5084 """Returns the remainder from integer division. 5085 5086 The result is the residue of the dividend after the operation of 5087 calculating integer division as described for divide-integer, rounded 5088 to precision digits if necessary. The sign of the result, if 5089 non-zero, is the same as that of the original dividend. 5090 5091 This operation will fail under the same conditions as integer division 5092 (that is, if integer division on the same two operands would fail, the 5093 remainder cannot be calculated). 5094 5095 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) 5096 Decimal('2.1') 5097 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) 5098 Decimal('1') 5099 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) 5100 Decimal('-1') 5101 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) 5102 Decimal('0.2') 5103 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) 5104 Decimal('0.1') 5105 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) 5106 Decimal('1.0') 5107 >>> ExtendedContext.remainder(22, 6) 5108 Decimal('4') 5109 >>> ExtendedContext.remainder(Decimal(22), 6) 5110 Decimal('4') 5111 >>> ExtendedContext.remainder(22, Decimal(6)) 5112 Decimal('4') 5113 """ 5114 a = _convert_other(a, raiseit=True) 5115 r = a.__mod__(b, context=self) 5116 if r is NotImplemented: 5117 raise TypeError("Unable to convert %s to Decimal" % b) 5118 else: 5119 return r 5120 5121 def remainder_near(self, a, b): 5122 """Returns to be "a - b * n", where n is the integer nearest the exact 5123 value of "x / b" (if two integers are equally near then the even one 5124 is chosen). If the result is equal to 0 then its sign will be the 5125 sign of a. 5126 5127 This operation will fail under the same conditions as integer division 5128 (that is, if integer division on the same two operands would fail, the 5129 remainder cannot be calculated). 5130 5131 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) 5132 Decimal('-0.9') 5133 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) 5134 Decimal('-2') 5135 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) 5136 Decimal('1') 5137 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) 5138 Decimal('-1') 5139 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) 5140 Decimal('0.2') 5141 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) 5142 Decimal('0.1') 5143 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) 5144 Decimal('-0.3') 5145 >>> ExtendedContext.remainder_near(3, 11) 5146 Decimal('3') 5147 >>> ExtendedContext.remainder_near(Decimal(3), 11) 5148 Decimal('3') 5149 >>> ExtendedContext.remainder_near(3, Decimal(11)) 5150 Decimal('3') 5151 """ 5152 a = _convert_other(a, raiseit=True) 5153 return a.remainder_near(b, context=self) 5154 5155 def rotate(self, a, b): 5156 """Returns a rotated copy of a, b times. 5157 5158 The coefficient of the result is a rotated copy of the digits in 5159 the coefficient of the first operand. The number of places of 5160 rotation is taken from the absolute value of the second operand, 5161 with the rotation being to the left if the second operand is 5162 positive or to the right otherwise. 5163 5164 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) 5165 Decimal('400000003') 5166 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) 5167 Decimal('12') 5168 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) 5169 Decimal('891234567') 5170 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) 5171 Decimal('123456789') 5172 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) 5173 Decimal('345678912') 5174 >>> ExtendedContext.rotate(1333333, 1) 5175 Decimal('13333330') 5176 >>> ExtendedContext.rotate(Decimal(1333333), 1) 5177 Decimal('13333330') 5178 >>> ExtendedContext.rotate(1333333, Decimal(1)) 5179 Decimal('13333330') 5180 """ 5181 a = _convert_other(a, raiseit=True) 5182 return a.rotate(b, context=self) 5183 5184 def same_quantum(self, a, b): 5185 """Returns True if the two operands have the same exponent. 5186 5187 The result is never affected by either the sign or the coefficient of 5188 either operand. 