1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %                              GGGG  EEEEE  M   M                             %
7 %                             G      E      MM MM                             %
8 %                             G GG   EEE    M M M                             %
9 %                             G   G  E      M   M                             %
10 %                              GGGG  EEEEE  M   M                             %
11 %                                                                             %
12 %                                                                             %
13 %                    Graphic Gems - Graphic Support Methods                   %
14 %                                                                             %
15 %                               Software Design                               %
16 %                                    Cristy                                   %
17 %                                 August 1996                                 %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 
40 /*
41   Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/color-private.h"
45 #include "MagickCore/draw.h"
46 #include "MagickCore/gem.h"
47 #include "MagickCore/gem-private.h"
48 #include "MagickCore/image.h"
49 #include "MagickCore/image-private.h"
50 #include "MagickCore/log.h"
51 #include "MagickCore/memory_.h"
52 #include "MagickCore/pixel-accessor.h"
53 #include "MagickCore/pixel-private.h"
54 #include "MagickCore/quantum.h"
55 #include "MagickCore/quantum-private.h"
56 #include "MagickCore/random_.h"
57 #include "MagickCore/resize.h"
58 #include "MagickCore/transform.h"
59 #include "MagickCore/signature-private.h"
60 
61 /*
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %                                                                             %
64 %                                                                             %
65 %                                                                             %
66 %   C o n v e r t H C L T o R G B                                             %
67 %                                                                             %
68 %                                                                             %
69 %                                                                             %
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71 %
72 %  ConvertHCLToRGB() transforms a (hue, chroma, luma) to a (red, green,
73 %  blue) triple.
74 %
75 %  The format of the ConvertHCLToRGBImage method is:
76 %
77 %      void ConvertHCLToRGB(const double hue,const double chroma,
78 %        const double luma,double *red,double *green,double *blue)
79 %
80 %  A description of each parameter follows:
81 %
82 %    o hue, chroma, luma: A double value representing a component of the
83 %      HCL color space.
84 %
85 %    o red, green, blue: A pointer to a pixel component of type Quantum.
86 %
87 */
ConvertHCLToRGB(const double hue,const double chroma,const double luma,double * red,double * green,double * blue)88 MagickPrivate void ConvertHCLToRGB(const double hue,const double chroma,
89   const double luma,double *red,double *green,double *blue)
90 {
91   double
92     b,
93     c,
94     g,
95     h,
96     m,
97     r,
98     x;
99 
100   /*
101     Convert HCL to RGB colorspace.
102   */
103   assert(red != (double *) NULL);
104   assert(green != (double *) NULL);
105   assert(blue != (double *) NULL);
106   h=6.0*hue;
107   c=chroma;
108   x=c*(1.0-fabs(fmod(h,2.0)-1.0));
109   r=0.0;
110   g=0.0;
111   b=0.0;
112   if ((0.0 <= h) && (h < 1.0))
113     {
114       r=c;
115       g=x;
116     }
117   else
118     if ((1.0 <= h) && (h < 2.0))
119       {
120         r=x;
121         g=c;
122       }
123     else
124       if ((2.0 <= h) && (h < 3.0))
125         {
126           g=c;
127           b=x;
128         }
129       else
130         if ((3.0 <= h) && (h < 4.0))
131           {
132             g=x;
133             b=c;
134           }
135         else
136           if ((4.0 <= h) && (h < 5.0))
137             {
138               r=x;
139               b=c;
140             }
141           else
142             if ((5.0 <= h) && (h < 6.0))
143               {
144                 r=c;
145                 b=x;
146               }
147   m=luma-(0.298839*r+0.586811*g+0.114350*b);
148   *red=QuantumRange*(r+m);
149   *green=QuantumRange*(g+m);
150   *blue=QuantumRange*(b+m);
151 }
152 
153 /*
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155 %                                                                             %
156 %                                                                             %
157 %                                                                             %
158 %   C o n v e r t H C L p T o R G B                                           %
159 %                                                                             %
160 %                                                                             %
161 %                                                                             %
162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
163 %
164 %  ConvertHCLpToRGB() transforms a (hue, chroma, luma) to a (red, green,
165 %  blue) triple.  Since HCL colorspace is wider than RGB, we instead choose a
166 %  saturation strategy to project it on the RGB cube.
167 %
168 %  The format of the ConvertHCLpToRGBImage method is:
169 %
170 %      void ConvertHCLpToRGB(const double hue,const double chroma,
171 %        const double luma,double *red,double *green,double *blue)
172 %
173 %  A description of each parameter follows:
174 %
175 %    o hue, chroma, luma: A double value representing a componenet of the
176 %      HCLp color space.
177 %
178 %    o red, green, blue: A pointer to a pixel component of type Quantum.
179 %
180 */
ConvertHCLpToRGB(const double hue,const double chroma,const double luma,double * red,double * green,double * blue)181 MagickPrivate void ConvertHCLpToRGB(const double hue,const double chroma,
182   const double luma,double *red,double *green,double *blue)
183 {
184   double
185     b,
186     c,
187     g,
188     h,
189     m,
190     r,
191     x,
192     z;
193 
194   /*
195     Convert HCLp to RGB colorspace.
196   */
197   assert(red != (double *) NULL);
198   assert(green != (double *) NULL);
199   assert(blue != (double *) NULL);
200   h=6.0*hue;
201   c=chroma;
202   x=c*(1.0-fabs(fmod(h,2.0)-1.0));
203   r=0.0;
204   g=0.0;
205   b=0.0;
206   if ((0.0 <= h) && (h < 1.0))
207     {
208       r=c;
209       g=x;
210     }
211   else
212     if ((1.0 <= h) && (h < 2.0))
213       {
214         r=x;
215         g=c;
216       }
217     else
218       if ((2.0 <= h) && (h < 3.0))
219         {
220           g=c;
221           b=x;
222         }
223       else
224         if ((3.0 <= h) && (h < 4.0))
225           {
226             g=x;
227             b=c;
228           }
229         else
230           if ((4.0 <= h) && (h < 5.0))
231             {
232               r=x;
233               b=c;
234             }
235           else
236             if ((5.0 <= h) && (h < 6.0))
237               {
238                 r=c;
239                 b=x;
240               }
241   m=luma-(0.298839*r+0.586811*g+0.114350*b);
242   z=1.0;
243   if (m < 0.0)
244     {
245       z=luma/(luma-m);
246       m=0.0;
247     }
248   else
249     if (m+c > 1.0)
250       {
251         z=(1.0-luma)/(m+c-luma);
252         m=1.0-z*c;
253       }
254   *red=QuantumRange*(z*r+m);
255   *green=QuantumRange*(z*g+m);
256   *blue=QuantumRange*(z*b+m);
257 }
258 
259 /*
260 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
261 %                                                                             %
262 %                                                                             %
263 %                                                                             %
264 %   C o n v e r t H S B T o R G B                                             %
265 %                                                                             %
266 %                                                                             %
267 %                                                                             %
268 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
269 %
270 %  ConvertHSBToRGB() transforms a (hue, saturation, brightness) to a (red,
271 %  green, blue) triple.
