1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %                  M   M   AAA   TTTTT  RRRR   IIIII  X   X                   %
7 %                  MM MM  A   A    T    R   R    I     X X                    %
8 %                  M M M  AAAAA    T    RRRR     I      X                     %
9 %                  M   M  A   A    T    R R      I     X X                    %
10 %                  M   M  A   A    T    R  R   IIIII  X   X                   %
11 %                                                                             %
12 %                                                                             %
13 %                         MagickCore Matrix Methods                           %
14 %                                                                             %
15 %                            Software Design                                  %
16 %                                 Cristy                                      %
17 %                              August 2007                                    %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 */
38 
39 /*
40   Include declarations.
41 */
42 #include "MagickCore/studio.h"
43 #include "MagickCore/blob.h"
44 #include "MagickCore/blob-private.h"
45 #include "MagickCore/cache.h"
46 #include "MagickCore/exception.h"
47 #include "MagickCore/exception-private.h"
48 #include "MagickCore/image-private.h"
49 #include "MagickCore/matrix.h"
50 #include "MagickCore/memory_.h"
51 #include "MagickCore/pixel-accessor.h"
52 #include "MagickCore/pixel-private.h"
53 #include "MagickCore/resource_.h"
54 #include "MagickCore/semaphore.h"
55 #include "MagickCore/thread-private.h"
56 #include "MagickCore/utility.h"
57 
58 /*
59   Typedef declaration.
60 */
61 struct _MatrixInfo
62 {
63   CacheType
64     type;
65 
66   size_t
67     columns,
68     rows,
69     stride;
70 
71   MagickSizeType
72     length;
73 
74   MagickBooleanType
75     mapped,
76     synchronize;
77 
78   char
79     path[MagickPathExtent];
80 
81   int
82     file;
83 
84   void
85     *elements;
86 
87   SemaphoreInfo
88     *semaphore;
89 
90   size_t
91     signature;
92 };
93 
94 /*
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 %                                                                             %
97 %                                                                             %
98 %                                                                             %
99 %   A c q u i r e M a t r i x I n f o                                         %
100 %                                                                             %
101 %                                                                             %
102 %                                                                             %
103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
104 %
105 %  AcquireMatrixInfo() allocates the ImageInfo structure.
106 %
107 %  The format of the AcquireMatrixInfo method is:
108 %
109 %      MatrixInfo *AcquireMatrixInfo(const size_t columns,const size_t rows,
110 %        const size_t stride,ExceptionInfo *exception)
111 %
112 %  A description of each parameter follows:
113 %
114 %    o columns: the matrix columns.
115 %
116 %    o rows: the matrix rows.
117 %
118 %    o stride: the matrix stride.
119 %
120 %    o exception: return any errors or warnings in this structure.
121 %
122 */
123 
124 #if defined(SIGBUS)
MatrixSignalHandler(int status)125 static void MatrixSignalHandler(int status)
126 {
127   ThrowFatalException(CacheFatalError,"UnableToExtendMatrixCache");
128 }
129 #endif
130 
WriteMatrixElements(const MatrixInfo * magick_restrict matrix_info,const MagickOffsetType offset,const MagickSizeType length,const unsigned char * magick_restrict buffer)131 static inline MagickOffsetType WriteMatrixElements(
132   const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset,
133   const MagickSizeType length,const unsigned char *magick_restrict buffer)
134 {
135   register MagickOffsetType
136     i;
137 
138   ssize_t
139     count;
140 
141 #if !defined(MAGICKCORE_HAVE_PWRITE)
142   LockSemaphoreInfo(matrix_info->semaphore);
143   if (lseek(matrix_info->file,offset,SEEK_SET) < 0)
144     {
145       UnlockSemaphoreInfo(matrix_info->semaphore);
146       return((MagickOffsetType) -1);
147     }
148 #endif
149   count=0;
150   for (i=0; i < (MagickOffsetType) length; i+=count)
151   {
152 #if !defined(MAGICKCORE_HAVE_PWRITE)
153     count=write(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
154       (MagickSizeType) SSIZE_MAX));
155 #else
156     count=pwrite(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
157       (MagickSizeType) SSIZE_MAX),(off_t) (offset+i));
158 #endif
159     if (count <= 0)
160       {
161         count=0;
162         if (errno != EINTR)
163           break;
164       }
165   }
166 #if !defined(MAGICKCORE_HAVE_PWRITE)
167   UnlockSemaphoreInfo(matrix_info->semaphore);
168 #endif
169   return(i);
170 }
171 
SetMatrixExtent(MatrixInfo * magick_restrict matrix_info,MagickSizeType length)172 static MagickBooleanType SetMatrixExtent(
173   MatrixInfo *magick_restrict matrix_info,
174   MagickSizeType length)
175 {
176   MagickOffsetType
177     count,
178     extent,
179     offset;
180 
181   if (length != (MagickSizeType) ((MagickOffsetType) length))