5189 5190 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) 5191 False 5192 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) 5193 True 5194 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) 5195 False 5196 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) 5197 True 5198 >>> ExtendedContext.same_quantum(10000, -1) 5199 True 5200 >>> ExtendedContext.same_quantum(Decimal(10000), -1) 5201 True 5202 >>> ExtendedContext.same_quantum(10000, Decimal(-1)) 5203 True 5204 """ 5205 a = _convert_other(a, raiseit=True) 5206 return a.same_quantum(b) 5207 5208 def scaleb (self, a, b): 5209 """Returns the first operand after adding the second value its exp. 5210 5211 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) 5212 Decimal('0.0750') 5213 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) 5214 Decimal('7.50') 5215 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) 5216 Decimal('7.50E+3') 5217 >>> ExtendedContext.scaleb(1, 4) 5218 Decimal('1E+4') 5219 >>> ExtendedContext.scaleb(Decimal(1), 4) 5220 Decimal('1E+4') 5221 >>> ExtendedContext.scaleb(1, Decimal(4)) 5222 Decimal('1E+4') 5223 """ 5224 a = _convert_other(a, raiseit=True) 5225 return a.scaleb(b, context=self) 5226 5227 def shift(self, a, b): 5228 """Returns a shifted copy of a, b times. 5229 5230 The coefficient of the result is a shifted copy of the digits 5231 in the coefficient of the first operand. The number of places 5232 to shift is taken from the absolute value of the second operand, 5233 with the shift being to the left if the second operand is 5234 positive or to the right otherwise. Digits shifted into the 5235 coefficient are zeros. 5236 5237 >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) 5238 Decimal('400000000') 5239 >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) 5240 Decimal('0') 5241 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) 5242 Decimal('1234567') 5243 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) 5244 Decimal('123456789') 5245 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) 5246 Decimal('345678900') 5247 >>> ExtendedContext.shift(88888888, 2) 5248 Decimal('888888800') 5249 >>> ExtendedContext.shift(Decimal(88888888), 2) 5250 Decimal('888888800') 5251 >>> ExtendedContext.shift(88888888, Decimal(2)) 5252 Decimal('888888800') 5253 """ 5254 a = _convert_other(a, raiseit=True) 5255 return a.shift(b, context=self) 5256 5257 def sqrt(self, a): 5258 """Square root of a non-negative number to context precision. 5259 5260 If the result must be inexact, it is rounded using the round-half-even 5261 algorithm. 5262 5263 >>> ExtendedContext.sqrt(Decimal('0')) 5264 Decimal('0') 5265 >>> ExtendedContext.sqrt(Decimal('-0')) 5266 Decimal('-0') 5267 >>> ExtendedContext.sqrt(Decimal('0.39')) 5268 Decimal('0.624499800') 5269 >>> ExtendedContext.sqrt(Decimal('100')) 5270 Decimal('10') 5271 >>> ExtendedContext.sqrt(Decimal('1')) 5272 Decimal('1') 5273 >>> ExtendedContext.sqrt(Decimal('1.0')) 5274 Decimal('1.0') 5275 >>> ExtendedContext.sqrt(Decimal('1.00')) 5276 Decimal('1.0') 5277 >>> ExtendedContext.sqrt(Decimal('7')) 5278 Decimal('2.64575131') 5279 >>> ExtendedContext.sqrt(Decimal('10')) 5280 Decimal('3.16227766') 5281 >>> ExtendedContext.sqrt(2) 5282 Decimal('1.41421356') 5283 >>> ExtendedContext.prec 5284 9 5285 """ 5286 a = _convert_other(a, raiseit=True) 5287 return a.sqrt(context=self) 5288 5289 def subtract(self, a, b): 5290 """Return the difference between the two operands. 5291 5292 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) 5293 Decimal('0.23') 5294 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) 5295 Decimal('0.00') 5296 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) 5297 Decimal('-0.77') 5298 >>> ExtendedContext.subtract(8, 5) 5299 Decimal('3') 5300 >>> ExtendedContext.subtract(Decimal(8), 5) 5301 Decimal('3') 5302 >>> ExtendedContext.subtract(8, Decimal(5)) 5303 Decimal('3') 5304 """ 5305 a = _convert_other(a, raiseit=True) 5306 r = a.__sub__(b, context=self) 5307 if r is NotImplemented: 5308 raise TypeError("Unable to convert %s to Decimal" % b) 5309 else: 5310 return r 5311 5312 def to_eng_string(self, a): 5313 """Converts a number to a string, using scientific notation. 5314 5315 The operation is not affected by the context. 5316 """ 5317 a = _convert_other(a, raiseit=True) 5318 return a.to_eng_string(context=self) 5319 5320 def to_sci_string(self, a): 5321 """Converts a number to a string, using scientific notation. 5322 5323 The operation is not affected by the context. 5324 """ 5325 a = _convert_other(a, raiseit=True) 5326 return a.__str__(context=self) 5327 5328 def to_integral_exact(self, a): 5329 """Rounds to an integer. 5330 5331 When the operand has a negative exponent, the result is the same 5332 as using the quantize() operation using the given operand as the 5333 left-hand-operand, 1E+0 as the right-hand-operand, and the precision 5334 of the operand as the precision setting; Inexact and Rounded flags 5335 are allowed in this operation. The rounding mode is taken from the 5336 context. 