1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2015 Microsoft Corporation. All rights reserved.
4 //
5 // This code is licensed under the MIT License (MIT).
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
8 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
9 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
10 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
11 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
12 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
13 // THE SOFTWARE.
14 //
15 ///////////////////////////////////////////////////////////////////////////////
16
17 #include <UnitTest++/UnitTest++.h>
18 #include <gsl/multi_span>
19
20 #include <string>
21 #include <vector>
22 #include <list>
23 #include <iostream>
24 #include <memory>
25 #include <map>
26
27 using namespace std;
28 using namespace gsl;
29
30 namespace
31 {
32 struct BaseClass {};
33 struct DerivedClass : BaseClass {};
34 }
35
SUITE(strided_span_tests)36 SUITE(strided_span_tests)
37 {
38 TEST (span_section_test)
39 {
40 int a[30][4][5];
41
42 auto av = as_multi_span(a);
43 auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2});
44 auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1});
45 (void)subsub;
46 }
47
48 TEST(span_section)
49 {
50 std::vector<int> data(5 * 10);
51 std::iota(begin(data), end(data), 0);
52 const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
53
54 strided_span<int, 2> av_section_1 = av.section({ 1, 2 }, { 3, 4 });
55 CHECK((av_section_1[{0, 0}] == 12));
56 CHECK((av_section_1[{0, 1}] == 13));
57 CHECK((av_section_1[{1, 0}] == 22));
58 CHECK((av_section_1[{2, 3}] == 35));
59
60 strided_span<int, 2> av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 });
61 CHECK((av_section_2[{0, 0}] == 24));
62 CHECK((av_section_2[{0, 1}] == 25));
63 CHECK((av_section_2[{1, 0}] == 34));
64 }
65
66 TEST(strided_span_constructors)
67 {
68 // Check stride constructor
69 {
70 int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
71 const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
72
73 strided_span<int, 1> sav1{ arr, {{9}, {1}} }; // T -> T
74 CHECK(sav1.bounds().index_bounds() == index<1>{ 9 });
75 CHECK(sav1.bounds().stride() == 1);
76 CHECK(sav1[0] == 1 && sav1[8] == 9);
77
78
79 strided_span<const int, 1> sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T
80 CHECK(sav2.bounds().index_bounds() == index<1>{ 4 });
81 CHECK(sav2.bounds().strides() == index<1>{2});
82 CHECK(sav2[0] == 1 && sav2[3] == 7);
83
84 strided_span<int, 2> sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T
85 CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 }));
86 CHECK((sav3.bounds().strides() == index<2>{ 6, 2 }));
87 CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7));
88 }
89
90 // Check multi_span constructor
91 {
92 int arr[] = { 1, 2 };
93
94 // From non-cv-qualified source
95 {
96 const multi_span<int> src = arr;
97
98 strided_span<int, 1> sav{ src, {2, 1} };
99 CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
100 CHECK(sav.bounds().strides() == index<1>{ 1 });
101 CHECK(sav[1] == 2);
102
103 #if _MSC_VER > 1800
104 //strided_span<const int, 1> sav_c{ {src}, {2, 1} };
105 strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} };
106 #else
107 strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} };
108 #endif
109 CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 });
110 CHECK(sav_c.bounds().strides() == index<1>{ 1 });
111 CHECK(sav_c[1] == 2);
112
113 #if _MSC_VER > 1800
114 strided_span<volatile int, 1> sav_v{ src, {2, 1} };
115 #else
116 strided_span<volatile int, 1> sav_v{ multi_span<volatile int>{src}, strided_bounds<1>{2, 1} };