182     return(MagickFalse);
183   offset=(MagickOffsetType) lseek(matrix_info->file,0,SEEK_END);
184   if (offset < 0)
185     return(MagickFalse);
186   if ((MagickSizeType) offset >= length)
187     return(MagickTrue);
188   extent=(MagickOffsetType) length-1;
189   count=WriteMatrixElements(matrix_info,extent,1,(const unsigned char *) "");
190 #if defined(MAGICKCORE_HAVE_POSIX_FALLOCATE)
191   if (matrix_info->synchronize != MagickFalse)
192     (void) posix_fallocate(matrix_info->file,offset+1,extent-offset);
193 #endif
194 #if defined(SIGBUS)
195   (void) signal(SIGBUS,MatrixSignalHandler);
196 #endif
197   return(count != (MagickOffsetType) 1 ? MagickFalse : MagickTrue);
198 }
199 
AcquireMatrixInfo(const size_t columns,const size_t rows,const size_t stride,ExceptionInfo * exception)200 MagickExport MatrixInfo *AcquireMatrixInfo(const size_t columns,
201   const size_t rows,const size_t stride,ExceptionInfo *exception)
202 {
203   char
204     *synchronize;
205 
206   MagickBooleanType
207     status;
208 
209   MatrixInfo
210     *matrix_info;
211 
212   matrix_info=(MatrixInfo *) AcquireMagickMemory(sizeof(*matrix_info));
213   if (matrix_info == (MatrixInfo *) NULL)
214     return((MatrixInfo *) NULL);
215   (void) ResetMagickMemory(matrix_info,0,sizeof(*matrix_info));
216   matrix_info->signature=MagickCoreSignature;
217   matrix_info->columns=columns;
218   matrix_info->rows=rows;
219   matrix_info->stride=stride;
220   matrix_info->semaphore=AcquireSemaphoreInfo();
221   synchronize=GetEnvironmentValue("MAGICK_SYNCHRONIZE");
222   if (synchronize != (const char *) NULL)
223     {
224       matrix_info->synchronize=IsStringTrue(synchronize);
225       synchronize=DestroyString(synchronize);
226     }
227   matrix_info->length=(MagickSizeType) columns*rows*stride;
228   if (matrix_info->columns != (size_t) (matrix_info->length/rows/stride))
229     {
230       (void) ThrowMagickException(exception,GetMagickModule(),CacheError,
231         "CacheResourcesExhausted","`%s'","matrix cache");
232       return(DestroyMatrixInfo(matrix_info));
233     }
234   matrix_info->type=MemoryCache;
235   status=AcquireMagickResource(AreaResource,matrix_info->length);
236   if ((status != MagickFalse) &&
237       (matrix_info->length == (MagickSizeType) ((size_t) matrix_info->length)))
238     {
239       status=AcquireMagickResource(MemoryResource,matrix_info->length);
240       if (status != MagickFalse)
241         {
242           matrix_info->mapped=MagickFalse;
243           matrix_info->elements=AcquireMagickMemory((size_t)
244             matrix_info->length);
245           if (matrix_info->elements == NULL)
246             {
247               matrix_info->mapped=MagickTrue;
248               matrix_info->elements=MapBlob(-1,IOMode,0,(size_t)
249                 matrix_info->length);
250             }
251           if (matrix_info->elements == (unsigned short *) NULL)
252             RelinquishMagickResource(MemoryResource,matrix_info->length);
253         }
254     }
255   matrix_info->file=(-1);
256   if (matrix_info->elements == (unsigned short *) NULL)
257     {
258       status=AcquireMagickResource(DiskResource,matrix_info->length);
259       if (status == MagickFalse)
260         {
261           (void) ThrowMagickException(exception,GetMagickModule(),CacheError,
262             "CacheResourcesExhausted","`%s'","matrix cache");
263           return(DestroyMatrixInfo(matrix_info));
264         }
265       matrix_info->type=DiskCache;
266       (void) AcquireMagickResource(MemoryResource,matrix_info->length);
267       matrix_info->file=AcquireUniqueFileResource(matrix_info->path);
268       if (matrix_info->file == -1)
269         return(DestroyMatrixInfo(matrix_info));
270       status=AcquireMagickResource(MapResource,matrix_info->length);
271       if (status != MagickFalse)
272         {
273           status=SetMatrixExtent(matrix_info,matrix_info->length);
274           if (status != MagickFalse)
275             {
276               matrix_info->elements=(void *) MapBlob(matrix_info->file,IOMode,0,
277                 (size_t) matrix_info->length);
278               if (matrix_info->elements != NULL)
279                 matrix_info->type=MapCache;
280               else
281                 RelinquishMagickResource(MapResource,matrix_info->length);
282             }
283         }
284     }
285   return(matrix_info);
286 }
287 
288 /*
289 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290 %                                                                             %
291 %                                                                             %
292 %                                                                             %
293 %   A c q u i r e M a g i c k M a t r i x                                     %
294 %                                                                             %
295 %                                                                             %
296 %                                                                             %
297 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
298 %
299 %  AcquireMagickMatrix() allocates and returns a matrix in the form of an
300 %  array of pointers to an array of doubles, with all values pre-set to zero.