5337 5338 >>> ExtendedContext.to_integral_exact(Decimal('2.1')) 5339 Decimal('2') 5340 >>> ExtendedContext.to_integral_exact(Decimal('100')) 5341 Decimal('100') 5342 >>> ExtendedContext.to_integral_exact(Decimal('100.0')) 5343 Decimal('100') 5344 >>> ExtendedContext.to_integral_exact(Decimal('101.5')) 5345 Decimal('102') 5346 >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) 5347 Decimal('-102') 5348 >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) 5349 Decimal('1.0E+6') 5350 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) 5351 Decimal('7.89E+77') 5352 >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) 5353 Decimal('-Infinity') 5354 """ 5355 a = _convert_other(a, raiseit=True) 5356 return a.to_integral_exact(context=self) 5357 5358 def to_integral_value(self, a): 5359 """Rounds to an integer. 5360 5361 When the operand has a negative exponent, the result is the same 5362 as using the quantize() operation using the given operand as the 5363 left-hand-operand, 1E+0 as the right-hand-operand, and the precision 5364 of the operand as the precision setting, except that no flags will 5365 be set. The rounding mode is taken from the context. 5366 5367 >>> ExtendedContext.to_integral_value(Decimal('2.1')) 5368 Decimal('2') 5369 >>> ExtendedContext.to_integral_value(Decimal('100')) 5370 Decimal('100') 5371 >>> ExtendedContext.to_integral_value(Decimal('100.0')) 5372 Decimal('100') 5373 >>> ExtendedContext.to_integral_value(Decimal('101.5')) 5374 Decimal('102') 5375 >>> ExtendedContext.to_integral_value(Decimal('-101.5')) 5376 Decimal('-102') 5377 >>> ExtendedContext.to_integral_value(Decimal('10E+5')) 5378 Decimal('1.0E+6') 5379 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) 5380 Decimal('7.89E+77') 5381 >>> ExtendedContext.to_integral_value(Decimal('-Inf')) 5382 Decimal('-Infinity') 5383 """ 5384 a = _convert_other(a, raiseit=True) 5385 return a.to_integral_value(context=self) 5386 5387 # the method name changed, but we provide also the old one, for compatibility 5388 to_integral = to_integral_value 5389 5390class _WorkRep(object): 5391 __slots__ = ('sign','int','exp') 5392 # sign: 0 or 1 5393 # int: int or long 5394 # exp: None, int, or string 5395 5396 def __init__(self, value=None): 5397 if value is None: 5398 self.sign = None 5399 self.int = 0 5400 self.exp = None 5401 elif isinstance(value, Decimal): 5402 self.sign = value._sign 5403 self.int = int(value._int) 5404 self.exp = value._exp 5405 else: 5406 # assert isinstance(value, tuple) 5407 self.sign = value[0] 5408 self.int = value[1] 5409 self.exp = value[2] 5410 5411 def __repr__(self): 5412 return "(%r, %r, %r)" % (self.sign, self.int, self.exp) 5413 5414 __str__ = __repr__ 5415 5416 5417 5418def _normalize(op1, op2, prec = 0): 5419 """Normalizes op1, op2 to have the same exp and length of coefficient. 5420 5421 Done during addition. 5422 """ 5423 if op1.exp < op2.exp: 5424 tmp = op2 5425 other = op1 5426 else: 5427 tmp = op1 5428 other = op2 5429 5430 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1). 5431 # Then adding 10**exp to tmp has the same effect (after rounding) 5432 # as adding any positive quantity smaller than 10**exp; similarly 5433 # for subtraction. So if other is smaller than 10**exp we replace 5434 # it with 10**exp. This avoids tmp.exp - other.exp getting too large. 5435 tmp_len = len(str(tmp.int)) 5436 other_len = len(str(other.int)) 5437 exp = tmp.exp + min(-1, tmp_len - prec - 2) 5438 if other_len + other.exp - 1 < exp: 5439 other.int = 1 5440 other.exp = exp 5441 5442 tmp.int *= 10 ** (tmp.exp - other.exp) 5443 tmp.exp = other.exp 5444 return op1, op2 5445 5446##### Integer arithmetic functions used by ln, log10, exp and __pow__ ##### 5447 5448# This function from Tim Peters was taken from here: 5449# http://mail.python.org/pipermail/python-list/1999-July/007758.html 5450# The correction being in the function definition is for speed, and 5451# the whole function is not resolved with math.log because of avoiding 5452# the use of floats. 5453def _nbits(n, correction = { 5454 '0': 4, '1': 3, '2': 2, '3': 2, 5455 '4': 1, '5': 1, '6': 1, '7': 1, 5456 '8': 0, '9': 0, 'a': 0, 'b': 0, 5457 'c': 0, 'd': 0, 'e': 0, 'f': 0}): 5458 """Number of bits in binary representation of the positive integer n, 5459 or 0 if n == 0. 5460 """ 5461 if n < 0: 5462 raise ValueError("The argument to _nbits should be nonnegative.") 5463 hex_n = "%x" % n 5464 return 4*len(hex_n) - correction[hex_n[0]] 5465 5466def _sqrt_nearest(n, a): 5467 """Closest integer to the square root of the positive integer n. a is 5468 an initial approximation to the square root. Any positive integer 5469 will do for a, but the closer a is to the square root of n the 5470 faster convergence will be. 5471 5472 """ 5473 if n <= 0 or a <= 0: 5474 raise ValueError("Both arguments to _sqrt_nearest should be positive.") 