272 %
273 %  The format of the ConvertHSBToRGBImage method is:
274 %
275 %      void ConvertHSBToRGB(const double hue,const double saturation,
276 %        const double brightness,double *red,double *green,double *blue)
277 %
278 %  A description of each parameter follows:
279 %
280 %    o hue, saturation, brightness: A double value representing a
281 %      component of the HSB color space.
282 %
283 %    o red, green, blue: A pointer to a pixel component of type Quantum.
284 %
285 */
ConvertHSBToRGB(const double hue,const double saturation,const double brightness,double * red,double * green,double * blue)286 MagickPrivate void ConvertHSBToRGB(const double hue,const double saturation,
287   const double brightness,double *red,double *green,double *blue)
288 {
289   double
290     f,
291     h,
292     p,
293     q,
294     t;
295 
296   /*
297     Convert HSB to RGB colorspace.
298   */
299   assert(red != (double *) NULL);
300   assert(green != (double *) NULL);
301   assert(blue != (double *) NULL);
302   if (fabs(saturation) < MagickEpsilon)
303     {
304       *red=QuantumRange*brightness;
305       *green=(*red);
306       *blue=(*red);
307       return;
308     }
309   h=6.0*(hue-floor(hue));
310   f=h-floor((double) h);
311   p=brightness*(1.0-saturation);
312   q=brightness*(1.0-saturation*f);
313   t=brightness*(1.0-(saturation*(1.0-f)));
314   switch ((int) h)
315   {
316     case 0:
317     default:
318     {
319       *red=QuantumRange*brightness;
320       *green=QuantumRange*t;
321       *blue=QuantumRange*p;
322       break;
323     }
324     case 1:
325     {
326       *red=QuantumRange*q;
327       *green=QuantumRange*brightness;
328       *blue=QuantumRange*p;
329       break;
330     }
331     case 2:
332     {
333       *red=QuantumRange*p;
334       *green=QuantumRange*brightness;
335       *blue=QuantumRange*t;
336       break;
337     }
338     case 3:
339     {
340       *red=QuantumRange*p;
341       *green=QuantumRange*q;
342       *blue=QuantumRange*brightness;
343       break;
344     }
345     case 4:
346     {
347       *red=QuantumRange*t;
348       *green=QuantumRange*p;
349       *blue=QuantumRange*brightness;
350       break;
351     }
352     case 5:
353     {
354       *red=QuantumRange*brightness;
355       *green=QuantumRange*p;
356       *blue=QuantumRange*q;
357       break;
358     }
359   }
360 }
361 
362 /*
363 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
364 %                                                                             %
365 %                                                                             %
366 %                                                                             %
367 %   C o n v e r t H S I T o R G B                                             %
368 %                                                                             %
369 %                                                                             %
370 %                                                                             %
371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
372 %
373 %  ConvertHSIToRGB() transforms a (hue, saturation, intensity) to a (red,
374 %  green, blue) triple.
375 %
376 %  The format of the ConvertHSIToRGBImage method is:
377 %
378 %      void ConvertHSIToRGB(const double hue,const double saturation,
379 %        const double intensity,double *red,double *green,double *blue)
380 %
381 %  A description of each parameter follows:
382 %
383 %    o hue, saturation, intensity: A double value representing a
384 %      component of the HSI color space.
385 %
386 %    o red, green, blue: A pointer to a pixel component of type Quantum.
387 %
388 */
ConvertHSIToRGB(const double hue,const double saturation,const double intensity,double * red,double * green,double * blue)389 MagickPrivate void ConvertHSIToRGB(const double hue,const double saturation,
390   const double intensity,double *red,double *green,double *blue)
391 {
392   double
393     b,
394     g,
395     h,
396     r;
397 
398   /*
399     Convert HSI to RGB colorspace.
400   */
401   assert(red != (double *) NULL);
402   assert(green != (double *) NULL);
403   assert(blue != (double *) NULL);
404   h=360.0*hue;
405   h-=360.0*floor(h/360.0);
406   if (h < 120.0)
407     {
408       b=intensity*(1.0-saturation);
409       r=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
410         (MagickPI/180.0)));
411       g=3.0*intensity-r-b;
412     }
413   else
414     if (h < 240.0)
415       {
416         h-=120.0;
417         r=intensity*(1.0-saturation);
418         g=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
419           (MagickPI/180.0)));
420         b=3.0*intensity-r-g;
421       }
422     else
423       {
424         h-=240.0;
425         g=intensity*(1.0-saturation);
426         b=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
427           (MagickPI/180.0)));
428         r=3.0*intensity-g-b;
429       }
430   *red=QuantumRange*r;
431   *green=QuantumRange*g;
432   *blue=QuantumRange*b;
433 }
434 
435 /*
436 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
437 %                                                                             %
438 %                                                                             %
439 %                                                                             %
440 %   C o n v e r t H S L T o R G B                                             %
441 %                                                                             %
442 %                                                                             %
443 %                                                                             %
444 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
445 %
446 %  ConvertHSLToRGB() transforms a (hue, saturation, lightness) to a (red,
447 %  green, blue) triple.
448 %
449 %  The format of the ConvertHSLToRGBImage method is:
450 %
451 %      void ConvertHSLToRGB(const double hue,const double saturation,
452 %        const double lightness,double *red,double *green,double *blue)
453 %
454 %  A description of each parameter follows:
455 %
456 %    o hue, saturation, lightness: A double value representing a
457 %      component of the HSL color space.
458 %
459 %    o red, green, blue: A pointer to a pixel component of type Quantum.
460 %
461 */
ConvertHSLToRGB(const double hue,const double saturation,const double lightness,double * red,double * green,double * blue)462 MagickExport void ConvertHSLToRGB(const double hue,const double saturation,
463   const double lightness,double *red,double *green,double *blue)
464 {
465   double
466     c,
467     h,
468     min,
469     x;
