1 /** @file
2 *
3 *  Copyright (c) 2012-2014, ARM Limited. All rights reserved.
4 *
5 *  This program and the accompanying materials
6 *  are licensed and made available under the terms and conditions of the BSD License
7 *  which accompanies this distribution.  The full text of the license may be found at
8 *  http://opensource.org/licenses/bsd-license.php
9 *
10 *  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 *  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12 *
13 **/
14 
15 #include "Lan9118Dxe.h"
16 
17 STATIC EFI_MAC_ADDRESS mZeroMac = { { 0 } };
18 
19 /**
20   This internal function reverses bits for 32bit data.
21 
22   @param  Value                 The data to be reversed.
23 
24   @return                       Data reversed.
25 
26 **/
27 UINT32
ReverseBits(UINT32 Value)28 ReverseBits (
29   UINT32  Value
30   )
31 {
32   UINTN   Index;
33   UINT32  NewValue;
34 
35   NewValue = 0;
36   for (Index = 0; Index < 32; Index++) {
37     if ((Value & (1 << Index)) != 0) {
38       NewValue = NewValue | (1 << (31 - Index));
39     }
40   }
41 
42   return NewValue;
43 }
44 
45 /*
46 **  Create Ethernet CRC
47 **
48 **  INFO USED:
49 **    1: http://en.wikipedia.org/wiki/Cyclic_redundancy_check
50 **
51 **    2: http://www.erg.abdn.ac.uk/~gorry/eg3567/dl-pages/crc.html
52 **
53 **    3: http://en.wikipedia.org/wiki/Computation_of_CRC
54 */
55 UINT32
GenEtherCrc32(IN EFI_MAC_ADDRESS * Mac,IN UINT32 AddrLen)56 GenEtherCrc32 (
57   IN    EFI_MAC_ADDRESS *Mac,
58   IN    UINT32 AddrLen
59   )
60 {
61   INT32 Iter;
62   UINT32 Remainder;
63   UINT8 *Ptr;
64 
65   Iter = 0;
66   Remainder = 0xFFFFFFFF;    // 0xFFFFFFFF is standard seed for Ethernet
67 
68   // Convert Mac Address to array of bytes
69   Ptr = (UINT8*)Mac;
70 
71   // Generate the Crc bit-by-bit (LSB first)
72   while (AddrLen--) {
73     Remainder ^= *Ptr++;
74     for (Iter = 0;Iter < 8;Iter++) {
75       // Check if exponent is set
76       if (Remainder & 1) {
77         Remainder = (Remainder >> 1) ^ CRC_POLYNOMIAL;
78       } else {
79         Remainder = (Remainder >> 1) ^ 0;
80       }
81     }
82   }
83 
84   // Reverse the bits before returning (to Big Endian)
85   //TODO: Need to be reviewed. Do we want to do a bit reverse or a byte reverse (in this case use SwapBytes32())
86   return ReverseBits (Remainder);
87 }
88 
89 // Function to read from MAC indirect registers
90 UINT32
IndirectMACRead32(UINT32 Index)91 IndirectMACRead32 (
92   UINT32 Index
93   )
94 {
95   UINT32 MacCSR;
96 
97   // Check index is in the range
98   ASSERT(Index <= 12);
99 
100   // Wait until CSR busy bit is cleared
101   while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
102 
103   // Set CSR busy bit to ensure read will occur
104   // Set the R/W bit to indicate we are reading
105   // Set the index of CSR Address to access desired register
106   MacCSR = MAC_CSR_BUSY | MAC_CSR_READ | MAC_CSR_ADDR(Index);
107 
108   // Write to the register
109   MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
110 
111   // Wait until CSR busy bit is cleared
112   while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
113 
114   // Now read from data register to get read value
115   return MmioRead32 (LAN9118_MAC_CSR_DATA);
116 }
117 
118 // Function to write to MAC indirect registers
119 UINT32
IndirectMACWrite32(UINT32 Index,UINT32 Value)120 IndirectMACWrite32 (
121   UINT32 Index,
122   UINT32 Value
123   )
124 {
125   UINT32 ValueWritten;
126   UINT32 MacCSR;
127 
128   // Check index is in the range
129   ASSERT(Index <= 12);
130 
131   // Wait until CSR busy bit is cleared
132   while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
133 
134   // Set CSR busy bit to ensure read will occur
135   // Set the R/W bit to indicate we are writing
136   // Set the index of CSR Address to access desired register
137   MacCSR = MAC_CSR_BUSY | MAC_CSR_WRITE | MAC_CSR_ADDR(Index);
138 
139   // Now write the value to the register before issuing the write command
140   ValueWritten = MmioWrite32 (LAN9118_MAC_CSR_DATA, Value);
141 
142   // Write the config to the register