5475 5476 b=0 5477 while a != b: 5478 b, a = a, a--n//a>>1 5479 return a 5480 5481def _rshift_nearest(x, shift): 5482 """Given an integer x and a nonnegative integer shift, return closest 5483 integer to x / 2**shift; use round-to-even in case of a tie. 5484 5485 """ 5486 b, q = 1L << shift, x >> shift 5487 return q + (2*(x & (b-1)) + (q&1) > b) 5488 5489def _div_nearest(a, b): 5490 """Closest integer to a/b, a and b positive integers; rounds to even 5491 in the case of a tie. 5492 5493 """ 5494 q, r = divmod(a, b) 5495 return q + (2*r + (q&1) > b) 5496 5497def _ilog(x, M, L = 8): 5498 """Integer approximation to M*log(x/M), with absolute error boundable 5499 in terms only of x/M. 5500 5501 Given positive integers x and M, return an integer approximation to 5502 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference 5503 between the approximation and the exact result is at most 22. For 5504 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In 5505 both cases these are upper bounds on the error; it will usually be 5506 much smaller.""" 5507 5508 # The basic algorithm is the following: let log1p be the function 5509 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use 5510 # the reduction 5511 # 5512 # log1p(y) = 2*log1p(y/(1+sqrt(1+y))) 5513 # 5514 # repeatedly until the argument to log1p is small (< 2**-L in 5515 # absolute value). For small y we can use the Taylor series 5516 # expansion 5517 # 5518 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T 5519 # 5520 # truncating at T such that y**T is small enough. The whole 5521 # computation is carried out in a form of fixed-point arithmetic, 5522 # with a real number z being represented by an integer 5523 # approximation to z*M. To avoid loss of precision, the y below 5524 # is actually an integer approximation to 2**R*y*M, where R is the 5525 # number of reductions performed so far. 5526 5527 y = x-M 5528 # argument reduction; R = number of reductions performed 5529 R = 0 5530 while (R <= L and long(abs(y)) << L-R >= M or 5531 R > L and abs(y) >> R-L >= M): 5532 y = _div_nearest(long(M*y) << 1, 5533 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M)) 5534 R += 1 5535 5536 # Taylor series with T terms 5537 T = -int(-10*len(str(M))//(3*L)) 5538 yshift = _rshift_nearest(y, R) 5539 w = _div_nearest(M, T) 5540 for k in xrange(T-1, 0, -1): 5541 w = _div_nearest(M, k) - _div_nearest(yshift*w, M) 5542 5543 return _div_nearest(w*y, M) 5544 5545def _dlog10(c, e, p): 5546 """Given integers c, e and p with c > 0, p >= 0, compute an integer 5547 approximation to 10**p * log10(c*10**e), with an absolute error of 5548 at most 1. Assumes that c*10**e is not exactly 1.""" 5549 5550 # increase precision by 2; compensate for this by dividing 5551 # final result by 100 5552 p += 2 5553 5554 # write c*10**e as d*10**f with either: 5555 # f >= 0 and 1 <= d <= 10, or 5556 # f <= 0 and 0.1 <= d <= 1. 5557 # Thus for c*10**e close to 1, f = 0 5558 l = len(str(c)) 5559 f = e+l - (e+l >= 1) 5560 5561 if p > 0: 5562 M = 10**p 5563 k = e+p-f 5564 if k >= 0: 5565 c *= 10**k 5566 else: 5567 c = _div_nearest(c, 10**-k) 5568 5569 log_d = _ilog(c, M) # error < 5 + 22 = 27 5570 log_10 = _log10_digits(p) # error < 1 5571 log_d = _div_nearest(log_d*M, log_10) 5572 log_tenpower = f*M # exact 5573 else: 5574 log_d = 0 # error < 2.31 5575 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5 5576 5577 return _div_nearest(log_tenpower+log_d, 100) 5578 5579def _dlog(c, e, p): 5580 """Given integers c, e and p with c > 0, compute an integer 5581 approximation to 10**p * log(c*10**e), with an absolute error of 5582 at most 1. Assumes that c*10**e is not exactly 1.""" 5583 5584 # Increase precision by 2. The precision increase is compensated 5585 # for at the end with a division by 100. 5586 p += 2 5587 5588 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10, 5589 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e) 5590 # as 10**p * log(d) + 10**p*f * log(10). 5591 l = len(str(c)) 5592 f = e+l - (e+l >= 1) 5593 5594 # compute approximation to 10**p*log(d), with error < 27 5595 if p > 0: 5596 k = e+p-f 5597 if k >= 0: 5598 c *= 10**k 5599 else: 5600 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c 5601 5602 # _ilog magnifies existing error in c by a factor of at most 10 5603 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27 5604 else: 5605 # p <= 0: just approximate the whole thing by 0; error < 2.31 5606 log_d = 0 5607 5608 # compute approximation to f*10**p*log(10), with error < 11. 