301 %
302 %  This used to generate the two dimensional matrix, and vectors required
303 %  for the GaussJordanElimination() method below, solving some system of
304 %  simultanious equations.
305 %
306 %  The format of the AcquireMagickMatrix method is:
307 %
308 %      double **AcquireMagickMatrix(const size_t number_rows,
309 %        const size_t size)
310 %
311 %  A description of each parameter follows:
312 %
313 %    o number_rows: the number pointers for the array of pointers
314 %      (first dimension).
315 %
316 %    o size: the size of the array of doubles each pointer points to
317 %      (second dimension).
318 %
319 */
AcquireMagickMatrix(const size_t number_rows,const size_t size)320 MagickExport double **AcquireMagickMatrix(const size_t number_rows,
321   const size_t size)
322 {
323   double
324     **matrix;
325 
326   register ssize_t
327     i,
328     j;
329 
330   matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix));
331   if (matrix == (double **) NULL)
332     return((double **) NULL);
333   for (i=0; i < (ssize_t) number_rows; i++)
334   {
335     matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
336     if (matrix[i] == (double *) NULL)
337     {
338       for (j=0; j < i; j++)
339         matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
340       matrix=(double **) RelinquishMagickMemory(matrix);
341       return((double **) NULL);
342     }
343     for (j=0; j < (ssize_t) size; j++)
344       matrix[i][j]=0.0;
345   }
346   return(matrix);
347 }
348 
349 /*
350 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
351 %                                                                             %
352 %                                                                             %
353 %                                                                             %
354 %   D e s t r o y M a t r i x I n f o                                         %
355 %                                                                             %
356 %                                                                             %
357 %                                                                             %
358 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
359 %
360 %  DestroyMatrixInfo() dereferences a matrix, deallocating memory associated
361 %  with the matrix.
362 %
363 %  The format of the DestroyImage method is:
364 %
365 %      MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info)
366 %
367 %  A description of each parameter follows:
368 %
369 %    o matrix_info: the matrix.
370 %
371 */
DestroyMatrixInfo(MatrixInfo * matrix_info)372 MagickExport MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info)
373 {
374   assert(matrix_info != (MatrixInfo *) NULL);
375   assert(matrix_info->signature == MagickCoreSignature);
376   LockSemaphoreInfo(matrix_info->semaphore);
377   switch (matrix_info->type)
378   {
379     case MemoryCache:
380     {
381       if (matrix_info->mapped == MagickFalse)
382         matrix_info->elements=RelinquishMagickMemory(matrix_info->elements);
383       else
384         {
385           (void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length);
386           matrix_info->elements=(unsigned short *) NULL;
387         }
388       RelinquishMagickResource(MemoryResource,matrix_info->length);
389       break;
390     }
391     case MapCache:
392     {
393       (void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length);
394       matrix_info->elements=NULL;
395       RelinquishMagickResource(MapResource,matrix_info->length);
396     }
397     case DiskCache:
398     {
399       if (matrix_info->file != -1)
400         (void) close(matrix_info->file);
401       (void) RelinquishUniqueFileResource(matrix_info->path);
402       RelinquishMagickResource(DiskResource,matrix_info->length);
403       break;
404     }
405     default:
406       break;
407   }
408   UnlockSemaphoreInfo(matrix_info->semaphore);
409   RelinquishSemaphoreInfo(&matrix_info->semaphore);
410   return((MatrixInfo *) RelinquishMagickMemory(matrix_info));
411 }
412 
413 /*
414 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
415 %                                                                             %
416 %                                                                             %
417 %                                                                             %
418 +   G a u s s J o r d a n E l i m i n a t i o n                               %
419 %                                                                             %
420 %                                                                             %
421 %                                                                             %
422 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
423 %
424 %  GaussJordanElimination() returns a matrix in reduced row echelon form,
425 %  while simultaneously reducing and thus solving the augumented results
426 %  matrix.
427 %
428 %  See also  http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
429 %
430 %  The format of the GaussJordanElimination method is:
431 %
432 %      MagickBooleanType GaussJordanElimination(double **matrix,
433 %        double **vectors,const size_t rank,const size_t number_vectors)
434 %
435 %  A description of each parameter follows:
436 %
437 %    o matrix: the matrix to be reduced, as an 'array of row pointers'.