470 
471   /*
472     Convert HSL to RGB colorspace.
473   */
474   assert(red != (double *) NULL);
475   assert(green != (double *) NULL);
476   assert(blue != (double *) NULL);
477   h=hue*360.0;
478   if (lightness <= 0.5)
479     c=2.0*lightness*saturation;
480   else
481     c=(2.0-2.0*lightness)*saturation;
482   min=lightness-0.5*c;
483   h-=360.0*floor(h/360.0);
484   h/=60.0;
485   x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
486   switch ((int) floor(h))
487   {
488     case 0:
489     {
490       *red=QuantumRange*(min+c);
491       *green=QuantumRange*(min+x);
492       *blue=QuantumRange*min;
493       break;
494     }
495     case 1:
496     {
497       *red=QuantumRange*(min+x);
498       *green=QuantumRange*(min+c);
499       *blue=QuantumRange*min;
500       break;
501     }
502     case 2:
503     {
504       *red=QuantumRange*min;
505       *green=QuantumRange*(min+c);
506       *blue=QuantumRange*(min+x);
507       break;
508     }
509     case 3:
510     {
511       *red=QuantumRange*min;
512       *green=QuantumRange*(min+x);
513       *blue=QuantumRange*(min+c);
514       break;
515     }
516     case 4:
517     {
518       *red=QuantumRange*(min+x);
519       *green=QuantumRange*min;
520       *blue=QuantumRange*(min+c);
521       break;
522     }
523     case 5:
524     {
525       *red=QuantumRange*(min+c);
526       *green=QuantumRange*min;
527       *blue=QuantumRange*(min+x);
528       break;
529     }
530     default:
531     {
532       *red=0.0;
533       *green=0.0;
534       *blue=0.0;
535     }
536   }
537 }
538 
539 /*
540 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
541 %                                                                             %
542 %                                                                             %
543 %                                                                             %
544 %   C o n v e r t H S V T o R G B                                             %
545 %                                                                             %
546 %                                                                             %
547 %                                                                             %
548 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
549 %
550 %  ConvertHSVToRGB() transforms a (hue, saturation, value) to a (red,
551 %  green, blue) triple.
552 %
553 %  The format of the ConvertHSVToRGBImage method is:
554 %
555 %      void ConvertHSVToRGB(const double hue,const double saturation,
556 %        const double value,double *red,double *green,double *blue)
557 %
558 %  A description of each parameter follows:
559 %
560 %    o hue, saturation, value: A double value representing a
561 %      component of the HSV color space.
562 %
563 %    o red, green, blue: A pointer to a pixel component of type Quantum.
564 %
565 */
ConvertHSVToRGB(const double hue,const double saturation,const double value,double * red,double * green,double * blue)566 MagickPrivate void ConvertHSVToRGB(const double hue,const double saturation,
567   const double value,double *red,double *green,double *blue)
568 {
569   double
570     c,
571     h,
572     min,
573     x;
574 
575   /*
576     Convert HSV to RGB colorspace.
577   */
578   assert(red != (double *) NULL);
579   assert(green != (double *) NULL);
580   assert(blue != (double *) NULL);
581   h=hue*360.0;
582   c=value*saturation;
583   min=value-c;
584   h-=360.0*floor(h/360.0);
585   h/=60.0;
586   x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
587   switch ((int) floor(h))
588   {
589     case 0:
590     {
591       *red=QuantumRange*(min+c);
592       *green=QuantumRange*(min+x);
593       *blue=QuantumRange*min;
594       break;
595     }
596     case 1:
597     {
598       *red=QuantumRange*(min+x);
599       *green=QuantumRange*(min+c);
600       *blue=QuantumRange*min;
601       break;
602     }
603     case 2:
604     {
605       *red=QuantumRange*min;
606       *green=QuantumRange*(min+c);
607       *blue=QuantumRange*(min+x);
608       break;
609     }
610     case 3:
611     {
612       *red=QuantumRange*min;
613       *green=QuantumRange*(min+x);
614       *blue=QuantumRange*(min+c);
615       break;
616     }
617     case 4:
618     {
619       *red=QuantumRange*(min+x);
620       *green=QuantumRange*min;
621       *blue=QuantumRange*(min+c);
622       break;
623     }
624     case 5:
625     {
626       *red=QuantumRange*(min+c);
627       *green=QuantumRange*min;
628       *blue=QuantumRange*(min+x);
629       break;
630     }
631     default:
632     {
633       *red=0.0;
634       *green=0.0;
635       *blue=0.0;
636     }
637   }
638 }
639 
640 /*
641 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
642 %                                                                             %
643 %                                                                             %
644 %                                                                             %
645 %   C o n v e r t H W B T o R G B                                             %
646 %                                                                             %
647 %                                                                             %
648 %                                                                             %
649 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
650 %
651 %  ConvertHWBToRGB() transforms a (hue, whiteness, blackness) to a (red, green,
652 %  blue) triple.
653 %
654 %  The format of the ConvertHWBToRGBImage method is:
655 %
656 %      void ConvertHWBToRGB(const double hue,const double whiteness,
657 %        const double blackness,double *red,double *green,double *blue)
658 %
659 %  A description of each parameter follows:
660 %
661 %    o hue, whiteness, blackness: A double value representing a
662 %      component of the HWB color space.
663 %
664 %    o red, green, blue: A pointer to a pixel component of type Quantum.
665 %
666 */
ConvertHWBToRGB(const double hue,const double whiteness,const double blackness,double * red,double * green,double * blue)667 MagickPrivate void ConvertHWBToRGB(const double hue,const double whiteness,
668   const double blackness,double *red,double *green,double *blue)
669 {
670   double
671     b,
672     f,
673     g,
674     n,
675     r,
676     v;
677 
678   register ssize_t
679     i;
680 
681   /*
682     Convert HWB to RGB colorspace.
683   */
684   assert(red != (double *) NULL);
685   assert(green != (double *) NULL);
686   assert(blue != (double *) NULL);
687   v=1.0-blackness;
688   if (fabs(hue-(-1.0)) < MagickEpsilon)
689     {
690       *red=QuantumRange*v;
691       *green=QuantumRange*v;
692       *blue=QuantumRange*v;
693       return;
694     }
695   i=(ssize_t) floor(6.0*hue);
696   f=6.0*hue-i;
697   if ((i & 0x01) != 0)
698     f=1.0-f;
699   n=whiteness+f*(v-whiteness);  /* linear interpolation */
700   switch (i)
701   {
702     default:
703     case 6:
704     case 0: r=v; g=n; b=whiteness; break;
705     case 1: r=n; g=v; b=whiteness; break;
706     case 2: r=whiteness; g=v; b=n; break;
707     case 3: r=whiteness; g=n; b=v; break;
708     case 4: r=n; g=whiteness; b=v; break;
709     case 5: r=v; g=whiteness; b=n; break;
710   }
711   *red=QuantumRange*r;
712   *green=QuantumRange*g;
713   *blue=QuantumRange*b;
714 }
715 
716 /*
717 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
718 %                                                                             %
719 %                                                                             %
720 %                                                                             %
721 %   C o n v e r t L C H a b T o R G B                                         %
722 %                                                                             %
723 %                                                                             %
724 %                                                                             %
725 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
726 %
727 %  ConvertLCHabToRGB() transforms a (luma, chroma, hue) to a (red, green,
728 %  blue) triple.
729 %
730 %  The format of the ConvertLCHabToRGBImage method is:
731 %
732 %      void ConvertLCHabToRGB(const double luma,const double chroma,
733 %        const double hue,double *red,double *green,double *blue)
734 %
735 %  A description of each parameter follows:
736 %
737 %    o luma, chroma, hue: A double value representing a component of the
738 %      LCHab color space.
739 %
740 %    o red, green, blue: A pointer to a pixel component of type Quantum.