143   MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
144 
145   // Wait until CSR busy bit is cleared
146   while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
147 
148   return ValueWritten;
149 }
150 
151 // Function to read from MII register (PHY Access)
152 UINT32
IndirectPHYRead32(UINT32 Index)153 IndirectPHYRead32 (
154   UINT32 Index
155   )
156 {
157   UINT32 ValueRead;
158   UINT32 MiiAcc;
159 
160   // Check it is a valid index
161   ASSERT(Index < 31);
162 
163   // Wait for busy bit to clear
164   while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
165 
166   // Clear the R/W bit to indicate we are reading
167   // Set the index of the MII register
168   // Set the PHY Address
169   // Set the MII busy bit to allow read
170   MiiAcc = MII_ACC_MII_READ | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
171 
172   // Now write this config to register
173   IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
174 
175   // Wait for busy bit to clear
176   while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
177 
178   // Now read the value of the register
179   ValueRead = (IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_DATA) & 0xFFFF); // only lower 16 bits are valid for any PHY register
180 
181   return ValueRead;
182 }
183 
184 
185 // Function to write to the MII register (PHY Access)
186 UINT32
IndirectPHYWrite32(UINT32 Index,UINT32 Value)187 IndirectPHYWrite32 (
188   UINT32 Index,
189   UINT32 Value
190   )
191 {
192   UINT32 MiiAcc;
193   UINT32 ValueWritten;
194 
195   // Check it is a valid index
196   ASSERT(Index < 31);
197 
198   // Wait for busy bit to clear
199   while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
200 
201   // Clear the R/W bit to indicate we are reading
202   // Set the index of the MII register
203   // Set the PHY Address
204   // Set the MII busy bit to allow read
205   MiiAcc = MII_ACC_MII_WRITE | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
206 
207   // Write the desired value to the register first
208   ValueWritten = IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_DATA, (Value & 0xFFFF));
209 
210   // Now write the config to register
211   IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
212 
213   // Wait for operation to terminate
214   while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
215 
216   return ValueWritten;
217 }
218 
219 
220 /* ---------------- EEPROM Operations ------------------ */
221 
222 
223 // Function to read from EEPROM memory
224 UINT32
IndirectEEPROMRead32(UINT32 Index)225 IndirectEEPROMRead32 (
226   UINT32 Index
227   )
228 {
229   UINT32 EepromCmd;
230 
231   // Set the busy bit to ensure read will occur
232   EepromCmd = E2P_EPC_BUSY | E2P_EPC_CMD_READ;
233 
234   // Set the index to access desired EEPROM memory location
235   EepromCmd |= E2P_EPC_ADDRESS(Index);
236 
237   // Write to Eeprom command register
238   MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
239   gBS->Stall (LAN9118_STALL);
240 
241   // Wait until operation has completed
242   while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
243 
244   // Check that operation didn't time out
245   if (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
246     DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Read command on index %x\n",Index));
247     return 0;
248   }
249 
250   // Wait until operation has completed
251   while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
252 
253   // Finally read the value
254   return MmioRead32 (LAN9118_E2P_DATA);
255 }
256 
257 // Function to write to EEPROM memory
258 UINT32
IndirectEEPROMWrite32(UINT32 Index,UINT32 Value)259 IndirectEEPROMWrite32 (
260   UINT32 Index,
261   UINT32 Value
262   )
263 {
264   UINT32 ValueWritten;
265   UINT32 EepromCmd;
266 
267   ValueWritten = 0;
268 
269   // Read the EEPROM Command register
270   EepromCmd = MmioRead32 (LAN9118_E2P_CMD);
271 
272   // Set the busy bit to ensure read will occur
273   EepromCmd |= ((UINT32)1 << 31);
274 
275   // Set the EEPROM command to write(0b011)