117 #endif
118 CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 });
119 CHECK(sav_v.bounds().strides() == index<1>{ 1 });
120 CHECK(sav_v[1] == 2);
121
122 #if _MSC_VER > 1800
123 strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
124 #else
125 strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} };
126 #endif
127 CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
128 CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
129 CHECK(sav_cv[1] == 2);
130 }
131
132 // From const-qualified source
133 {
134 const multi_span<const int> src{ arr };
135
136 strided_span<const int, 1> sav_c{ src, {2, 1} };
137 CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 });
138 CHECK(sav_c.bounds().strides() == index<1>{ 1 });
139 CHECK(sav_c[1] == 2);
140
141 #if _MSC_VER > 1800
142 strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
143 #else
144 strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} };
145 #endif
146
147 CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
148 CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
149 CHECK(sav_cv[1] == 2);
150 }
151
152 // From volatile-qualified source
153 {
154 const multi_span<volatile int> src{ arr };
155
156 strided_span<volatile int, 1> sav_v{ src, {2, 1} };
157 CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 });
158 CHECK(sav_v.bounds().strides() == index<1>{ 1 });
159 CHECK(sav_v[1] == 2);
160
161 #if _MSC_VER > 1800
162 strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
163 #else
164 strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} };
165 #endif
166 CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
167 CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
168 CHECK(sav_cv[1] == 2);
169 }
170
171 // From cv-qualified source
172 {
173 const multi_span<const volatile int> src{ arr };
174
175 strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
176 CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
177 CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
178 CHECK(sav_cv[1] == 2);
179 }
180 }
181
182 // Check const-casting constructor
183 {
184 int arr[2] = { 4, 5 };
185
186 const multi_span<int, 2> av(arr, 2);
187 multi_span<const int, 2> av2{ av };
188 CHECK(av2[1] == 5);
189
190 static_assert(std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value, "ctor is not implicit!");
191
192 const strided_span<int, 1> src{ arr, {2, 1} };
193 strided_span<const int, 1> sav{ src };
194 CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
195 CHECK(sav.bounds().stride() == 1);
196 CHECK(sav[1] == 5);
197
198 static_assert(std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value, "ctor is not implicit!");
199 }
200
201 // Check copy constructor
202 {
203 int arr1[2] = { 3, 4 };
204 const strided_span<int, 1> src1{ arr1, {2, 1} };
205 strided_span<int, 1> sav1{ src1 };
206
207 CHECK(sav1.bounds().index_bounds() == index<1>{ 2 });
208 CHECK(sav1.bounds().stride() == 1);
209 CHECK(sav1[0] == 3);
210
211 int arr2[6] = { 1, 2, 3, 4, 5, 6 };
212 const strided_span<const int, 2> src2{ arr2, {{ 3, 2 }, { 2, 1 }} };
213 strided_span<const int, 2> sav2{ src2 };
214 CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 }));
215 CHECK((sav2.bounds().strides() == index<2>{ 2, 1 }));
216 CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
217 }
218
219 // Check const-casting assignment operator
220 {
221 int arr1[2] = { 1, 2 };
222 int arr2[6] = { 3, 4, 5, 6, 7, 8 };
223
224 const strided_span<int, 1> src{ arr1, {{2}, {1}} };
225 strided_span<const int, 1> sav{ arr2, {{3}, {2}} };
226 strided_span<const int, 1>& sav_ref = (sav = src);
227 CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