741 %
742 */
743 
ConvertLCHabToXYZ(const double luma,const double chroma,const double hue,double * X,double * Y,double * Z)744 static inline void ConvertLCHabToXYZ(const double luma,const double chroma,
745   const double hue,double *X,double *Y,double *Z)
746 {
747   ConvertLabToXYZ(luma,chroma*cos(hue*MagickPI/180.0),chroma*
748     sin(hue*MagickPI/180.0),X,Y,Z);
749 }
750 
ConvertLCHabToRGB(const double luma,const double chroma,const double hue,double * red,double * green,double * blue)751 MagickPrivate void ConvertLCHabToRGB(const double luma,const double chroma,
752   const double hue,double *red,double *green,double *blue)
753 {
754   double
755     X,
756     Y,
757     Z;
758 
759   /*
760     Convert LCHab to RGB colorspace.
761   */
762   assert(red != (double *) NULL);
763   assert(green != (double *) NULL);
764   assert(blue != (double *) NULL);
765   ConvertLCHabToXYZ(100.0*luma,255.0*(chroma-0.5),360.0*hue,&X,&Y,&Z);
766   ConvertXYZToRGB(X,Y,Z,red,green,blue);
767 }
768 
769 /*
770 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
771 %                                                                             %
772 %                                                                             %
773 %                                                                             %
774 %   C o n v e r t L C H u v T o R G B                                         %
775 %                                                                             %
776 %                                                                             %
777 %                                                                             %
778 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
779 %
780 %  ConvertLCHuvToRGB() transforms a (luma, chroma, hue) to a (red, green,
781 %  blue) triple.
782 %
783 %  The format of the ConvertLCHuvToRGBImage method is:
784 %
785 %      void ConvertLCHuvToRGB(const double luma,const double chroma,
786 %        const double hue,double *red,double *green,double *blue)
787 %
788 %  A description of each parameter follows:
789 %
790 %    o luma, chroma, hue: A double value representing a component of the
791 %      LCHuv color space.
792 %
793 %    o red, green, blue: A pointer to a pixel component of type Quantum.
794 %
795 */
796 
ConvertLCHuvToXYZ(const double luma,const double chroma,const double hue,double * X,double * Y,double * Z)797 static inline void ConvertLCHuvToXYZ(const double luma,const double chroma,
798   const double hue,double *X,double *Y,double *Z)
799 {
800   ConvertLuvToXYZ(luma,chroma*cos(hue*MagickPI/180.0),chroma*
801     sin(hue*MagickPI/180.0),X,Y,Z);
802 }
803 
ConvertLCHuvToRGB(const double luma,const double chroma,const double hue,double * red,double * green,double * blue)804 MagickPrivate void ConvertLCHuvToRGB(const double luma,const double chroma,
805   const double hue,double *red,double *green,double *blue)
806 {
807   double
808     X,
809     Y,
810     Z;
811 
812   /*
813     Convert LCHuv to RGB colorspace.
814   */
815   assert(red != (double *) NULL);
816   assert(green != (double *) NULL);
817   assert(blue != (double *) NULL);
818   ConvertLCHuvToXYZ(100.0*luma,255.0*(chroma-0.5),360.0*hue,&X,&Y,&Z);
819   ConvertXYZToRGB(X,Y,Z,red,green,blue);
820 }
821 
822 /*
823 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
824 %                                                                             %
825 %                                                                             %
826 %                                                                             %
827 %   C o n v e r t R G B T o H C L                                             %
828 %                                                                             %
829 %                                                                             %
830 %                                                                             %
831 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
832 %
833 %  ConvertRGBToHCL() transforms a (red, green, blue) to a (hue, chroma,
834 %  luma) triple.
835 %
836 %  The format of the ConvertRGBToHCL method is:
837 %
838 %      void ConvertRGBToHCL(const double red,const double green,
839 %        const double blue,double *hue,double *chroma,double *luma)
840 %
841 %  A description of each parameter follows:
842 %
843 %    o red, green, blue: A Quantum value representing the red, green, and
844 %      blue component of a pixel.
845 %
846 %    o hue, chroma, luma: A pointer to a double value representing a
847 %      component of the HCL color space.
848 %
849 */
ConvertRGBToHCL(const double red,const double green,const double blue,double * hue,double * chroma,double * luma)850 MagickPrivate void ConvertRGBToHCL(const double red,const double green,
851   const double blue,double *hue,double *chroma,double *luma)
852 {
853   double
854     c,
855     h,
856     max;
857 
858   /*
859     Convert RGB to HCL colorspace.
860   */
861   assert(hue != (double *) NULL);
862   assert(chroma != (double *) NULL);
863   assert(luma != (double *) NULL);
864   max=MagickMax(red,MagickMax(green,blue));
865   c=max-(double) MagickMin(red,MagickMin(green,blue));
866   h=0.0;
867   if (fabs(c) < MagickEpsilon)
868     h=0.0;
869   else
870     if (fabs(red-max) < MagickEpsilon)
871       h=fmod((green-blue)/c+6.0,6.0);
872     else
873       if (fabs(green-max) < MagickEpsilon)
874         h=((blue-red)/c)+2.0;
875       else
876         if (fabs(blue-max) < MagickEpsilon)
877           h=((red-green)/c)+4.0;
878   *hue=(h/6.0);
879   *chroma=QuantumScale*c;
880   *luma=QuantumScale*(0.298839*red+0.586811*green+0.114350*blue);
881 }
882 
883 /*
884 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
885 %                                                                             %
886 %                                                                             %
887 %                                                                             %
888 %   C o n v e r t R G B T o H C L p                                           %
889 %                                                                             %
890 %                                                                             %
891 %                                                                             %
892 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
893 %
894 %  ConvertRGBToHCLp() transforms a (red, green, blue) to a (hue, chroma,
895 %  luma) triple.
896 %
897 %  The format of the ConvertRGBToHCLp method is:
898 %
899 %      void ConvertRGBToHCLp(const double red,const double green,
900 %        const double blue,double *hue,double *chroma,double *luma)
901 %
902 %  A description of each parameter follows:
903 %
904 %    o red, green, blue: A Quantum value representing the red, green, and
905 %      blue component of a pixel.
906 %
907 %    o hue, chroma, luma: A pointer to a double value representing a
908 %      component of the HCL color space.