276   EepromCmd &= ~(7 << 28);    // Clear the command first
277   EepromCmd |= (3 << 28);     // Write 011
278 
279   // Set the index to access desired EEPROM memory location
280   EepromCmd |= (Index & 0xF);
281 
282   // Write the value to the data register first
283   ValueWritten = MmioWrite32 (LAN9118_E2P_DATA, Value);
284 
285   // Write to Eeprom command register
286   MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
287   gBS->Stall (LAN9118_STALL);
288 
289   // Wait until operation has completed
290   while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
291 
292   // Check that operation didn't time out
293   if (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
294     DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Write command at memloc 0x%x, with value 0x%x\n",Index, Value));
295     return 0;
296   }
297 
298   // Wait until operation has completed
299   while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
300 
301   return ValueWritten;
302 }
303 
304 /* ---------------- General Operations ----------------- */
305 
306 VOID
Lan9118SetMacAddress(EFI_MAC_ADDRESS * Mac,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)307 Lan9118SetMacAddress (
308   EFI_MAC_ADDRESS             *Mac,
309   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
310   )
311 {
312   IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRL,
313                       (Mac->Addr[0] & 0xFF) |
314                       ((Mac->Addr[1] & 0xFF) << 8) |
315                       ((Mac->Addr[2] & 0xFF) << 16) |
316                       ((Mac->Addr[3] & 0xFF) << 24)
317                     );
318 
319   IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRH,
320                       (UINT32)(Mac->Addr[4] & 0xFF) |
321                       ((Mac->Addr[5] & 0xFF) << 8)
322                     );
323 }
324 
325 VOID
Lan9118ReadMacAddress(OUT EFI_MAC_ADDRESS * MacAddress)326 Lan9118ReadMacAddress (
327   OUT EFI_MAC_ADDRESS *MacAddress
328   )
329 {
330   UINT32          MacAddrHighValue;
331   UINT32          MacAddrLowValue;
332 
333   // Read the Mac Addr high register
334   MacAddrHighValue = (IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRH) & 0xFFFF);
335   // Read the Mac Addr low register
336   MacAddrLowValue = IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRL);
337 
338   SetMem (MacAddress, sizeof(*MacAddress), 0);
339   MacAddress->Addr[0] = (MacAddrLowValue & 0xFF);
340   MacAddress->Addr[1] = (MacAddrLowValue & 0xFF00) >> 8;
341   MacAddress->Addr[2] = (MacAddrLowValue & 0xFF0000) >> 16;
342   MacAddress->Addr[3] = (MacAddrLowValue & 0xFF000000) >> 24;
343   MacAddress->Addr[4] = (MacAddrHighValue & 0xFF);
344   MacAddress->Addr[5] = (MacAddrHighValue & 0xFF00) >> 8;
345 }
346 
347 /*
348  *  Power up the 9118 and find its MAC address.
349  *
350  *  This operation can be carried out when the LAN9118 is in any power state
351  *
352  */
353 EFI_STATUS
Lan9118Initialize(IN EFI_SIMPLE_NETWORK_PROTOCOL * Snp)354 Lan9118Initialize (
355   IN  EFI_SIMPLE_NETWORK_PROTOCOL *Snp
356   )
357 {
358   UINTN  Timeout;
359   UINT64 DefaultMacAddress;
360 
361   // Attempt to wake-up the device if it is in a lower power state
362   if (((MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PM_MODE_MASK) >> 12) != 0) {
363     DEBUG ((DEBUG_NET, "Waking from reduced power state.\n"));
364     MmioWrite32 (LAN9118_BYTE_TEST, 0xFFFFFFFF);
365     gBS->Stall (LAN9118_STALL);
366   }
367 
368   // Check that device is active
369   Timeout = 20;
370   while ((MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_READY) == 0 && --Timeout) {
371     gBS->Stall (LAN9118_STALL);
372   }
373   if (!Timeout) {
374     return EFI_TIMEOUT;
375   }
376 
377   // Check that EEPROM isn't active
378   Timeout = 20;
379   while ((MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY) && --Timeout){
380     gBS->Stall (LAN9118_STALL);
381   }
382   if (!Timeout) {
383     return EFI_TIMEOUT;
384   }
385 
386   // Check if a MAC address was loaded from EEPROM, and if it was, set it as the
387   // current address.