228 CHECK(sav.bounds().strides() == index<1>{ 1 });
229 CHECK(sav[0] == 1);
230 CHECK(&sav_ref == &sav);
231 }
232
233 // Check copy assignment operator
234 {
235 int arr1[2] = { 3, 4 };
236 int arr1b[1] = { 0 };
237 const strided_span<int, 1> src1{ arr1, {2, 1} };
238 strided_span<int, 1> sav1{ arr1b, {1, 1} };
239 strided_span<int, 1>& sav1_ref = (sav1 = src1);
240 CHECK(sav1.bounds().index_bounds() == index<1>{ 2 });
241 CHECK(sav1.bounds().strides() == index<1>{ 1 });
242 CHECK(sav1[0] == 3);
243 CHECK(&sav1_ref == &sav1);
244
245 const int arr2[6] = { 1, 2, 3, 4, 5, 6 };
246 const int arr2b[1] = { 0 };
247 const strided_span<const int, 2> src2{ arr2, {{ 3, 2 },{ 2, 1 }} };
248 strided_span<const int, 2> sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} };
249 strided_span<const int, 2>& sav2_ref = (sav2 = src2);
250 CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 }));
251 CHECK((sav2.bounds().strides() == index<2>{ 2, 1 }));
252 CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
253 CHECK(&sav2_ref == &sav2);
254 }
255 }
256
257 TEST(strided_span_slice)
258 {
259 std::vector<int> data(5 * 10);
260 std::iota(begin(data), end(data), 0);
261 const multi_span<int, 5, 10> src = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
262
263 const strided_span<int, 2> sav{ src, {{5, 10}, {10, 1}} };
264 #ifdef CONFIRM_COMPILATION_ERRORS
265 const strided_span<const int, 2> csav{ {src},{ { 5, 10 },{ 10, 1 } } };
266 #endif
267 const strided_span<const int, 2> csav{ multi_span<const int, 5, 10>{ src }, { { 5, 10 },{ 10, 1 } } };
268
269 strided_span<int, 1> sav_sl = sav[2];
270 CHECK(sav_sl[0] == 20);
271 CHECK(sav_sl[9] == 29);
272
273 strided_span<const int, 1> csav_sl = sav[3];
274 CHECK(csav_sl[0] == 30);
275 CHECK(csav_sl[9] == 39);
276
277 CHECK(sav[4][0] == 40);
278 CHECK(sav[4][9] == 49);
279 }
280
281 TEST(strided_span_column_major)
282 {
283 // strided_span may be used to accomodate more peculiar
284 // use cases, such as column-major multidimensional array
285 // (aka. "FORTRAN" layout).
286
287 int cm_array[3 * 5] = {
288 1, 4, 7, 10, 13,
289 2, 5, 8, 11, 14,
290 3, 6, 9, 12, 15
291 };
292 strided_span<int, 2> cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} };
293
294 // Accessing elements
295 CHECK((cm_sav[{0, 0}] == 1));
296 CHECK((cm_sav[{0, 1}] == 2));
297 CHECK((cm_sav[{1, 0}] == 4));
298 CHECK((cm_sav[{4, 2}] == 15));
299
300 // Slice
301 strided_span<int, 1> cm_sl = cm_sav[3];
302
303 CHECK(cm_sl[0] == 10);
304 CHECK(cm_sl[1] == 11);
305 CHECK(cm_sl[2] == 12);
306
307 // Section
308 strided_span<int, 2> cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 });
309
310 CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2}));
311 CHECK((cm_sec[{0, 0}] == 8));
312 CHECK((cm_sec[{0, 1}] == 9));
313 CHECK((cm_sec[{1, 0}] == 11));
314 CHECK((cm_sec[{2, 1}] == 15));
315 }
316
317 TEST(strided_span_bounds)
318 {
319 int arr[] = { 0, 1, 2, 3 };
320 multi_span<int> av(arr);
321
322 {
323 // incorrect sections
324
325 CHECK_THROW(av.section(0, 0)[0], fail_fast);
326 CHECK_THROW(av.section(1, 0)[0], fail_fast);
327 CHECK_THROW(av.section(1, 1)[1], fail_fast);
328
329 CHECK_THROW(av.section(2, 5), fail_fast);
330 CHECK_THROW(av.section(5, 2), fail_fast);
331 CHECK_THROW(av.section(5, 0), fail_fast);
332 CHECK_THROW(av.section(0, 5), fail_fast);
333 CHECK_THROW(av.section(5, 5), fail_fast);
334 }
335
336 {
337 // zero stride
338 strided_span<int, 1> sav{ av,{ { 4 },{} } };
339 CHECK(sav[0] == 0);
340 CHECK(sav[3] == 0);
341 CHECK_THROW(sav[4], fail_fast);
342 }
343
344 {
345 // zero extent
346 strided_span<int, 1> sav{ av,{ {},{ 1 } } };
347 CHECK_THROW(sav[0], fail_fast);
