1 /** @file
2   ACPI Timer implements one instance of Timer Library.
3 
4   Copyright (c) 2014, Intel Corporation. All rights reserved.<BR>
5   This program and the accompanying materials are
6   licensed and made available under the terms and conditions of the BSD License
7   which accompanies this distribution.  The full text of the license may be found at
8   http://opensource.org/licenses/bsd-license.php
9 
10   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12 
13 **/
14 
15 #include <PiPei.h>
16 #include <Library/TimerLib.h>
17 #include <Library/BaseLib.h>
18 #include <Library/IoLib.h>
19 #include <Library/HobLib.h>
20 #include <Library/DebugLib.h>
21 
22 #include <Guid/AcpiBoardInfoGuid.h>
23 #include <IndustryStandard/Acpi.h>
24 
25 #define ACPI_TIMER_COUNT_SIZE  BIT24
26 
27 UINTN mPmTimerReg = 0;
28 
29 /**
30   The constructor function enables ACPI IO space.
31 
32   If ACPI I/O space not enabled, this function will enable it.
33   It will always return RETURN_SUCCESS.
34 
35   @retval EFI_SUCCESS   The constructor always returns RETURN_SUCCESS.
36 
37 **/
38 RETURN_STATUS
39 EFIAPI
AcpiTimerLibConstructor(VOID)40 AcpiTimerLibConstructor (
41   VOID
42   )
43 {
44 	EFI_HOB_GUID_TYPE  *GuidHob;
45 	ACPI_BOARD_INFO    *pAcpiBoardInfo;
46 
47 	//
48 	// Find the acpi board information guid hob
49 	//
50 	GuidHob = GetFirstGuidHob (&gUefiAcpiBoardInfoGuid);
51 	ASSERT (GuidHob != NULL);
52 
53   pAcpiBoardInfo = (ACPI_BOARD_INFO *)GET_GUID_HOB_DATA (GuidHob);
54 
55   mPmTimerReg = (UINTN)pAcpiBoardInfo->PmTimerRegBase;
56 
57   return EFI_SUCCESS;
58 }
59 
60 /**
61   Internal function to read the current tick counter of ACPI.
62 
63   Internal function to read the current tick counter of ACPI.
64 
65   @return The tick counter read.
66 
67 **/
68 UINT32
InternalAcpiGetTimerTick(VOID)69 InternalAcpiGetTimerTick (
70   VOID
71   )
72 {
73 	if (mPmTimerReg == 0)
74 		AcpiTimerLibConstructor ();
75 
76   return IoRead32 (mPmTimerReg);
77 }
78 
79 /**
80   Stalls the CPU for at least the given number of ticks.
81 
82   Stalls the CPU for at least the given number of ticks. It's invoked by
83   MicroSecondDelay() and NanoSecondDelay().
84 
85   @param  Delay     A period of time to delay in ticks.
86 
87 **/
88 VOID
InternalAcpiDelay(IN UINT32 Delay)89 InternalAcpiDelay (
90   IN      UINT32                    Delay
91   )
92 {
93   UINT32                            Ticks;
94   UINT32                            Times;
95 
96   Times    = Delay >> 22;
97   Delay   &= BIT22 - 1;
98   do {
99     //
100     // The target timer count is calculated here
101     //
102     Ticks    = InternalAcpiGetTimerTick () + Delay;
103     Delay    = BIT22;
104     //
105     // Wait until time out
106     // Delay >= 2^23 could not be handled by this function
107     // Timer wrap-arounds are handled correctly by this function
108     //
109     while (((Ticks - InternalAcpiGetTimerTick ()) & BIT23) == 0) {
110       CpuPause ();
111     }
112   } while (Times-- > 0);
113 }
114 
115 /**
116   Stalls the CPU for at least the given number of microseconds.
117 
118   Stalls the CPU for the number of microseconds specified by MicroSeconds.
119 
120   @param  MicroSeconds  The minimum number of microseconds to delay.
121 
122   @return MicroSeconds
123 
124 **/
125 UINTN
126 EFIAPI
MicroSecondDelay(IN UINTN MicroSeconds)127 MicroSecondDelay (
128   IN      UINTN                     MicroSeconds
129   )
130 {
131   InternalAcpiDelay (
132     (UINT32)DivU64x32 (
133               MultU64x32 (
134                 MicroSeconds,
135                 ACPI_TIMER_FREQUENCY
136                 ),
137               1000000u
138               )
139     );
140   return MicroSeconds;
141 }
142 
143 /**
144   Stalls the CPU for at least the given number of nanoseconds.
145 
146   Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
147 
148   @param  NanoSeconds The minimum number of nanoseconds to delay.