388   if ((MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_MAC_ADDRESS_LOADED) == 0) {
389     DEBUG ((EFI_D_ERROR, "Warning: There was an error detecting EEPROM or loading the MAC Address.\n"));
390 
391     // If we had an address before (set by StationAddess), continue to use it
392     if (CompareMem (&Snp->Mode->CurrentAddress, &mZeroMac, NET_ETHER_ADDR_LEN)) {
393       Lan9118SetMacAddress (&Snp->Mode->CurrentAddress, Snp);
394     } else {
395       // If there are no cached addresses, then fall back to a default
396       DEBUG ((EFI_D_WARN, "Warning: using driver-default MAC address\n"));
397       DefaultMacAddress = FixedPcdGet64 (PcdLan9118DefaultMacAddress);
398       Lan9118SetMacAddress((EFI_MAC_ADDRESS *) &DefaultMacAddress, Snp);
399       CopyMem (&Snp->Mode->CurrentAddress, &DefaultMacAddress, NET_ETHER_ADDR_LEN);
400     }
401   } else {
402     // Store the MAC address that was loaded from EEPROM
403     Lan9118ReadMacAddress (&Snp->Mode->CurrentAddress);
404     CopyMem (&Snp->Mode->PermanentAddress, &Snp->Mode->CurrentAddress, NET_ETHER_ADDR_LEN);
405   }
406 
407   // Clear and acknowledge interrupts
408   MmioWrite32 (LAN9118_INT_EN, 0);
409   MmioWrite32 (LAN9118_IRQ_CFG, 0);
410   MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
411 
412   // Do self tests here?
413 
414   return EFI_SUCCESS;
415 }
416 
417 
418 // Perform software reset on the LAN9118
419 // Return 0 on success, -1 on error
420 EFI_STATUS
SoftReset(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)421 SoftReset (
422   UINT32 Flags,
423   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
424   )
425 {
426   UINT32 HwConf;
427   UINT32 ResetTime;
428 
429   // Initialize variable
430   ResetTime = 0;
431 
432   // Stop Rx and Tx
433   StopTx (STOP_TX_MAC | STOP_TX_CFG | STOP_TX_CLEAR, Snp);
434   StopRx (STOP_RX_CLEAR, Snp); // Clear receiver FIFO
435 
436   // Issue the reset
437   HwConf = MmioRead32 (LAN9118_HW_CFG);
438   HwConf |= 1;
439 
440   // Set the Must Be One (MBO) bit
441   if (((HwConf & HWCFG_MBO) >> 20) == 0) {
442     HwConf |= HWCFG_MBO;
443   }
444 
445   // Check that EEPROM isn't active
446   while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
447 
448   // Write the configuration
449   MmioWrite32 (LAN9118_HW_CFG, HwConf);
450   gBS->Stall (LAN9118_STALL);
451 
452   // Wait for reset to complete
453   while (MmioRead32 (LAN9118_HW_CFG) & HWCFG_SRST) {
454 
455     gBS->Stall (LAN9118_STALL);
456     ResetTime += 1;
457 
458     // If time taken exceeds 100us, then there was an error condition
459     if (ResetTime > 1000) {
460       Snp->Mode->State = EfiSimpleNetworkStopped;
461       return EFI_TIMEOUT;
462     }
463   }
464 
465   // Check that EEPROM isn't active
466   while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
467 
468   // TODO we probably need to re-set the mac address here.
469 
470   // Clear and acknowledge all interrupts
471   if (Flags & SOFT_RESET_CLEAR_INT) {
472     MmioWrite32 (LAN9118_INT_EN, 0);
473     MmioWrite32 (LAN9118_IRQ_CFG, 0);
474     MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
475   }
476 
477   // Do self tests here?
478   if (Flags & SOFT_RESET_SELF_TEST) {
479 
480   }
481 
482   return EFI_SUCCESS;
483 }
484 
485 
486 // Perform PHY software reset
487 EFI_STATUS
PhySoftReset(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)488 PhySoftReset (
489   UINT32 Flags,
490   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
491   )
492 {
493   UINT32 PmtCtrl = 0;
494 
495   // PMT PHY reset takes precedence over BCR
496   if (Flags & PHY_RESET_PMT) {
497     PmtCtrl = MmioRead32 (LAN9118_PMT_CTRL);
498     PmtCtrl |= MPTCTRL_PHY_RST;
499     MmioWrite32 (LAN9118_PMT_CTRL,PmtCtrl);
500 
501     // Wait for completion
502     while (MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PHY_RST) {
503       gBS->Stall (LAN9118_STALL);