909 %
910 */
ConvertRGBToHCLp(const double red,const double green,const double blue,double * hue,double * chroma,double * luma)911 MagickPrivate void ConvertRGBToHCLp(const double red,const double green,
912   const double blue,double *hue,double *chroma,double *luma)
913 {
914   double
915     c,
916     h,
917     max;
918 
919   /*
920     Convert RGB to HCL colorspace.
921   */
922   assert(hue != (double *) NULL);
923   assert(chroma != (double *) NULL);
924   assert(luma != (double *) NULL);
925   max=MagickMax(red,MagickMax(green,blue));
926   c=max-MagickMin(red,MagickMin(green,blue));
927   h=0.0;
928   if (fabs(c) < MagickEpsilon)
929     h=0.0;
930   else
931     if (fabs(red-max) < MagickEpsilon)
932       h=fmod((green-blue)/c+6.0,6.0);
933     else
934       if (fabs(green-max) < MagickEpsilon)
935         h=((blue-red)/c)+2.0;
936       else
937         if (fabs(blue-max) < MagickEpsilon)
938           h=((red-green)/c)+4.0;
939   *hue=(h/6.0);
940   *chroma=QuantumScale*c;
941   *luma=QuantumScale*(0.298839*red+0.586811*green+0.114350*blue);
942 }
943 
944 /*
945 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
946 %                                                                             %
947 %                                                                             %
948 %                                                                             %
949 %   C o n v e r t R G B T o H S B                                             %
950 %                                                                             %
951 %                                                                             %
952 %                                                                             %
953 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
954 %
955 %  ConvertRGBToHSB() transforms a (red, green, blue) to a (hue, saturation,
956 %  brightness) triple.
957 %
958 %  The format of the ConvertRGBToHSB method is:
959 %
960 %      void ConvertRGBToHSB(const double red,const double green,
961 %        const double blue,double *hue,double *saturation,double *brightness)
962 %
963 %  A description of each parameter follows:
964 %
965 %    o red, green, blue: A Quantum value representing the red, green, and
966 %      blue component of a pixel..
967 %
968 %    o hue, saturation, brightness: A pointer to a double value representing a
969 %      component of the HSB color space.
970 %
971 */
ConvertRGBToHSB(const double red,const double green,const double blue,double * hue,double * saturation,double * brightness)972 MagickPrivate void ConvertRGBToHSB(const double red,const double green,
973   const double blue,double *hue,double *saturation,double *brightness)
974 {
975   double
976     delta,
977     max,
978     min;
979 
980   /*
981     Convert RGB to HSB colorspace.
982   */
983   assert(hue != (double *) NULL);
984   assert(saturation != (double *) NULL);
985   assert(brightness != (double *) NULL);
986   *hue=0.0;
987   *saturation=0.0;
988   *brightness=0.0;
989   min=red < green ? red : green;
990   if (blue < min)
991     min=blue;
992   max=red > green ? red : green;
993   if (blue > max)
994     max=blue;
995   if (fabs(max) < MagickEpsilon)
996     return;
997   delta=max-min;
998   *saturation=delta/max;
999   *brightness=QuantumScale*max;
1000   if (fabs(delta) < MagickEpsilon)
1001     return;
1002   if (fabs(red-max) < MagickEpsilon)
1003     *hue=(green-blue)/delta;
1004   else
1005     if (fabs(green-max) < MagickEpsilon)
1006       *hue=2.0+(blue-red)/delta;
1007     else
1008       *hue=4.0+(red-green)/delta;
1009   *hue/=6.0;
1010   if (*hue < 0.0)
1011     *hue+=1.0;
1012 }
1013 
1014 /*
1015 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1016 %                                                                             %
1017 %                                                                             %
1018 %                                                                             %
1019 %   C o n v e r t R G B T o H S I                                             %
1020 %                                                                             %
1021 %                                                                             %
1022 %                                                                             %
1023 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1024 %
1025 %  ConvertRGBToHSI() transforms a (red, green, blue) to a (hue, saturation,
1026 %  intensity) triple.
1027 %
1028 %  The format of the ConvertRGBToHSI method is:
1029 %
1030 %      void ConvertRGBToHSI(const double red,const double green,
1031 %        const double blue,double *hue,double *saturation,double *intensity)
1032 %
1033 %  A description of each parameter follows:
1034 %
1035 %    o red, green, blue: A Quantum value representing the red, green, and
1036 %      blue component of a pixel..
1037 %
1038 %    o hue, saturation, intensity: A pointer to a double value representing a
1039 %      component of the HSI color space.
1040 %
1041 */
ConvertRGBToHSI(const double red,const double green,const double blue,double * hue,double * saturation,double * intensity)1042 MagickPrivate void ConvertRGBToHSI(const double red,const double green,
1043   const double blue,double *hue,double *saturation,double *intensity)
1044 {
1045   double
1046     alpha,
1047     beta;
1048 
1049   /*
1050     Convert RGB to HSI colorspace.
1051   */
1052   assert(hue != (double *) NULL);
1053   assert(saturation != (double *) NULL);
1054   assert(intensity != (double *) NULL);
1055   *intensity=(QuantumScale*red+QuantumScale*green+QuantumScale*blue)/3.0;
1056   if (*intensity <= 0.0)
1057     {
1058       *hue=0.0;
1059       *saturation=0.0;
1060       return;
1061     }
1062   *saturation=1.0-MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
1063     QuantumScale*blue))/(*intensity);
1064   alpha=0.5*(2.0*QuantumScale*red-QuantumScale*green-QuantumScale*blue);
1065   beta=0.8660254037844385*(QuantumScale*green-QuantumScale*blue);
1066   *hue=atan2(beta,alpha)*(180.0/MagickPI)/360.0;
1067   if (*hue < 0.0)
1068     *hue+=1.0;
1069 }
1070 
1071 /*
1072 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1073 %                                                                             %
1074 %                                                                             %
1075 %                                                                             %
1076 %   C o n v e r t R G B T o H S L                                             %
1077 %                                                                             %
1078 %                                                                             %
1079 %                                                                             %
1080 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1081 %
1082 %  ConvertRGBToHSL() transforms a (red, green, blue) to a (hue, saturation,
1083 %  lightness) triple.
1084 %
1085 %  The format of the ConvertRGBToHSL method is:
1086 %
1087 %      void ConvertRGBToHSL(const double red,const double green,
1088 %        const double blue,double *hue,double *saturation,double *lightness)
1089 %
1090 %  A description of each parameter follows:
1091 %
1092 %    o red, green, blue: A Quantum value representing the red, green, and
1093 %      blue component of a pixel..
1094 %
1095 %    o hue, saturation, lightness: A pointer to a double value representing a
1096 %      component of the HSL color space.