438 %
439 %    o vectors: the additional matrix argumenting the matrix for row reduction.
440 %             Producing an 'array of column vectors'.
441 %
442 %    o rank:  The size of the matrix (both rows and columns).
443 %             Also represents the number terms that need to be solved.
444 %
445 %    o number_vectors: Number of vectors columns, argumenting the above matrix.
446 %             Usally 1, but can be more for more complex equation solving.
447 %
448 %  Note that the 'matrix' is given as a 'array of row pointers' of rank size.
449 %  That is values can be assigned as   matrix[row][column]   where 'row' is
450 %  typically the equation, and 'column' is the term of the equation.
451 %  That is the matrix is in the form of a 'row first array'.
452 %
453 %  However 'vectors' is a 'array of column pointers' which can have any number
454 %  of columns, with each column array the same 'rank' size as 'matrix'.
455 %
456 %  This allows for simpler handling of the results, especially is only one
457 %  column 'vector' is all that is required to produce the desired solution.
458 %
459 %  For example, the 'vectors' can consist of a pointer to a simple array of
460 %  doubles.  when only one set of simultanious equations is to be solved from
461 %  the given set of coefficient weighted terms.
462 %
463 %     double **matrix = AcquireMagickMatrix(8UL,8UL);
464 %     double coefficents[8];
465 %     ...
466 %     GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
467 %
468 %  However by specifing more 'columns' (as an 'array of vector columns',
469 %  you can use this function to solve a set of 'separable' equations.
470 %
471 %  For example a distortion function where    u = U(x,y)   v = V(x,y)
472 %  And the functions U() and V() have separate coefficents, but are being
473 %  generated from a common x,y->u,v  data set.
474 %
475 %  Another example is generation of a color gradient from a set of colors at
476 %  specific coordients, such as a list x,y -> r,g,b,a.
477 %
478 %  You can also use the 'vectors' to generate an inverse of the given 'matrix'
479 %  though as a 'column first array' rather than a 'row first array'. For
480 %  details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
481 %
482 */
GaussJordanElimination(double ** matrix,double ** vectors,const size_t rank,const size_t number_vectors)483 MagickPrivate MagickBooleanType GaussJordanElimination(double **matrix,
484   double **vectors,const size_t rank,const size_t number_vectors)
485 {
486 #define GaussJordanSwap(x,y) \
487 { \
488   if ((x) != (y)) \
489     { \
490       (x)+=(y); \
491       (y)=(x)-(y); \
492       (x)=(x)-(y); \
493     } \
494 }
495 
496   double
497     max,
498     scale;
499 
500   register ssize_t
501     i,
502     j,
503     k;
504 
505   ssize_t
506     column,
507     *columns,
508     *pivots,
509     row,
510     *rows;
511 
512   columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns));
513   rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows));
514   pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots));
515   if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) ||
516       (pivots == (ssize_t *) NULL))
517     {
518       if (pivots != (ssize_t *) NULL)
519         pivots=(ssize_t *) RelinquishMagickMemory(pivots);
520       if (columns != (ssize_t *) NULL)
521         columns=(ssize_t *) RelinquishMagickMemory(columns);
522       if (rows != (ssize_t *) NULL)
523         rows=(ssize_t *) RelinquishMagickMemory(rows);
524       return(MagickFalse);
525     }
526   (void) ResetMagickMemory(columns,0,rank*sizeof(*columns));
527   (void) ResetMagickMemory(rows,0,rank*sizeof(*rows));
528   (void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots));
529   column=0;
530   row=0;
531   for (i=0; i < (ssize_t) rank; i++)
532   {
533     max=0.0;
534     for (j=0; j < (ssize_t) rank; j++)
535       if (pivots[j] != 1)
536         {
537           for (k=0; k < (ssize_t) rank; k++)
538             if (pivots[k] != 0)
539               {
540                 if (pivots[k] > 1)
541                   return(MagickFalse);
542               }
543             else
544               if (fabs(matrix[j][k]) >= max)
545                 {
546                   max=fabs(matrix[j][k]);
547                   row=j;
548                   column=k;
549                 }
550         }
551     pivots[column]++;
552     if (row != column)
553       {
554         for (k=0; k < (ssize_t) rank; k++)
555           GaussJordanSwap(matrix[row][k],matrix[column][k]);
556         for (k=0; k < (ssize_t) number_vectors; k++)
557           GaussJordanSwap(vectors[k][row],vectors[k][column]);
558       }
559     rows[i]=row;
560     columns[i]=column;
561     if (matrix[column][column] == 0.0)
562       return(MagickFalse);  /* sigularity */
563     scale=PerceptibleReciprocal(matrix[column][column]);
564     matrix[column][column]=1.0;
565     for (j=0; j < (ssize_t) rank; j++)
566       matrix[column][j]*=scale;
567     for (j=0; j < (ssize_t) number_vectors; j++)
568       vectors[j][column]*=scale;
569     for (j=0; j < (ssize_t) rank; j++)
570       if (j != column)
571         {
572           scale=matrix[j][column];
573           matrix[j][column]=0.0;
574           for (k=0; k < (ssize_t) rank; k++)
575             matrix[j][k]-=scale*matrix[column][k];
576           for (k=0; k < (ssize_t) number_vectors; k++)
577             vectors[k][j]-=scale*vectors[k][column];
578         }
579   }
580   for (j=(ssize_t) rank-1; j >= 0; j--)
581     if (columns[j] != rows[j])
582       for (i=0; i < (ssize_t) rank; i++)
583         GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
584   pivots=(ssize_t *) RelinquishMagickMemory(pivots);
585   rows=(ssize_t *) RelinquishMagickMemory(rows);
586   columns=(ssize_t *) RelinquishMagickMemory(columns);
587   return(MagickTrue);
588 }
589 
590 /*
591 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
592 %                                                                             %
593 %                                                                             %
594 %                                                                             %
595 %   G e t M a t r i x C o l u m n s                                           %
596 %                                                                             %
597 %                                                                             %
598 %                                                                             %
599 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
600 %
601 %  GetMatrixColumns() returns the number of columns in the matrix.