504     }
505   // PHY Basic Control Register reset
506   } else if (Flags & PHY_RESET_BCR) {
507     IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PHYCR_RESET);
508 
509     // Wait for completion
510     while (IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL) & PHYCR_RESET) {
511       gBS->Stall (LAN9118_STALL);
512     }
513   }
514 
515   // Clear and acknowledge all interrupts
516   if (Flags & PHY_SOFT_RESET_CLEAR_INT) {
517     MmioWrite32 (LAN9118_INT_EN, 0);
518     MmioWrite32 (LAN9118_IRQ_CFG, 0);
519     MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
520   }
521 
522   return EFI_SUCCESS;
523 }
524 
525 
526 // Configure hardware for LAN9118
527 EFI_STATUS
ConfigureHardware(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)528 ConfigureHardware (
529   UINT32 Flags,
530   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
531   )
532 {
533   UINT32 GpioConf;
534 
535   // Check if we want to use LEDs on GPIO
536   if (Flags & HW_CONF_USE_LEDS) {
537     GpioConf = MmioRead32 (LAN9118_GPIO_CFG);
538 
539     // Enable GPIO as LEDs and Config as Push-Pull driver
540     GpioConf |= GPIO_GPIO0_PUSH_PULL | GPIO_GPIO1_PUSH_PULL | GPIO_GPIO2_PUSH_PULL |
541                 GPIO_LED1_ENABLE | GPIO_LED2_ENABLE | GPIO_LED3_ENABLE;
542 
543     // Write the configuration
544     MmioWrite32 (LAN9118_GPIO_CFG, GpioConf);
545     gBS->Stall (LAN9118_STALL);
546   }
547 
548   return EFI_SUCCESS;
549 }
550 
551 // Configure flow control
552 EFI_STATUS
ConfigureFlow(UINT32 Flags,UINT32 HighTrig,UINT32 LowTrig,UINT32 BPDuration,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)553 ConfigureFlow (
554   UINT32 Flags,
555   UINT32 HighTrig,
556   UINT32 LowTrig,
557   UINT32 BPDuration,
558   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
559   )
560 {
561   return EFI_SUCCESS;
562 }
563 
564 // Do auto-negotiation
565 EFI_STATUS
AutoNegotiate(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)566 AutoNegotiate (
567   UINT32 Flags,
568   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
569   )
570 {
571   UINT32 PhyControl;
572   UINT32 PhyStatus;
573   UINT32 Features;
574   UINT32 TimeOut;
575 
576   // First check that auto-negotiation is supported
577   PhyStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
578   if ((PhyStatus & PHYSTS_AUTO_CAP) == 0) {
579     DEBUG ((EFI_D_ERROR, "Auto-negotiation not supported.\n"));
580     return EFI_DEVICE_ERROR;
581   }
582 
583   // Check that link is up first
584   if ((PhyStatus & PHYSTS_LINK_STS) == 0) {
585     // Wait until it is up or until Time Out
586     TimeOut = 2000;
587     while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_LINK_STS) == 0) {
588       gBS->Stall (LAN9118_STALL);
589       TimeOut--;
590       if (!TimeOut) {
591         DEBUG ((EFI_D_ERROR, "Link timeout in auto-negotiation.\n"));
592         return EFI_TIMEOUT;
593       }
594     }
595   }
596 
597   // Configure features to advertise
598   Features = IndirectPHYRead32 (PHY_INDEX_AUTO_NEG_ADVERT);
599 
600   if ((Flags & AUTO_NEGOTIATE_ADVERTISE_ALL) > 0) {
601     // Link speed capabilities
602     Features |= (PHYANA_10BASET | PHYANA_10BASETFD | PHYANA_100BASETX | PHYANA_100BASETXFD);
603 
604     // Pause frame capabilities
605     Features &= ~(PHYANA_PAUSE_OP_MASK);
606     Features |= 3 << 10;
607   }
608 
609   // Write the features
610   IndirectPHYWrite32 (PHY_INDEX_AUTO_NEG_ADVERT, Features);
611 
612   // Read control register
613   PhyControl = IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL);
614 
615   // Enable Auto-Negotiation
616   if ((PhyControl & PHYCR_AUTO_EN) == 0) {
617     PhyControl |= PHYCR_AUTO_EN;
618   }
619 
620   // Restart auto-negotiation
621   PhyControl |= PHYCR_RST_AUTO;
622 
623   // Enable collision test if required to do so
624   if (Flags & AUTO_NEGOTIATE_COLLISION_TEST) {
625     PhyControl |= PHYCR_COLL_TEST;