348 }
349
350 {
351 // zero extent and stride
352 strided_span<int, 1> sav{ av,{ {},{} } };
353 CHECK_THROW(sav[0], fail_fast);
354 }
355
356 {
357 // strided array ctor with matching strided bounds
358 strided_span<int, 1> sav{ arr,{ 4, 1 } };
359 CHECK(sav.bounds().index_bounds() == index<1>{ 4 });
360 CHECK(sav[3] == 3);
361 CHECK_THROW(sav[4], fail_fast);
362 }
363
364 {
365 // strided array ctor with smaller strided bounds
366 strided_span<int, 1> sav{ arr,{ 2, 1 } };
367 CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
368 CHECK(sav[1] == 1);
369 CHECK_THROW(sav[2], fail_fast);
370 }
371
372 {
373 // strided array ctor with fitting irregular bounds
374 strided_span<int, 1> sav{ arr,{ 2, 3 } };
375 CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
376 CHECK(sav[0] == 0);
377 CHECK(sav[1] == 3);
378 CHECK_THROW(sav[2], fail_fast);
379 }
380
381 {
382 // bounds cross data boundaries - from static arrays
383 CHECK_THROW((strided_span<int, 1> { arr, { 3, 2 } }), fail_fast);
384 CHECK_THROW((strided_span<int, 1> { arr, { 3, 3 } }), fail_fast);
385 CHECK_THROW((strided_span<int, 1> { arr, { 4, 5 } }), fail_fast);
386 CHECK_THROW((strided_span<int, 1> { arr, { 5, 1 } }), fail_fast);
387 CHECK_THROW((strided_span<int, 1> { arr, { 5, 5 } }), fail_fast);
388 }
389
390 {
391 // bounds cross data boundaries - from array view
392 CHECK_THROW((strided_span<int, 1> { av, { 3, 2 } }), fail_fast);
393 CHECK_THROW((strided_span<int, 1> { av, { 3, 3 } }), fail_fast);
394 CHECK_THROW((strided_span<int, 1> { av, { 4, 5 } }), fail_fast);
395 CHECK_THROW((strided_span<int, 1> { av, { 5, 1 } }), fail_fast);
396 CHECK_THROW((strided_span<int, 1> { av, { 5, 5 } }), fail_fast);
397 }
398
399 {
400 // bounds cross data boundaries - from dynamic arrays
401 CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 2 } }), fail_fast);
402 CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 3 } }), fail_fast);
403 CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 4, 5 } }), fail_fast);
404 CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 1 } }), fail_fast);
405 CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 5 } }), fail_fast);
406 CHECK_THROW((strided_span<int, 1> { av.data(), 2, { 2, 2 } }), fail_fast);
407 }
408
409 #ifdef CONFIRM_COMPILATION_ERRORS
410 {
411 strided_span<int, 1> sav0{ av.data(), { 3, 2 } };
412 strided_span<int, 1> sav1{ arr, { 1 } };
413 strided_span<int, 1> sav2{ arr, { 1,1,1 } };
414 strided_span<int, 1> sav3{ av, { 1 } };
415 strided_span<int, 1> sav4{ av, { 1,1,1 } };
416 strided_span<int, 2> sav5{ av.as_multi_span(dim<2>(), dim<2>()), { 1 } };
417 strided_span<int, 2> sav6{ av.as_multi_span(dim<2>(), dim<2>()), { 1,1,1 } };
418 strided_span<int, 2> sav7{ av.as_multi_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } };
419
420 index<1> index{ 0, 1 };
421 strided_span<int, 1> sav8{ arr,{ 1,{ 1,1 } } };
422 strided_span<int, 1> sav9{ arr,{ { 1,1 },{ 1,1 } } };
423 strided_span<int, 1> sav10{ av,{ 1,{ 1,1 } } };
424 strided_span<int, 1> sav11{ av,{ { 1,1 },{ 1,1 } } };
425 strided_span<int, 2> sav12{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } };
426 strided_span<int, 2> sav13{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } };
427 strided_span<int, 2> sav14{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } };
428 }
429 #endif
430 }
431
432 TEST(strided_span_type_conversion)
433 {
434 int arr[] = { 0, 1, 2, 3 };
435 multi_span<int> av(arr);
436
437 {
438 strided_span<int, 1> sav{ av.data(), av.size(), { av.size() / 2, 2 } };
439 #ifdef CONFIRM_COMPILATION_ERRORS
440 strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
441 #endif
442 }