602 %
603 %  The format of the GetMatrixColumns method is:
604 %
605 %      size_t GetMatrixColumns(const MatrixInfo *matrix_info)
606 %
607 %  A description of each parameter follows:
608 %
609 %    o matrix_info: the matrix.
610 %
611 */
GetMatrixColumns(const MatrixInfo * matrix_info)612 MagickExport size_t GetMatrixColumns(const MatrixInfo *matrix_info)
613 {
614   assert(matrix_info != (MatrixInfo *) NULL);
615   assert(matrix_info->signature == MagickCoreSignature);
616   return(matrix_info->columns);
617 }
618 
619 /*
620 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
621 %                                                                             %
622 %                                                                             %
623 %                                                                             %
624 %   G e t M a t r i x E l e m e n t                                           %
625 %                                                                             %
626 %                                                                             %
627 %                                                                             %
628 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
629 %
630 %  GetMatrixElement() returns the specifed element in the matrix.
631 %
632 %  The format of the GetMatrixElement method is:
633 %
634 %      MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info,
635 %        const ssize_t x,const ssize_t y,void *value)
636 %
637 %  A description of each parameter follows:
638 %
639 %    o matrix_info: the matrix columns.
640 %
641 %    o x: the matrix x-offset.
642 %
643 %    o y: the matrix y-offset.
644 %
645 %    o value: return the matrix element in this buffer.
646 %
647 */
648 
EdgeX(const ssize_t x,const size_t columns)649 static inline ssize_t EdgeX(const ssize_t x,const size_t columns)
650 {
651   if (x < 0L)
652     return(0L);
653   if (x >= (ssize_t) columns)
654     return((ssize_t) (columns-1));
655   return(x);
656 }
657 
EdgeY(const ssize_t y,const size_t rows)658 static inline ssize_t EdgeY(const ssize_t y,const size_t rows)
659 {
660   if (y < 0L)
661     return(0L);
662   if (y >= (ssize_t) rows)
663     return((ssize_t) (rows-1));
664   return(y);
665 }
666 
ReadMatrixElements(const MatrixInfo * magick_restrict matrix_info,const MagickOffsetType offset,const MagickSizeType length,unsigned char * magick_restrict buffer)667 static inline MagickOffsetType ReadMatrixElements(
668   const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset,
669   const MagickSizeType length,unsigned char *magick_restrict buffer)
670 {
671   register MagickOffsetType
672     i;
673 
674   ssize_t
675     count;
676 
677 #if !defined(MAGICKCORE_HAVE_PREAD)
678   LockSemaphoreInfo(matrix_info->semaphore);
679   if (lseek(matrix_info->file,offset,SEEK_SET) < 0)
680     {
681       UnlockSemaphoreInfo(matrix_info->semaphore);
682       return((MagickOffsetType) -1);
683     }
684 #endif
685   count=0;
686   for (i=0; i < (MagickOffsetType) length; i+=count)
687   {
688 #if !defined(MAGICKCORE_HAVE_PREAD)
689     count=read(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
690       (MagickSizeType) SSIZE_MAX));
691 #else
692     count=pread(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
693       (MagickSizeType) SSIZE_MAX),(off_t) (offset+i));
694 #endif
695     if (count <= 0)
696       {
697         count=0;
698         if (errno != EINTR)
699           break;
700       }
701   }
702 #if !defined(MAGICKCORE_HAVE_PREAD)
703   UnlockSemaphoreInfo(matrix_info->semaphore);
704 #endif
705   return(i);
706 }
707 
GetMatrixElement(const MatrixInfo * matrix_info,const ssize_t x,const ssize_t y,void * value)708 MagickExport MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info,
709   const ssize_t x,const ssize_t y,void *value)
710 {
711   MagickOffsetType
712     count,
713     i;
714 
715   assert(matrix_info != (const MatrixInfo *) NULL);
716   assert(matrix_info->signature == MagickCoreSignature);
717   i=(MagickOffsetType) EdgeY(y,matrix_info->rows)*matrix_info->columns+
718     EdgeX(x,matrix_info->columns);
719   if (matrix_info->type != DiskCache)
720     {
721       (void) memcpy(value,(unsigned char *) matrix_info->elements+i*
722         matrix_info->stride,matrix_info->stride);
723       return(MagickTrue);
724     }
725   count=ReadMatrixElements(matrix_info,i*matrix_info->stride,
726     matrix_info->stride,(unsigned char *) value);
727   if (count != (MagickOffsetType) matrix_info->stride)
728     return(MagickFalse);
729   return(MagickTrue);
730 }
731 
732 /*
733 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
734 %                                                                             %
735 %                                                                             %
736 %                                                                             %
737 %   G e t M a t r i x R o w s                                                 %
738 %                                                                             %
739 %                                                                             %
740 %                                                                             %
741 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
742 %
743 %  GetMatrixRows() returns the number of rows in the matrix.