626   } else {
627     PhyControl &= ~ PHYCR_COLL_TEST;
628   }
629 
630   // Write this configuration
631   IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PhyControl);
632 
633   // Wait until process has completed
634   while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_AUTO_COMP) == 0);
635 
636   return EFI_SUCCESS;
637 }
638 
639 // Check the Link Status and take appropriate action
640 EFI_STATUS
CheckLinkStatus(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)641 CheckLinkStatus (
642   UINT32 Flags,
643   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
644   )
645 {
646   // Get the PHY Status
647   UINT32 PhyBStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
648 
649   if (PhyBStatus & PHYSTS_LINK_STS) {
650     return EFI_SUCCESS;
651   } else {
652     return EFI_DEVICE_ERROR;
653   }
654 }
655 
656 // Stop the transmitter
657 EFI_STATUS
StopTx(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)658 StopTx (
659   UINT32 Flags,
660   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
661   )
662 {
663   UINT32 MacCsr;
664   UINT32 TxCfg;
665 
666   MacCsr = 0;
667   TxCfg = 0;
668 
669   // Check if we want to clear tx
670   if (Flags & STOP_TX_CLEAR) {
671     TxCfg = MmioRead32 (LAN9118_TX_CFG);
672     TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
673     MmioWrite32 (LAN9118_TX_CFG, TxCfg);
674     gBS->Stall (LAN9118_STALL);
675   }
676 
677   // Check if already stopped
678   if (Flags & STOP_TX_MAC) {
679     MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
680 
681     if (MacCsr & MACCR_TX_EN) {
682       MacCsr &= ~MACCR_TX_EN;
683       IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
684     }
685   }
686 
687   if (Flags & STOP_TX_CFG) {
688     TxCfg = MmioRead32 (LAN9118_TX_CFG);
689 
690     if (TxCfg & TXCFG_TX_ON) {
691       TxCfg |= TXCFG_STOP_TX;
692       MmioWrite32 (LAN9118_TX_CFG, TxCfg);
693       gBS->Stall (LAN9118_STALL);
694 
695       // Wait for Tx to finish transmitting
696       while (MmioRead32 (LAN9118_TX_CFG) & TXCFG_STOP_TX);
697     }
698   }
699 
700   return EFI_SUCCESS;
701 }
702 
703 // Stop the receiver
704 EFI_STATUS
StopRx(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)705 StopRx (
706   UINT32 Flags,
707   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
708   )
709 {
710   UINT32 MacCsr;
711   UINT32 RxCfg;
712 
713   RxCfg = 0;
714 
715   // Check if already stopped
716   MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
717 
718   if (MacCsr & MACCR_RX_EN) {
719     MacCsr &= ~ MACCR_RX_EN;
720     IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
721   }
722 
723   // Check if we want to clear receiver FIFOs
724   if (Flags & STOP_RX_CLEAR) {
725     RxCfg = MmioRead32 (LAN9118_RX_CFG);
726     RxCfg |= RXCFG_RX_DUMP;
727     MmioWrite32 (LAN9118_RX_CFG, RxCfg);
728     gBS->Stall (LAN9118_STALL);
729 
730     while (MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
731   }
732 
733   return EFI_SUCCESS;
734 }
735 
736 // Start the transmitter
737 EFI_STATUS
StartTx(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)738 StartTx (
739   UINT32 Flags,
740   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
741   )
742 {
743   UINT32 MacCsr;
744   UINT32 TxCfg;
745 
746   MacCsr = 0;
747   TxCfg = 0;
748 
749   // Check if we want to clear tx
750   if (Flags & START_TX_CLEAR) {
751     TxCfg = MmioRead32 (LAN9118_TX_CFG);
752     TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
753     MmioWrite32 (LAN9118_TX_CFG, TxCfg);
754     gBS->Stall (LAN9118_STALL);
755   }
756 
757   // Check if tx was started from MAC and enable if not
758   if (Flags & START_TX_MAC) {
759     MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
760     gBS->Stall (LAN9118_STALL);
761     if ((MacCsr & MACCR_TX_EN) == 0) {
762       MacCsr |= MACCR_TX_EN;
763       IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