5609 if f: 5610 extra = len(str(abs(f)))-1 5611 if p + extra >= 0: 5612 # error in f * _log10_digits(p+extra) < |f| * 1 = |f| 5613 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 5614 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) 5615 else: 5616 f_log_ten = 0 5617 else: 5618 f_log_ten = 0 5619 5620 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 5621 return _div_nearest(f_log_ten + log_d, 100) 5622 5623class _Log10Memoize(object): 5624 """Class to compute, store, and allow retrieval of, digits of the 5625 constant log(10) = 2.302585.... This constant is needed by 5626 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" 5627 def __init__(self): 5628 self.digits = "23025850929940456840179914546843642076011014886" 5629 5630 def getdigits(self, p): 5631 """Given an integer p >= 0, return floor(10**p)*log(10). 5632 5633 For example, self.getdigits(3) returns 2302. 5634 """ 5635 # digits are stored as a string, for quick conversion to 5636 # integer in the case that we've already computed enough 5637 # digits; the stored digits should always be correct 5638 # (truncated, not rounded to nearest). 5639 if p < 0: 5640 raise ValueError("p should be nonnegative") 5641 5642 if p >= len(self.digits): 5643 # compute p+3, p+6, p+9, ... digits; continue until at 5644 # least one of the extra digits is nonzero 5645 extra = 3 5646 while True: 5647 # compute p+extra digits, correct to within 1ulp 5648 M = 10**(p+extra+2) 5649 digits = str(_div_nearest(_ilog(10*M, M), 100)) 5650 if digits[-extra:] != '0'*extra: 5651 break 5652 extra += 3 5653 # keep all reliable digits so far; remove trailing zeros 5654 # and next nonzero digit 5655 self.digits = digits.rstrip('0')[:-1] 5656 return int(self.digits[:p+1]) 5657 5658_log10_digits = _Log10Memoize().getdigits 5659 5660def _iexp(x, M, L=8): 5661 """Given integers x and M, M > 0, such that x/M is small in absolute 5662 value, compute an integer approximation to M*exp(x/M). For 0 <= 5663 x/M <= 2.4, the absolute error in the result is bounded by 60 (and 5664 is usually much smaller).""" 5665 5666 # Algorithm: to compute exp(z) for a real number z, first divide z 5667 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then 5668 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor 5669 # series 5670 # 5671 # expm1(x) = x + x**2/2! + x**3/3! + ... 5672 # 5673 # Now use the identity 5674 # 5675 # expm1(2x) = expm1(x)*(expm1(x)+2) 5676 # 5677 # R times to compute the sequence expm1(z/2**R), 5678 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z). 5679 5680 # Find R such that x/2**R/M <= 2**-L 5681 R = _nbits((long(x)<<L)//M) 5682 5683 # Taylor series. (2**L)**T > M 5684 T = -int(-10*len(str(M))//(3*L)) 5685 y = _div_nearest(x, T) 5686 Mshift = long(M)<<R 5687 for i in xrange(T-1, 0, -1): 5688 y = _div_nearest(x*(Mshift + y), Mshift * i) 5689 5690 # Expansion 5691 for k in xrange(R-1, -1, -1): 5692 Mshift = long(M)<<(k+2) 5693 y = _div_nearest(y*(y+Mshift), Mshift) 5694 5695 return M+y 5696 5697def _dexp(c, e, p): 5698 """Compute an approximation to exp(c*10**e), with p decimal places of 5699 precision. 5700 5701 Returns integers d, f such that: 5702 5703 10**(p-1) <= d <= 10**p, and 5704 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f 5705 5706 In other words, d*10**f is an approximation to exp(c*10**e) with p 5707 digits of precision, and with an error in d of at most 1. This is 5708 almost, but not quite, the same as the error being < 1ulp: when d 5709 = 10**(p-1) the error could be up to 10 ulp.""" 5710 5711 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision 5712 p += 2 5713 5714 # compute log(10) with extra precision = adjusted exponent of c*10**e 5715 extra = max(0, e + len(str(c)) - 1) 5716 q = p + extra 5717 5718 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), 5719 # rounding down 5720 shift = e+q 5721 if shift >= 0: 5722 cshift = c*10**shift 5723 else: 5724 cshift = c//10**-shift 5725 quot, rem = divmod(cshift, _log10_digits(q)) 5726 5727 # reduce remainder back to original precision 5728 rem = _div_nearest(rem, 10**extra) 5729 5730 # error in result of _iexp < 120; error after division < 0.62 5731 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3 5732 5733def _dpower(xc, xe, yc, ye, p): 5734 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and 5735 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: 5736 5737 10**(p-1) <= c <= 10**p, and 5738 (c-1)*10**e < x**y < (c+1)*10**e 5739 5740 in other words, c*10**e is an approximation to x**y with p digits 5741 of precision, and with an error in c of at most 1. (This is 5742 almost, but not quite, the same as the error being < 1ulp: when c 5743 == 10**(p-1) we can only guarantee error < 10ulp.) 5744 5745 We assume that: x is positive and not equal to 1, and y is nonzero. 