1097 %
1098 */
ConvertRGBToHSL(const double red,const double green,const double blue,double * hue,double * saturation,double * lightness)1099 MagickExport void ConvertRGBToHSL(const double red,const double green,
1100   const double blue,double *hue,double *saturation,double *lightness)
1101 {
1102   double
1103     c,
1104     max,
1105     min;
1106 
1107   /*
1108     Convert RGB to HSL colorspace.
1109   */
1110   assert(hue != (double *) NULL);
1111   assert(saturation != (double *) NULL);
1112   assert(lightness != (double *) NULL);
1113   max=MagickMax(QuantumScale*red,MagickMax(QuantumScale*green,
1114     QuantumScale*blue));
1115   min=MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
1116     QuantumScale*blue));
1117   c=max-min;
1118   *lightness=(max+min)/2.0;
1119   if (c <= 0.0)
1120     {
1121       *hue=0.0;
1122       *saturation=0.0;
1123       return;
1124     }
1125   if (fabs(max-QuantumScale*red) < MagickEpsilon)
1126     {
1127       *hue=(QuantumScale*green-QuantumScale*blue)/c;
1128       if ((QuantumScale*green) < (QuantumScale*blue))
1129         *hue+=6.0;
1130     }
1131   else
1132     if (fabs(max-QuantumScale*green) < MagickEpsilon)
1133       *hue=2.0+(QuantumScale*blue-QuantumScale*red)/c;
1134     else
1135       *hue=4.0+(QuantumScale*red-QuantumScale*green)/c;
1136   *hue*=60.0/360.0;
1137   if (*lightness <= 0.5)
1138     *saturation=c/(2.0*(*lightness));
1139   else
1140     *saturation=c/(2.0-2.0*(*lightness));
1141 }
1142 
1143 /*
1144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1145 %                                                                             %
1146 %                                                                             %
1147 %                                                                             %
1148 %   C o n v e r t R G B T o H S V                                             %
1149 %                                                                             %
1150 %                                                                             %
1151 %                                                                             %
1152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1153 %
1154 %  ConvertRGBToHSV() transforms a (red, green, blue) to a (hue, saturation,
1155 %  value) triple.
1156 %
1157 %  The format of the ConvertRGBToHSV method is:
1158 %
1159 %      void ConvertRGBToHSV(const double red,const double green,
1160 %        const double blue,double *hue,double *saturation,double *value)
1161 %
1162 %  A description of each parameter follows:
1163 %
1164 %    o red, green, blue: A Quantum value representing the red, green, and
1165 %      blue component of a pixel..
1166 %
1167 %    o hue, saturation, value: A pointer to a double value representing a
1168 %      component of the HSV color space.
1169 %
1170 */
ConvertRGBToHSV(const double red,const double green,const double blue,double * hue,double * saturation,double * value)1171 MagickPrivate void ConvertRGBToHSV(const double red,const double green,
1172   const double blue,double *hue,double *saturation,double *value)
1173 {
1174   double
1175     c,
1176     max,
1177     min;
1178 
1179   /*
1180     Convert RGB to HSV colorspace.
1181   */
1182   assert(hue != (double *) NULL);
1183   assert(saturation != (double *) NULL);
1184   assert(value != (double *) NULL);
1185   max=MagickMax(QuantumScale*red,MagickMax(QuantumScale*green,
1186     QuantumScale*blue));
1187   min=MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
1188     QuantumScale*blue));
1189   c=max-min;
1190   *value=max;
1191   if (c <= 0.0)
1192     {
1193       *hue=0.0;
1194       *saturation=0.0;
1195       return;
1196     }
1197   if (fabs(max-QuantumScale*red) < MagickEpsilon)
1198     {
1199       *hue=(QuantumScale*green-QuantumScale*blue)/c;
1200       if ((QuantumScale*green) < (QuantumScale*blue))
1201         *hue+=6.0;
1202     }
1203   else
1204     if (fabs(max-QuantumScale*green) < MagickEpsilon)
1205       *hue=2.0+(QuantumScale*blue-QuantumScale*red)/c;
1206     else
1207       *hue=4.0+(QuantumScale*red-QuantumScale*green)/c;
1208   *hue*=60.0/360.0;
1209   *saturation=c/max;
1210 }
1211 
1212 /*
1213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1214 %                                                                             %
1215 %                                                                             %
1216 %                                                                             %
1217 %   C o n v e r t R G B T o H W B                                             %
1218 %                                                                             %
1219 %                                                                             %
1220 %                                                                             %
1221 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1222 %
1223 %  ConvertRGBToHWB() transforms a (red, green, blue) to a (hue, whiteness,
1224 %  blackness) triple.
1225 %
1226 %  The format of the ConvertRGBToHWB method is:
1227 %
1228 %      void ConvertRGBToHWB(const double red,const double green,
1229 %        const double blue,double *hue,double *whiteness,double *blackness)
1230 %
1231 %  A description of each parameter follows:
1232 %
1233 %    o red, green, blue: A Quantum value representing the red, green, and
1234 %      blue component of a pixel.
1235 %
1236 %    o hue, whiteness, blackness: A pointer to a double value representing a
1237 %      component of the HWB color space.
1238 %
1239 */
ConvertRGBToHWB(const double red,const double green,const double blue,double * hue,double * whiteness,double * blackness)1240 MagickPrivate void ConvertRGBToHWB(const double red,const double green,
1241   const double blue,double *hue,double *whiteness,double *blackness)
1242 {
1243   double
1244     f,
1245     p,
1246     v,
1247     w;
1248 
1249   /*
1250     Convert RGB to HWB colorspace.
1251   */
1252   assert(hue != (double *) NULL);
1253   assert(whiteness != (double *) NULL);
1254   assert(blackness != (double *) NULL);
1255   w=MagickMin(red,MagickMin(green,blue));
1256   v=MagickMax(red,MagickMax(green,blue));
1257   *blackness=1.0-QuantumScale*v;
1258   *whiteness=QuantumScale*w;
1259   if (fabs(v-w) < MagickEpsilon)
1260     {
1261       *hue=(-1.0);
1262       return;
1263     }
1264   f=(fabs(red-w) < MagickEpsilon) ? green-blue :
1265     ((fabs(green-w) < MagickEpsilon) ? blue-red : red-green);
1266   p=(fabs(red-w) < MagickEpsilon) ? 3.0 :
1267     ((fabs(green-w) < MagickEpsilon) ? 5.0 : 1.0);
1268   *hue=(p-f/(v-1.0*w))/6.0;
1269 }
1270 
1271 /*
1272 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1273 %                                                                             %
1274 %                                                                             %
1275 %                                                                             %
1276 %   C o n v e r t R G B T o L C H a b                                         %
1277 %                                                                             %
1278 %                                                                             %
1279 %                                                                             %
1280 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1281 %
1282 %  ConvertRGBToLCHab() transforms a (red, green, blue) to a (luma, chroma,
1283 %  hue) triple.
1284 %
1285 %  The format of the ConvertRGBToLCHab method is:
1286 %
1287 %      void ConvertRGBToLCHab(const double red,const double green,
1288 %        const double blue,double *luma,double *chroma,double *hue)
1289 %
1290 %  A description of each parameter follows:
1291 %
1292 %    o red, green, blue: A Quantum value representing the red, green, and
1293 %      blue component of a pixel.
1294 %
1295 %    o luma, chroma, hue: A pointer to a double value representing a
1296 %      component of the LCH color space.