764       gBS->Stall (LAN9118_STALL);
765     }
766   }
767 
768   // Check if tx was started from TX_CFG and enable if not
769   if (Flags & START_TX_CFG) {
770     TxCfg = MmioRead32 (LAN9118_TX_CFG);
771     gBS->Stall (LAN9118_STALL);
772     if ((TxCfg & TXCFG_TX_ON) == 0) {
773       TxCfg |= TXCFG_TX_ON;
774       MmioWrite32 (LAN9118_TX_CFG, TxCfg);
775       gBS->Stall (LAN9118_STALL);
776     }
777   }
778 
779   // Set the tx data trigger level
780 
781   return EFI_SUCCESS;
782 }
783 
784 // Start the receiver
785 EFI_STATUS
StartRx(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)786 StartRx (
787   UINT32 Flags,
788   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
789   )
790 {
791   UINT32 MacCsr;
792   UINT32 RxCfg;
793 
794   RxCfg = 0;
795 
796   // Check if already started
797   MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
798 
799   if ((MacCsr & MACCR_RX_EN) == 0) {
800     // Check if we want to clear receiver FIFOs before starting
801     if (Flags & START_RX_CLEAR) {
802       RxCfg = MmioRead32 (LAN9118_RX_CFG);
803       RxCfg |= RXCFG_RX_DUMP;
804       MmioWrite32 (LAN9118_RX_CFG, RxCfg);
805       gBS->Stall (LAN9118_STALL);
806 
807       while (MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
808     }
809 
810     MacCsr |= MACCR_RX_EN;
811     IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
812     gBS->Stall (LAN9118_STALL);
813   }
814 
815   return EFI_SUCCESS;
816 }
817 
818 // Check Tx Data available space
819 UINT32
TxDataFreeSpace(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)820 TxDataFreeSpace (
821   UINT32 Flags,
822   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
823   )
824 {
825   UINT32 TxInf;
826   UINT32 FreeSpace;
827 
828   // Get the amount of free space from information register
829   TxInf = MmioRead32 (LAN9118_TX_FIFO_INF);
830   FreeSpace = (TxInf & TXFIFOINF_TDFREE_MASK);
831 
832   return FreeSpace; // Value in bytes
833 }
834 
835 // Check Tx Status used space
836 UINT32
TxStatusUsedSpace(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)837 TxStatusUsedSpace (
838   UINT32 Flags,
839   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
840   )
841 {
842   UINT32 TxInf;
843   UINT32 UsedSpace;
844 
845   // Get the amount of used space from information register
846   TxInf = MmioRead32 (LAN9118_TX_FIFO_INF);
847   UsedSpace = (TxInf & TXFIFOINF_TXSUSED_MASK) >> 16;
848 
849   return UsedSpace << 2; // Value in bytes
850 }
851 
852 // Check Rx Data used space
853 UINT32
RxDataUsedSpace(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)854 RxDataUsedSpace (
855   UINT32 Flags,
856   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
857   )
858 {
859   UINT32 RxInf;
860   UINT32 UsedSpace;
861 
862   // Get the amount of used space from information register
863   RxInf = MmioRead32 (LAN9118_RX_FIFO_INF);
864   UsedSpace = (RxInf & RXFIFOINF_RXDUSED_MASK);
865 
866   return UsedSpace; // Value in bytes (rounded up to nearest DWORD)
867 }
868 
869 // Check Rx Status used space
870 UINT32
RxStatusUsedSpace(UINT32 Flags,EFI_SIMPLE_NETWORK_PROTOCOL * Snp)871 RxStatusUsedSpace (
872   UINT32 Flags,
873   EFI_SIMPLE_NETWORK_PROTOCOL *Snp
874   )
875 {
876   UINT32 RxInf;
877   UINT32 UsedSpace;
878 
879   // Get the amount of used space from information register
880   RxInf = MmioRead32 (LAN9118_RX_FIFO_INF);
881   UsedSpace = (RxInf & RXFIFOINF_RXSUSED_MASK) >> 16;
882 
883   return UsedSpace << 2; // Value in bytes
884 }
885 
886 
887 // Change the allocation of FIFOs
888 EFI_STATUS
ChangeFifoAllocation(IN UINT32 Flags,IN OUT UINTN * TxDataSize OPTIONAL,IN OUT UINTN * RxDataSize OPTIONAL,IN OUT UINT32 * TxStatusSize OPTIONAL,IN OUT UINT32 * RxStatusSize OPTIONAL,IN OUT EFI_SIMPLE_NETWORK_PROTOCOL * Snp)889 ChangeFifoAllocation (
890   IN      UINT32 Flags,
891   IN  OUT UINTN  *TxDataSize    OPTIONAL,