5746 """ 5747 5748 # Find b such that 10**(b-1) <= |y| <= 10**b 5749 b = len(str(abs(yc))) + ye 5750 5751 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point 5752 lxc = _dlog(xc, xe, p+b+1) 5753 5754 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1) 5755 shift = ye-b 5756 if shift >= 0: 5757 pc = lxc*yc*10**shift 5758 else: 5759 pc = _div_nearest(lxc*yc, 10**-shift) 5760 5761 if pc == 0: 5762 # we prefer a result that isn't exactly 1; this makes it 5763 # easier to compute a correctly rounded result in __pow__ 5764 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: 5765 coeff, exp = 10**(p-1)+1, 1-p 5766 else: 5767 coeff, exp = 10**p-1, -p 5768 else: 5769 coeff, exp = _dexp(pc, -(p+1), p+1) 5770 coeff = _div_nearest(coeff, 10) 5771 exp += 1 5772 5773 return coeff, exp 5774 5775def _log10_lb(c, correction = { 5776 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31, 5777 '6': 23, '7': 16, '8': 10, '9': 5}): 5778 """Compute a lower bound for 100*log10(c) for a positive integer c.""" 5779 if c <= 0: 5780 raise ValueError("The argument to _log10_lb should be nonnegative.") 5781 str_c = str(c) 5782 return 100*len(str_c) - correction[str_c[0]] 5783 5784##### Helper Functions #################################################### 5785 5786def _convert_other(other, raiseit=False, allow_float=False): 5787 """Convert other to Decimal. 5788 5789 Verifies that it's ok to use in an implicit construction. 5790 If allow_float is true, allow conversion from float; this 5791 is used in the comparison methods (__eq__ and friends). 5792 5793 """ 5794 if isinstance(other, Decimal): 5795 return other 5796 if isinstance(other, (int, long)): 5797 return Decimal(other) 5798 if allow_float and isinstance(other, float): 5799 return Decimal.from_float(other) 5800 5801 if raiseit: 5802 raise TypeError("Unable to convert %s to Decimal" % other) 5803 return NotImplemented 5804 5805##### Setup Specific Contexts ############################################ 5806 5807# The default context prototype used by Context() 5808# Is mutable, so that new contexts can have different default values 5809 5810DefaultContext = Context( 5811 prec=28, rounding=ROUND_HALF_EVEN, 5812 traps=[DivisionByZero, Overflow, InvalidOperation], 5813 flags=[], 5814 Emax=999999999, 5815 Emin=-999999999, 5816 capitals=1 5817) 5818 5819# Pre-made alternate contexts offered by the specification 5820# Don't change these; the user should be able to select these 5821# contexts and be able to reproduce results from other implementations 5822# of the spec. 5823 5824BasicContext = Context( 5825 prec=9, rounding=ROUND_HALF_UP, 5826 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], 5827 flags=[], 5828) 5829 5830ExtendedContext = Context( 5831 prec=9, rounding=ROUND_HALF_EVEN, 5832 traps=[], 5833 flags=[], 5834) 5835 5836 5837##### crud for parsing strings ############################################# 5838# 5839# Regular expression used for parsing numeric strings. Additional 5840# comments: 5841# 5842# 1. Uncomment the two '\s*' lines to allow leading and/or trailing 5843# whitespace. But note that the specification disallows whitespace in 5844# a numeric string. 5845# 5846# 2. For finite numbers (not infinities and NaNs) the body of the 5847# number between the optional sign and the optional exponent must have 5848# at least one decimal digit, possibly after the decimal point. The 5849# lookahead expression '(?=\d|\.\d)' checks this. 5850 5851import re 5852_parser = re.compile(r""" # A numeric string consists of: 5853# \s* 5854 (?P<sign>[-+])? # an optional sign, followed by either... 5855 ( 5856 (?=\d|\.\d) # ...a number (with at least one digit) 5857 (?P<int>\d*) # having a (possibly empty) integer part 5858 (\.(?P<frac>\d*))? # followed by an optional fractional part 5859 (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or... 5860 | 5861 Inf(inity)? # ...an infinity, or... 5862 | 5863 (?P<signal>s)? # ...an (optionally signaling) 5864 NaN # NaN 5865 (?P<diag>\d*) # with (possibly empty) diagnostic info. 5866 ) 5867# \s* 5868 \Z 5869""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match 5870 5871_all_zeros = re.compile('0*$').match 5872_exact_half = re.compile('50*$').match 5873 5874##### PEP3101 support functions ############################################## 5875# The functions in this section have little to do with the Decimal 5876# class, and could potentially be reused or adapted for other pure 5877# Python numeric classes that want to implement __format__ 5878# 5879# A format specifier for Decimal looks like: 5880# 5881# [[fill]align][sign][0][minimumwidth][,][.precision][type] 5882 5883_parse_format_specifier_regex = re.compile(r"""\A 5884(?: 5885 (?P<fill>.)