1297 %
1298 */
1299 
ConvertXYZToLCHab(const double X,const double Y,const double Z,double * luma,double * chroma,double * hue)1300 static inline void ConvertXYZToLCHab(const double X,const double Y,
1301   const double Z,double *luma,double *chroma,double *hue)
1302 {
1303   double
1304     a,
1305     b;
1306 
1307   ConvertXYZToLab(X,Y,Z,luma,&a,&b);
1308   *chroma=hypot(255.0*(a-0.5),255.0*(b-0.5))/255.0+0.5;
1309   *hue=180.0*atan2(255.0*(b-0.5),255.0*(a-0.5))/MagickPI/360.0;
1310   if (*hue < 0.0)
1311     *hue+=1.0;
1312 }
1313 
ConvertRGBToLCHab(const double red,const double green,const double blue,double * luma,double * chroma,double * hue)1314 MagickPrivate void ConvertRGBToLCHab(const double red,const double green,
1315   const double blue,double *luma,double *chroma,double *hue)
1316 {
1317   double
1318     X,
1319     Y,
1320     Z;
1321 
1322   /*
1323     Convert RGB to LCHab colorspace.
1324   */
1325   assert(luma != (double *) NULL);
1326   assert(chroma != (double *) NULL);
1327   assert(hue != (double *) NULL);
1328   ConvertRGBToXYZ(red,green,blue,&X,&Y,&Z);
1329   ConvertXYZToLCHab(X,Y,Z,luma,chroma,hue);
1330 }
1331 
1332 /*
1333 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1334 %                                                                             %
1335 %                                                                             %
1336 %                                                                             %
1337 %   C o n v e r t R G B T o L C H u v                                         %
1338 %                                                                             %
1339 %                                                                             %
1340 %                                                                             %
1341 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1342 %
1343 %  ConvertRGBToLCHuv() transforms a (red, green, blue) to a (luma, chroma,
1344 %  hue) triple.
1345 %
1346 %  The format of the ConvertRGBToLCHuv method is:
1347 %
1348 %      void ConvertRGBToLCHuv(const double red,const double green,
1349 %        const double blue,double *luma,double *chroma,double *hue)
1350 %
1351 %  A description of each parameter follows:
1352 %
1353 %    o red, green, blue: A Quantum value representing the red, green, and
1354 %      blue component of a pixel.
1355 %
1356 %    o luma, chroma, hue: A pointer to a double value representing a
1357 %      component of the LCHuv color space.
1358 %
1359 */
1360 
ConvertXYZToLCHuv(const double X,const double Y,const double Z,double * luma,double * chroma,double * hue)1361 static inline void ConvertXYZToLCHuv(const double X,const double Y,
1362   const double Z,double *luma,double *chroma,double *hue)
1363 {
1364   double
1365     u,
1366     v;
1367 
1368   ConvertXYZToLuv(X,Y,Z,luma,&u,&v);
1369   *chroma=hypot(354.0*u-134.0,262.0*v-140.0)/255.0+0.5;
1370   *hue=180.0*atan2(262.0*v-140.0,354.0*u-134.0)/MagickPI/360.0;
1371   if (*hue < 0.0)
1372     *hue+=1.0;
1373 }
1374 
ConvertRGBToLCHuv(const double red,const double green,const double blue,double * luma,double * chroma,double * hue)1375 MagickPrivate void ConvertRGBToLCHuv(const double red,const double green,
1376   const double blue,double *luma,double *chroma,double *hue)
1377 {
1378   double
1379     X,
1380     Y,
1381     Z;
1382 
1383   /*
1384     Convert RGB to LCHuv colorspace.
1385   */
1386   assert(luma != (double *) NULL);
1387   assert(chroma != (double *) NULL);
1388   assert(hue != (double *) NULL);
1389   ConvertRGBToXYZ(red,green,blue,&X,&Y,&Z);
1390   ConvertXYZToLCHuv(X,Y,Z,luma,chroma,hue);
1391 }
1392 
1393 /*
1394 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1395 %                                                                             %
1396 %                                                                             %
1397 %                                                                             %
1398 %   E x p a n d A f f i n e                                                   %
1399 %                                                                             %
1400 %                                                                             %
1401 %                                                                             %
1402 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1403 %
1404 %  ExpandAffine() computes the affine's expansion factor, i.e. the square root
1405 %  of the factor by which the affine transform affects area. In an affine
1406 %  transform composed of scaling, rotation, shearing, and translation, returns
1407 %  the amount of scaling.
1408 %
1409 %  The format of the ExpandAffine method is:
1410 %
1411 %      double ExpandAffine(const AffineMatrix *affine)
1412 %
1413 %  A description of each parameter follows:
1414 %
1415 %    o expansion: ExpandAffine returns the affine's expansion factor.
1416 %
1417 %    o affine: A pointer the affine transform of type AffineMatrix.
1418 %
1419 */
ExpandAffine(const AffineMatrix * affine)1420 MagickExport double ExpandAffine(const AffineMatrix *affine)
1421 {
1422   assert(affine != (const AffineMatrix *) NULL);
1423   return(sqrt(fabs(affine->sx*affine->sy-affine->rx*affine->ry)));
1424 }
1425 
1426 /*
1427 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1428 %                                                                             %
1429 %                                                                             %
1430 %                                                                             %
1431 %   G e n e r a t e D i f f e r e n t i a l N o i s e                         %
1432 %                                                                             %
1433 %                                                                             %
1434 %                                                                             %
1435 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1436 %
1437 %  GenerateDifferentialNoise() generates differentual noise.
1438 %
1439 %  The format of the GenerateDifferentialNoise method is:
1440 %
1441 %      double GenerateDifferentialNoise(RandomInfo *random_info,
1442 %        const Quantum pixel,const NoiseType noise_type,const double attenuate)
1443 %
1444 %  A description of each parameter follows:
1445 %
1446 %    o random_info: the random info.
1447 %
1448 %    o pixel: noise is relative to this pixel value.
1449 %
1450 %    o noise_type: the type of noise.
1451 %
1452 %    o attenuate:  attenuate the noise.