892   IN  OUT UINTN  *RxDataSize    OPTIONAL,
893   IN  OUT UINT32 *TxStatusSize  OPTIONAL,
894   IN  OUT UINT32 *RxStatusSize  OPTIONAL,
895   IN  OUT EFI_SIMPLE_NETWORK_PROTOCOL *Snp
896   )
897 {
898   UINT32 HwConf;
899   UINT32 TxFifoOption;
900 
901   // Check that desired sizes don't exceed limits
902   if (*TxDataSize > TX_FIFO_MAX_SIZE)
903     return EFI_INVALID_PARAMETER;
904 
905 #if defined(RX_FIFO_MIN_SIZE) && defined(RX_FIFO_MAX_SIZE)
906   if (*RxDataSize > RX_FIFO_MAX_SIZE) {
907     return EFI_INVALID_PARAMETER;
908   }
909 #endif
910 
911   if (Flags & ALLOC_USE_DEFAULT) {
912     return EFI_SUCCESS;
913   }
914 
915   // If we use the FIFOs (always use this first)
916   if (Flags & ALLOC_USE_FIFOS) {
917     // Read the current value of allocation
918     HwConf = MmioRead32 (LAN9118_HW_CFG);
919     TxFifoOption = (HwConf >> 16) & 0xF;
920 
921     // Choose the correct size (always use larger than requested if possible)
922     if (*TxDataSize < TX_FIFO_MIN_SIZE) {
923       *TxDataSize = TX_FIFO_MIN_SIZE;
924       *RxDataSize = 13440;
925       *RxStatusSize = 896;
926       TxFifoOption = 2;
927     } else if ((*TxDataSize > TX_FIFO_MIN_SIZE) && (*TxDataSize <= 2560)) {
928       *TxDataSize = 2560;
929       *RxDataSize = 12480;
930       *RxStatusSize = 832;
931       TxFifoOption = 3;
932     } else if ((*TxDataSize > 2560) && (*TxDataSize <= 3584)) {
933       *TxDataSize = 3584;
934       *RxDataSize = 11520;
935       *RxStatusSize = 768;
936       TxFifoOption = 4;
937     } else if ((*TxDataSize > 3584) && (*TxDataSize <= 4608)) { // default option
938       *TxDataSize = 4608;
939       *RxDataSize = 10560;
940       *RxStatusSize = 704;
941       TxFifoOption = 5;
942     } else if ((*TxDataSize > 4608) && (*TxDataSize <= 5632)) {
943       *TxDataSize = 5632;
944       *RxDataSize = 9600;
945       *RxStatusSize = 640;
946       TxFifoOption = 6;
947     } else if ((*TxDataSize > 5632) && (*TxDataSize <= 6656)) {
948       *TxDataSize = 6656;
949       *RxDataSize = 8640;
950       *RxStatusSize = 576;
951       TxFifoOption = 7;
952     } else if ((*TxDataSize > 6656) && (*TxDataSize <= 7680)) {
953       *TxDataSize = 7680;
954       *RxDataSize = 7680;
955       *RxStatusSize = 512;
956       TxFifoOption = 8;
957     } else if ((*TxDataSize > 7680) && (*TxDataSize <= 8704)) {
958       *TxDataSize = 8704;
959       *RxDataSize = 6720;
960       *RxStatusSize = 448;
961       TxFifoOption = 9;
962     } else if ((*TxDataSize > 8704) && (*TxDataSize <= 9728)) {
963       *TxDataSize = 9728;
964       *RxDataSize = 5760;
965       *RxStatusSize = 384;
966       TxFifoOption = 10;
967     } else if ((*TxDataSize > 9728) && (*TxDataSize <= 10752)) {
968       *TxDataSize = 10752;
969       *RxDataSize = 4800;
970       *RxStatusSize = 320;
971       TxFifoOption = 11;
972     } else if ((*TxDataSize > 10752) && (*TxDataSize <= 11776)) {
973       *TxDataSize = 11776;
974       *RxDataSize = 3840;
975       *RxStatusSize = 256;
976       TxFifoOption = 12;
977     } else if ((*TxDataSize > 11776) && (*TxDataSize <= 12800)) {
978       *TxDataSize = 12800;
979       *RxDataSize = 2880;
980       *RxStatusSize = 192;
981       TxFifoOption = 13;
982     } else if ((*TxDataSize > 12800) && (*TxDataSize <= 13824)) {
983       *TxDataSize = 13824;
984       *RxDataSize = 1920;
985       *RxStatusSize = 128;
986       TxFifoOption = 14;
987     }
988   } else {
989     ASSERT(0); // Untested code path
990     HwConf = 0;
991     TxFifoOption = 0;
992   }
993 
994   // Do we need DMA?
995   if (Flags & ALLOC_USE_DMA) {
996     return EFI_UNSUPPORTED; // Unsupported as of now
997   }
998   // Clear and assign the new size option
999   HwConf &= ~(0xF0000);
1000   HwConf |= ((TxFifoOption & 0xF) << 16);
1001   MmioWrite32 (LAN9118_HW_CFG, HwConf);
1002   gBS->Stall (LAN9118_STALL);
1003 
1004   return EFI_SUCCESS;
1005 }
1006