744 %
745 %  The format of the GetMatrixRows method is:
746 %
747 %      size_t GetMatrixRows(const MatrixInfo *matrix_info)
748 %
749 %  A description of each parameter follows:
750 %
751 %    o matrix_info: the matrix.
752 %
753 */
GetMatrixRows(const MatrixInfo * matrix_info)754 MagickExport size_t GetMatrixRows(const MatrixInfo *matrix_info)
755 {
756   assert(matrix_info != (const MatrixInfo *) NULL);
757   assert(matrix_info->signature == MagickCoreSignature);
758   return(matrix_info->rows);
759 }
760 
761 /*
762 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
763 %                                                                             %
764 %                                                                             %
765 %                                                                             %
766 +   L e a s t S q u a r e s A d d T e r m s                                   %
767 %                                                                             %
768 %                                                                             %
769 %                                                                             %
770 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
771 %
772 %  LeastSquaresAddTerms() adds one set of terms and associate results to the
773 %  given matrix and vectors for solving using least-squares function fitting.
774 %
775 %  The format of the AcquireMagickMatrix method is:
776 %
777 %      void LeastSquaresAddTerms(double **matrix,double **vectors,
778 %        const double *terms,const double *results,const size_t rank,
779 %        const size_t number_vectors);
780 %
781 %  A description of each parameter follows:
782 %
783 %    o matrix: the square matrix to add given terms/results to.
784 %
785 %    o vectors: the result vectors to add terms/results to.
786 %
787 %    o terms: the pre-calculated terms (without the unknown coefficent
788 %             weights) that forms the equation being added.
789 %
790 %    o results: the result(s) that should be generated from the given terms
791 %               weighted by the yet-to-be-solved coefficents.
792 %
793 %    o rank: the rank or size of the dimensions of the square matrix.
794 %            Also the length of vectors, and number of terms being added.
795 %
796 %    o number_vectors: Number of result vectors, and number or results being
797 %      added.  Also represents the number of separable systems of equations
798 %      that is being solved.
799 %
800 %  Example of use...
801 %
802 %     2 dimensional Affine Equations (which are separable)
803 %         c0*x + c2*y + c4*1 => u
804 %         c1*x + c3*y + c5*1 => v
805 %
806 %     double **matrix = AcquireMagickMatrix(3UL,3UL);
807 %     double **vectors = AcquireMagickMatrix(2UL,3UL);
808 %     double terms[3], results[2];
809 %     ...
810 %     for each given x,y -> u,v
811 %        terms[0] = x;
812 %        terms[1] = y;
813 %        terms[2] = 1;
814 %        results[0] = u;
815 %        results[1] = v;
816 %        LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
817 %     ...