1453 %
1454 */
GenerateDifferentialNoise(RandomInfo * random_info,const Quantum pixel,const NoiseType noise_type,const double attenuate)1455 MagickPrivate double GenerateDifferentialNoise(RandomInfo *random_info,
1456   const Quantum pixel,const NoiseType noise_type,const double attenuate)
1457 {
1458 #define SigmaUniform  (attenuate*0.015625)
1459 #define SigmaGaussian  (attenuate*0.015625)
1460 #define SigmaImpulse  (attenuate*0.1)
1461 #define SigmaLaplacian (attenuate*0.0390625)
1462 #define SigmaMultiplicativeGaussian  (attenuate*0.5)
1463 #define SigmaPoisson  (attenuate*12.5)
1464 #define SigmaRandom  (attenuate)
1465 #define TauGaussian  (attenuate*0.078125)
1466 
1467   double
1468     alpha,
1469     beta,
1470     noise,
1471     sigma;
1472 
1473   alpha=GetPseudoRandomValue(random_info);
1474   switch (noise_type)
1475   {
1476     case UniformNoise:
1477     default:
1478     {
1479       noise=(double) (pixel+QuantumRange*SigmaUniform*(alpha-0.5));
1480       break;
1481     }
1482     case GaussianNoise:
1483     {
1484       double
1485         gamma,
1486         tau;
1487 
1488       if (fabs(alpha) < MagickEpsilon)
1489         alpha=1.0;
1490       beta=GetPseudoRandomValue(random_info);
1491       gamma=sqrt(-2.0*log(alpha));
1492       sigma=gamma*cos((double) (2.0*MagickPI*beta));
1493       tau=gamma*sin((double) (2.0*MagickPI*beta));
1494       noise=(double) (pixel+sqrt((double) pixel)*SigmaGaussian*sigma+
1495         QuantumRange*TauGaussian*tau);
1496       break;
1497     }
1498     case ImpulseNoise:
1499     {
1500       if (alpha < (SigmaImpulse/2.0))
1501         noise=0.0;
1502       else
1503         if (alpha >= (1.0-(SigmaImpulse/2.0)))
1504           noise=(double) QuantumRange;
1505         else
1506           noise=(double) pixel;
1507       break;
1508     }
1509     case LaplacianNoise:
1510     {
1511       if (alpha <= 0.5)
1512         {
1513           if (alpha <= MagickEpsilon)
1514             noise=(double) (pixel-QuantumRange);
1515           else
1516             noise=(double) (pixel+QuantumRange*SigmaLaplacian*log(2.0*alpha)+
1517               0.5);
1518           break;
1519         }
1520       beta=1.0-alpha;
1521       if (beta <= (0.5*MagickEpsilon))
1522         noise=(double) (pixel+QuantumRange);
1523       else
1524         noise=(double) (pixel-QuantumRange*SigmaLaplacian*log(2.0*beta)+0.5);
1525       break;
1526     }
1527     case MultiplicativeGaussianNoise:
1528     {
1529       sigma=1.0;
1530       if (alpha > MagickEpsilon)
1531         sigma=sqrt(-2.0*log(alpha));
1532       beta=GetPseudoRandomValue(random_info);
1533       noise=(double) (pixel+pixel*SigmaMultiplicativeGaussian*sigma*
1534         cos((double) (2.0*MagickPI*beta))/2.0);
1535       break;
1536     }
1537     case PoissonNoise:
1538     {
1539       double
1540         poisson;
1541 
1542       register ssize_t
1543         i;
1544 
1545       poisson=exp(-SigmaPoisson*QuantumScale*pixel);
1546       for (i=0; alpha > poisson; i++)
1547       {
1548         beta=GetPseudoRandomValue(random_info);
1549         alpha*=beta;
1550       }
1551       noise=(double) (QuantumRange*i/SigmaPoisson);
1552       break;
1553     }
1554     case RandomNoise:
1555     {
1556       noise=(double) (QuantumRange*SigmaRandom*alpha);
1557       break;
1558     }
1559   }
1560   return(noise);
1561 }
1562 
1563 /*
1564 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1565 %                                                                             %
1566 %                                                                             %
1567 %                                                                             %
1568 %   G e t O p t i m a l K e r n e l W i d t h                                 %
1569 %                                                                             %
1570 %                                                                             %
1571 %                                                                             %
1572 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1573 %
1574 %  GetOptimalKernelWidth() computes the optimal kernel radius for a convolution
1575 %  filter.  Start with the minimum value of 3 pixels and walk out until we drop
1576 %  below the threshold of one pixel numerical accuracy.
1577 %
1578 %  The format of the GetOptimalKernelWidth method is:
1579 %
1580 %      size_t GetOptimalKernelWidth(const double radius,
1581 %        const double sigma)
1582 %
1583 %  A description of each parameter follows:
1584 %
1585 %    o width: GetOptimalKernelWidth returns the optimal width of a
1586 %      convolution kernel.
1587 %
1588 %    o radius: the radius of the Gaussian, in pixels, not counting the center
1589 %      pixel.
1590 %
1591 %    o sigma: the standard deviation of the Gaussian, in pixels.
1592 %
1593 */
GetOptimalKernelWidth1D(const double radius,const double sigma)1594 MagickPrivate size_t GetOptimalKernelWidth1D(const double radius,
1595   const double sigma)
1596 {
1597   double
1598     alpha,
1599     beta,
1600     gamma,
1601     normalize,
1602     value;
1603 
1604   register ssize_t
1605     i;
1606 
1607   size_t
1608     width;
1609 
1610   ssize_t
1611     j;
1612 
1613   (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1614   if (radius > MagickEpsilon)
1615     return((size_t) (2.0*ceil(radius)+1.0));
1616   gamma=fabs(sigma);
1617   if (gamma <= MagickEpsilon)
1618     return(3UL);
1619   alpha=PerceptibleReciprocal(2.0*gamma*gamma);
1620   beta=(double) PerceptibleReciprocal((double) MagickSQ2PI*gamma);
1621   for (width=5; ; )
1622   {
1623     normalize=0.0;
1624     j=(ssize_t) (width-1)/2;
1625     for (i=(-j); i <= j; i++)
1626       normalize+=exp(-((double) (i*i))*alpha)*beta;
1627     value=exp(-((double) (j*j))*alpha)*beta/normalize;
1628     if ((value < QuantumScale) || (value < MagickEpsilon))
1629       break;
1630     width+=2;
1631   }
1632   return((size_t) (width-2));
1633 }
1634 
GetOptimalKernelWidth2D(const double radius,const double sigma)1635 MagickPrivate size_t GetOptimalKernelWidth2D(const double radius,
1636   const double sigma)
1637 {
1638   double
1639     alpha,
1640     beta,
1641     gamma,
1642     normalize,
1643     value;
1644 
1645   size_t
1646     width;
1647 
1648   ssize_t
1649     j,
1650     u,
1651     v;
1652 
1653   (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1654   if (radius > MagickEpsilon)
1655     return((size_t) (2.0*ceil(radius)+1.0));
1656   gamma=fabs(sigma);
1657   if (gamma <= MagickEpsilon)
1658     return(3UL);
1659   alpha=PerceptibleReciprocal(2.0*gamma*gamma);
1660   beta=(double) PerceptibleReciprocal((double) Magick2PI*gamma*gamma);
1661   for (width=5; ; )
1662   {
1663     normalize=0.0;
1664     j=(ssize_t) (width-1)/2;
1665     for (v=(-j); v <= j; v++)
1666       for (u=(-j); u <= j; u++)
1667         normalize+=exp(-((double) (u*u+v*v))*alpha)*beta;
1668     value=exp(-((double) (j*j))*alpha)*beta/normalize;
1669     if ((value < QuantumScale) || (value < MagickEpsilon))
1670       break;
1671     width+=2;
1672   }
1673   return((size_t) (width-2));
1674 }
1675 
GetOptimalKernelWidth(const double radius,const double sigma)1676 MagickPrivate size_t  GetOptimalKernelWidth(const double radius,
1677   const double sigma)
1678 {
1679   return(GetOptimalKernelWidth1D(radius,sigma));
1680 }
1681