? 5886 (?P<align>[<>=^]) 5887)? 5888(?P<sign>[-+ ])? 5889(?P<zeropad>0)? 5890(?P<minimumwidth>(?!0)\d+)? 5891(?P<thousands_sep>,)? 5892(?:\.(?P<precision>0|(?!0)\d+))? 5893(?P<type>[eEfFgGn%])? 5894\Z 5895""", re.VERBOSE) 5896 5897del re 5898 5899# The locale module is only needed for the 'n' format specifier. The 5900# rest of the PEP 3101 code functions quite happily without it, so we 5901# don't care too much if locale isn't present. 5902try: 5903 import locale as _locale 5904except ImportError: 5905 pass 5906 5907def _parse_format_specifier(format_spec, _localeconv=None): 5908 """Parse and validate a format specifier. 5909 5910 Turns a standard numeric format specifier into a dict, with the 5911 following entries: 5912 5913 fill: fill character to pad field to minimum width 5914 align: alignment type, either '<', '>', '=' or '^' 5915 sign: either '+', '-' or ' ' 5916 minimumwidth: nonnegative integer giving minimum width 5917 zeropad: boolean, indicating whether to pad with zeros 5918 thousands_sep: string to use as thousands separator, or '' 5919 grouping: grouping for thousands separators, in format 5920 used by localeconv 5921 decimal_point: string to use for decimal point 5922 precision: nonnegative integer giving precision, or None 5923 type: one of the characters 'eEfFgG%', or None 5924 unicode: boolean (always True for Python 3.x) 5925 5926 """ 5927 m = _parse_format_specifier_regex.match(format_spec) 5928 if m is None: 5929 raise ValueError("Invalid format specifier: " + format_spec) 5930 5931 # get the dictionary 5932 format_dict = m.groupdict() 5933 5934 # zeropad; defaults for fill and alignment. If zero padding 5935 # is requested, the fill and align fields should be absent. 5936 fill = format_dict['fill'] 5937 align = format_dict['align'] 5938 format_dict['zeropad'] = (format_dict['zeropad'] is not None) 5939 if format_dict['zeropad']: 5940 if fill is not None: 5941 raise ValueError("Fill character conflicts with '0'" 5942 " in format specifier: " + format_spec) 5943 if align is not None: 5944 raise ValueError("Alignment conflicts with '0' in " 5945 "format specifier: " + format_spec) 5946 format_dict['fill'] = fill or ' ' 5947 # PEP 3101 originally specified that the default alignment should 5948 # be left; it was later agreed that right-aligned makes more sense 5949 # for numeric types. See http://bugs.python.org/issue6857. 5950 format_dict['align'] = align or '>' 5951 5952 # default sign handling: '-' for negative, '' for positive 5953 if format_dict['sign'] is None: 5954 format_dict['sign'] = '-' 5955 5956 # minimumwidth defaults to 0; precision remains None if not given 5957 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0') 5958 if format_dict['precision'] is not None: 5959 format_dict['precision'] = int(format_dict['precision']) 5960 5961 # if format type is 'g' or 'G' then a precision of 0 makes little 5962 # sense; convert it to 1. Same if format type is unspecified. 5963 if format_dict['precision'] == 0: 5964 if format_dict['type'] is None or format_dict['type'] in 'gG': 5965 format_dict['precision'] = 1 5966 5967 # determine thousands separator, grouping, and decimal separator, and 5968 # add appropriate entries to format_dict 5969 if format_dict['type'] == 'n': 5970 # apart from separators, 'n' behaves just like 'g' 5971 format_dict['type'] = 'g' 5972 if _localeconv is None: 5973 _localeconv = _locale.localeconv() 5974 if format_dict['thousands_sep'] is not None: 5975 raise ValueError("Explicit thousands separator conflicts with " 5976 "'n' type in format specifier: " + format_spec) 5977 format_dict['thousands_sep'] = _localeconv['thousands_sep'] 5978 format_dict['grouping'] = _localeconv['grouping'] 5979 format_dict['decimal_point'] = _localeconv['decimal_point'] 5980 else: 5981 if format_dict['thousands_sep'] is None: 5982 format_dict['thousands_sep'] = '' 5983 format_dict['grouping'] = [3, 0] 5984 format_dict['decimal_point'] = '.' 5985 5986 # record whether return type should be str or unicode 5987 format_dict['unicode'] = isinstance(format_spec, unicode) 5988 5989 return format_dict 5990 5991def _format_align(sign, body, spec): 5992 """Given an unpadded, non-aligned numeric string 'body' and sign 5993 string 'sign', add padding and alignment conforming to the given 5994 format specifier dictionary 'spec' (as produced by 5995 parse_format_specifier). 5996 5997 Also converts result to unicode if necessary. 