818 %     if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
819 %       c0 = vectors[0][0];
820 %       c2 = vectors[0][1];
821 %       c4 = vectors[0][2];
822 %       c1 = vectors[1][0];
823 %       c3 = vectors[1][1];
824 %       c5 = vectors[1][2];
825 %     }
826 %     else
827 %       printf("Matrix unsolvable\n);
828 %     RelinquishMagickMatrix(matrix,3UL);
829 %     RelinquishMagickMatrix(vectors,2UL);
830 %
831 */
LeastSquaresAddTerms(double ** matrix,double ** vectors,const double * terms,const double * results,const size_t rank,const size_t number_vectors)832 MagickPrivate void LeastSquaresAddTerms(double **matrix,double **vectors,
833   const double *terms,const double *results,const size_t rank,
834   const size_t number_vectors)
835 {
836   register ssize_t
837     i,
838     j;
839 
840   for (j=0; j < (ssize_t) rank; j++)
841   {
842     for (i=0; i < (ssize_t) rank; i++)
843       matrix[i][j]+=terms[i]*terms[j];
844     for (i=0; i < (ssize_t) number_vectors; i++)
845       vectors[i][j]+=results[i]*terms[j];
846   }
847 }
848 
849 /*
850 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
851 %                                                                             %
852 %                                                                             %
853 %                                                                             %
854 %   M a t r i x T o I m a g e                                                 %
855 %                                                                             %
856 %                                                                             %
857 %                                                                             %
858 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
859 %
860 %  MatrixToImage() returns a matrix as an image.  The matrix elements must be
861 %  of type double otherwise nonsense is returned.
862 %
863 %  The format of the MatrixToImage method is:
864 %
865 %      Image *MatrixToImage(const MatrixInfo *matrix_info,
866 %        ExceptionInfo *exception)
867 %
868 %  A description of each parameter follows:
869 %
870 %    o matrix_info: the matrix.
871 %
872 %    o exception: return any errors or warnings in this structure.
873 %
874 */
MatrixToImage(const MatrixInfo * matrix_info,ExceptionInfo * exception)875 MagickExport Image *MatrixToImage(const MatrixInfo *matrix_info,
876   ExceptionInfo *exception)
877 {
878   CacheView
879     *image_view;
880 
881   double
882     max_value,
883     min_value,
884     scale_factor,
885     value;
886 
887   Image
888     *image;
889 
890   MagickBooleanType
891     status;
892 
893   ssize_t
894     y;
895 
896   assert(matrix_info != (const MatrixInfo *) NULL);
897   assert(matrix_info->signature == MagickCoreSignature);
898   assert(exception != (ExceptionInfo *) NULL);
899   assert(exception->signature == MagickCoreSignature);
900   if (matrix_info->stride < sizeof(double))
901     return((Image *) NULL);
902   /*
903     Determine range of matrix.
904   */
905   (void) GetMatrixElement(matrix_info,0,0,&value);
906   min_value=value;
907   max_value=value;
908   for (y=0; y < (ssize_t) matrix_info->rows; y++)
909   {
910     register ssize_t
911       x;
912 
913     for (x=0; x < (ssize_t) matrix_info->columns; x++)
914     {
915       if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse)
916         continue;
917       if (value < min_value)
918         min_value=value;
919       else
920         if (value > max_value)
921           max_value=value;
922     }
923   }
924   if ((min_value == 0.0) && (max_value == 0.0))
925     scale_factor=0;
926   else
927     if (min_value == max_value)
928       {
929         scale_factor=(double) QuantumRange/min_value;
930         min_value=0;
931       }
932     else
933       scale_factor=(double) QuantumRange/(max_value-min_value);
934   /*
935     Convert matrix to image.
936   */
937   image=AcquireImage((ImageInfo *) NULL,exception);
938   image->columns=matrix_info->columns;
939   image->rows=matrix_info->rows;
940   image->colorspace=GRAYColorspace;
941   status=MagickTrue;
942   image_view=AcquireAuthenticCacheView(image,exception);
943 #if defined(MAGICKCORE_OPENMP_SUPPORT)
944   #pragma omp parallel for schedule(static,4) shared(status) \
945     magick_threads(image,image,image->rows,1)
946 #endif
947   for (y=0; y < (ssize_t) image->rows; y++)
948   {
949     double
950       value;
951 
952     register Quantum
953       *q;
954 
955     register ssize_t
956       x;
957 
958     if (status == MagickFalse)
959       continue;
960     q=QueueCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
961     if (q == (Quantum *) NULL)
962       {
963         status=MagickFalse;
964         continue;
965       }
966     for (x=0; x < (ssize_t) image->columns; x++)
967     {
968       if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse)
969         continue;
970       value=scale_factor*(value-min_value);
971       *q=ClampToQuantum(value);
972       q+=GetPixelChannels(image);
973     }
974     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
975       status=MagickFalse;
976   }
977   image_view=DestroyCacheView(image_view);
978   if (status == MagickFalse)
979     image=DestroyImage(image);
980   return(image);
981 }
982 
983 /*
984 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
985 %                                                                             %
986 %                                                                             %
987 %                                                                             %
988 %   N u l l M a t r i x                                                       %
989 %                                                                             %
990 %                                                                             %
991 %                                                                             %
992 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
993 %
994 %  NullMatrix() sets all elements of the matrix to zero.
995 %
996 %  The format of the ResetMagickMemory method is:
997 %
998 %      MagickBooleanType *NullMatrix(MatrixInfo *matrix_info)
999 %
1000 %  A description of each parameter follows:
1001 %
1002 %    o matrix_info: the matrix.