149 
150   @return NanoSeconds
151 
152 **/
153 UINTN
154 EFIAPI
NanoSecondDelay(IN UINTN NanoSeconds)155 NanoSecondDelay (
156   IN      UINTN                     NanoSeconds
157   )
158 {
159   InternalAcpiDelay (
160     (UINT32)DivU64x32 (
161               MultU64x32 (
162                 NanoSeconds,
163                 ACPI_TIMER_FREQUENCY
164                 ),
165               1000000000u
166               )
167     );
168   return NanoSeconds;
169 }
170 
171 /**
172   Retrieves the current value of a 64-bit free running performance counter.
173 
174   Retrieves the current value of a 64-bit free running performance counter. The
175   counter can either count up by 1 or count down by 1. If the physical
176   performance counter counts by a larger increment, then the counter values
177   must be translated. The properties of the counter can be retrieved from
178   GetPerformanceCounterProperties().
179 
180   @return The current value of the free running performance counter.
181 
182 **/
183 UINT64
184 EFIAPI
GetPerformanceCounter(VOID)185 GetPerformanceCounter (
186   VOID
187   )
188 {
189   return (UINT64)InternalAcpiGetTimerTick ();
190 }
191 
192 /**
193   Retrieves the 64-bit frequency in Hz and the range of performance counter
194   values.
195 
196   If StartValue is not NULL, then the value that the performance counter starts
197   with immediately after is it rolls over is returned in StartValue. If
198   EndValue is not NULL, then the value that the performance counter end with
199   immediately before it rolls over is returned in EndValue. The 64-bit
200   frequency of the performance counter in Hz is always returned. If StartValue
201   is less than EndValue, then the performance counter counts up. If StartValue
202   is greater than EndValue, then the performance counter counts down. For
203   example, a 64-bit free running counter that counts up would have a StartValue
204   of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
205   that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
206 
207   @param  StartValue  The value the performance counter starts with when it
208                       rolls over.
209   @param  EndValue    The value that the performance counter ends with before
210                       it rolls over.
211 
212   @return The frequency in Hz.
213 
214 **/
215 UINT64
216 EFIAPI
GetPerformanceCounterProperties(OUT UINT64 * StartValue,OPTIONAL OUT UINT64 * EndValue OPTIONAL)217 GetPerformanceCounterProperties (
218   OUT      UINT64                    *StartValue,  OPTIONAL
219   OUT      UINT64                    *EndValue     OPTIONAL
220   )
221 {
222   if (StartValue != NULL) {
223     *StartValue = 0;
224   }
225 
226   if (EndValue != NULL) {
227     *EndValue = ACPI_TIMER_COUNT_SIZE - 1;
228   }
229 
230   return ACPI_TIMER_FREQUENCY;
231 }
232 
233 /**
234   Converts elapsed ticks of performance counter to time in nanoseconds.
235 
236   This function converts the elapsed ticks of running performance counter to
237   time value in unit of nanoseconds.
238 
239   @param  Ticks     The number of elapsed ticks of running performance counter.
240 
241   @return The elapsed time in nanoseconds.
242 
243 **/
244 UINT64
245 EFIAPI
GetTimeInNanoSecond(IN UINT64 Ticks)246 GetTimeInNanoSecond (
247   IN      UINT64                     Ticks
248   )
249 {
250   UINT64  Frequency;
251   UINT64  NanoSeconds;
252   UINT64  Remainder;
253   INTN    Shift;
254 
255   Frequency = GetPerformanceCounterProperties (NULL, NULL);
256 
257   //
258   //          Ticks
259   // Time = --------- x 1,000,000,000
260   //        Frequency
261   //
262   NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);
263 
264   //
265   // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.
266   // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,
267   // i.e. highest bit set in Remainder should <= 33.
268   //
269   Shift = MAX (0, HighBitSet64 (Remainder) - 33);
270   Remainder = RShiftU64 (Remainder, (UINTN) Shift);
271   Frequency = RShiftU64 (Frequency, (UINTN) Shift);
272   NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);
273 
274   return NanoSeconds;
275 }
276 
277