5998 5999 """ 6000 # how much extra space do we have to play with? 6001 minimumwidth = spec['minimumwidth'] 6002 fill = spec['fill'] 6003 padding = fill*(minimumwidth - len(sign) - len(body)) 6004 6005 align = spec['align'] 6006 if align == '<': 6007 result = sign + body + padding 6008 elif align == '>': 6009 result = padding + sign + body 6010 elif align == '=': 6011 result = sign + padding + body 6012 elif align == '^': 6013 half = len(padding)//2 6014 result = padding[:half] + sign + body + padding[half:] 6015 else: 6016 raise ValueError('Unrecognised alignment field') 6017 6018 # make sure that result is unicode if necessary 6019 if spec['unicode']: 6020 result = unicode(result) 6021 6022 return result 6023 6024def _group_lengths(grouping): 6025 """Convert a localeconv-style grouping into a (possibly infinite) 6026 iterable of integers representing group lengths. 6027 6028 """ 6029 # The result from localeconv()['grouping'], and the input to this 6030 # function, should be a list of integers in one of the 6031 # following three forms: 6032 # 6033 # (1) an empty list, or 6034 # (2) nonempty list of positive integers + [0] 6035 # (3) list of positive integers + [locale.CHAR_MAX], or 6036 6037 from itertools import chain, repeat 6038 if not grouping: 6039 return [] 6040 elif grouping[-1] == 0 and len(grouping) >= 2: 6041 return chain(grouping[:-1], repeat(grouping[-2])) 6042 elif grouping[-1] == _locale.CHAR_MAX: 6043 return grouping[:-1] 6044 else: 6045 raise ValueError('unrecognised format for grouping') 6046 6047def _insert_thousands_sep(digits, spec, min_width=1): 6048 """Insert thousands separators into a digit string. 6049 6050 spec is a dictionary whose keys should include 'thousands_sep' and 6051 'grouping'; typically it's the result of parsing the format 6052 specifier using _parse_format_specifier. 6053 6054 The min_width keyword argument gives the minimum length of the 6055 result, which will be padded on the left with zeros if necessary. 6056 6057 If necessary, the zero padding adds an extra '0' on the left to 6058 avoid a leading thousands separator. For example, inserting 6059 commas every three digits in '123456', with min_width=8, gives 6060 '0,123,456', even though that has length 9. 6061 6062 """ 6063 6064 sep = spec['thousands_sep'] 6065 grouping = spec['grouping'] 6066 6067 groups = [] 6068 for l in _group_lengths(grouping): 6069 if l <= 0: 6070 raise ValueError("group length should be positive") 6071 # max(..., 1) forces at least 1 digit to the left of a separator 6072 l = min(max(len(digits), min_width, 1), l) 6073 groups.append('0'*(l - len(digits)) + digits[-l:]) 6074 digits = digits[:-l] 6075 min_width -= l 6076 if not digits and min_width <= 0: 6077 break 6078 min_width -= len(sep) 6079 else: 6080 l = max(len(digits), min_width, 1) 6081 groups.append('0'*(l - len(digits)) + digits[-l:]) 6082 return sep.join(reversed(groups)) 6083 6084def _format_sign(is_negative, spec): 6085 """Determine sign character.""" 6086 6087 if is_negative: 6088 return '-' 6089 elif spec['sign'] in ' +': 6090 return spec['sign'] 6091 else: 6092 return '' 6093 6094def _format_number(is_negative, intpart, fracpart, exp, spec): 6095 """Format a number, given the following data: 6096 6097 is_negative: true if the number is negative, else false 6098 intpart: string of digits that must appear before the decimal point 6099 fracpart: string of digits that must come after the point 6100 exp: exponent, as an integer 6101 spec: dictionary resulting from parsing the format specifier 6102 6103 This function uses the information in spec to: 6104 insert separators (decimal separator and thousands separators) 6105 format the sign 6106 format the exponent 6107 add trailing '%' for the '%' type 6108 zero-pad if necessary 6109 fill and align if necessary 6110 """ 6111 6112 sign = _format_sign(is_negative, spec) 6113 6114 if fracpart: 6115 fracpart = spec['decimal_point'] + fracpart 6116 6117 if exp != 0 or spec['type'] in 'eE': 6118 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']] 6119 fracpart += "{0}{1:+}".format(echar, exp) 6120 if spec['type'] == '%': 6121 fracpart += '%' 6122 6123 if spec['zeropad']: 6124 min_width = spec['minimumwidth'] - len(fracpart) - len(sign) 6125 else: 6126 min_width = 0 6127 intpart = _insert_thousands_sep(intpart, spec, min_width) 6128 6129 return _format_align(sign, intpart+fracpart, spec) 6130 6131 6132##### Useful Constants (internal use only) ################################ 6133 6134# Reusable defaults 6135_Infinity = Decimal('Inf') 6136_NegativeInfinity = Decimal('-Inf') 6137_NaN = Decimal('NaN') 6138_Zero = Decimal(0) 6139_One = Decimal(1) 6140_NegativeOne = Decimal(-1) 6141 6142# _SignedInfinity[sign] is infinity w/ that sign 6143_SignedInfinity = (_Infinity, _NegativeInfinity) 6144 6145 6146 6147if __name__ == '__main__': 6148 import doctest, sys 6149 doctest.testmod(sys.modules[__name__]) 6150