1003 %
1004 */
NullMatrix(MatrixInfo * matrix_info)1005 MagickExport MagickBooleanType NullMatrix(MatrixInfo *matrix_info)
1006 {
1007   register ssize_t
1008     x;
1009 
1010   ssize_t
1011     count,
1012     y;
1013 
1014   unsigned char
1015     value;
1016 
1017   assert(matrix_info != (const MatrixInfo *) NULL);
1018   assert(matrix_info->signature == MagickCoreSignature);
1019   if (matrix_info->type != DiskCache)
1020     {
1021       (void) ResetMagickMemory(matrix_info->elements,0,(size_t)
1022         matrix_info->length);
1023       return(MagickTrue);
1024     }
1025   value=0;
1026   (void) lseek(matrix_info->file,0,SEEK_SET);
1027   for (y=0; y < (ssize_t) matrix_info->rows; y++)
1028   {
1029     for (x=0; x < (ssize_t) matrix_info->length; x++)
1030     {
1031       count=write(matrix_info->file,&value,sizeof(value));
1032       if (count != (ssize_t) sizeof(value))
1033         break;
1034     }
1035     if (x < (ssize_t) matrix_info->length)
1036       break;
1037   }
1038   return(y < (ssize_t) matrix_info->rows ? MagickFalse : MagickTrue);
1039 }
1040 
1041 /*
1042 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1043 %                                                                             %
1044 %                                                                             %
1045 %                                                                             %
1046 %   R e l i n q u i s h M a g i c k M a t r i x                               %
1047 %                                                                             %
1048 %                                                                             %
1049 %                                                                             %
1050 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1051 %
1052 %  RelinquishMagickMatrix() frees the previously acquired matrix (array of
1053 %  pointers to arrays of doubles).
1054 %
1055 %  The format of the RelinquishMagickMatrix method is:
1056 %
1057 %      double **RelinquishMagickMatrix(double **matrix,
1058 %        const size_t number_rows)
1059 %
1060 %  A description of each parameter follows:
1061 %
1062 %    o matrix: the matrix to relinquish
1063 %
1064 %    o number_rows: the first dimension of the acquired matrix (number of
1065 %      pointers)
1066 %
1067 */
RelinquishMagickMatrix(double ** matrix,const size_t number_rows)1068 MagickExport double **RelinquishMagickMatrix(double **matrix,
1069   const size_t number_rows)
1070 {
1071   register ssize_t
1072     i;
1073 
1074   if (matrix == (double **) NULL )
1075     return(matrix);
1076   for (i=0; i < (ssize_t) number_rows; i++)
1077      matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
1078   matrix=(double **) RelinquishMagickMemory(matrix);
1079   return(matrix);
1080 }
1081 
1082 /*
1083 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1084 %                                                                             %
1085 %                                                                             %
1086 %                                                                             %
1087 %   S e t M a t r i x E l e m e n t                                           %
1088 %                                                                             %
1089 %                                                                             %
1090 %                                                                             %
1091 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1092 %
1093 %  SetMatrixElement() sets the specifed element in the matrix.
1094 %
1095 %  The format of the SetMatrixElement method is:
1096 %
1097 %      MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info,
1098 %        const ssize_t x,const ssize_t y,void *value)
1099 %
1100 %  A description of each parameter follows:
1101 %
1102 %    o matrix_info: the matrix columns.
1103 %
1104 %    o x: the matrix x-offset.
1105 %
1106 %    o y: the matrix y-offset.
1107 %
1108 %    o value: set the matrix element to this value.
1109 %
1110 */
1111 
SetMatrixElement(const MatrixInfo * matrix_info,const ssize_t x,const ssize_t y,const void * value)1112 MagickExport MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info,
1113   const ssize_t x,const ssize_t y,const void *value)
1114 {
1115   MagickOffsetType
1116     count,
1117     i;
1118 
1119   assert(matrix_info != (const MatrixInfo *) NULL);
1120   assert(matrix_info->signature == MagickCoreSignature);
1121   i=(MagickOffsetType) y*matrix_info->columns+x;
1122   if ((i < 0) ||
1123       ((MagickSizeType) (i*matrix_info->stride) >= matrix_info->length))
1124     return(MagickFalse);
1125   if (matrix_info->type != DiskCache)
1126     {
1127       (void) memcpy((unsigned char *) matrix_info->elements+i*
1128         matrix_info->stride,value,matrix_info->stride);
1129       return(MagickTrue);
1130     }
1131   count=WriteMatrixElements(matrix_info,i*matrix_info->stride,
1132     matrix_info->stride,(unsigned char *) value);
1133   if (count != (MagickOffsetType) matrix_info->stride)
1134     return(MagickFalse);
1135   return(MagickTrue);
1136 }
1137