443 {
444 strided_span<int, 1> sav{ av, { av.size() / 2, 2 } };
445 #ifdef CONFIRM_COMPILATION_ERRORS
446 strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
447 #endif
448 }
449
450 multi_span<const byte, dynamic_range> bytes = as_bytes(av);
451
452 // retype strided array with regular strides - from raw data
453 {
454 strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } };
455 strided_span<const byte, 2> sav2{ bytes.data(), bytes.size(), bounds };
456 strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>();
457 CHECK(sav3[0][0] == 0);
458 CHECK(sav3[1][0] == 2);
459 CHECK_THROW(sav3[1][1], fail_fast);
460 CHECK_THROW(sav3[0][1], fail_fast);
461 }
462
463 // retype strided array with regular strides - from multi_span
464 {
465 strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } };
466 multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
467 strided_span<const byte, 2> sav2{ bytes2, bounds };
468 strided_span<int, 2> sav3 = sav2.as_strided_span<int>();
469 CHECK(sav3[0][0] == 0);
470 CHECK(sav3[1][0] == 2);
471 CHECK_THROW(sav3[1][1], fail_fast);
472 CHECK_THROW(sav3[0][1], fail_fast);
473 }
474
475 // retype strided array with not enough elements - last dimension of the array is too small
476 {
477 strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } };
478 multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
479 strided_span<const byte, 2> sav2{ bytes2, bounds };
480 CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
481 }
482
483 // retype strided array with not enough elements - strides are too small
484 {
485 strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } };
486 multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
487 strided_span<const byte, 2> sav2{ bytes2, bounds };
488 CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
489 }
490
491 // retype strided array with not enough elements - last dimension does not divide by the new typesize
492 {
493 strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } };
494 multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
495 strided_span<const byte, 2> sav2{ bytes2, bounds };
496 CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
497 }
498
499 // retype strided array with not enough elements - strides does not divide by the new typesize
500 {
501 strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } };
502 multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
503 strided_span<const byte, 2> sav2{ bytes2, bounds };
504 CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
505 }
506
507 // retype strided array with irregular strides - from raw data
508 {
509 strided_bounds<1> bounds{ bytes.size() / 2, 2 };
510 strided_span<const byte, 1> sav2{ bytes.data(), bytes.size(), bounds };
511 CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
512 }
513
514 // retype strided array with irregular strides - from multi_span
515 {
516 strided_bounds<1> bounds{ bytes.size() / 2, 2 };
517 strided_span<const byte, 1> sav2{ bytes, bounds };
518 CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
519 }
520 }
521
522 TEST(empty_strided_spans)
523 {
524 {
525 multi_span<int, 0> empty_av(nullptr);
526 strided_span<int, 1> empty_sav{ empty_av, { 0, 1 } };
527
528 CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 });
529 CHECK_THROW(empty_sav[0], fail_fast);
530 CHECK_THROW(empty_sav.begin()[0], fail_fast);
531 CHECK_THROW(empty_sav.cbegin()[0], fail_fast);
532
533 for (auto& v : empty_sav)
534 {
535 (void)v;
536 CHECK(false);
537 }
538 }
539
540 {
541 strided_span<int, 1> empty_sav{ nullptr, 0, { 0, 1 } };
542
543 CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 });
544 CHECK_THROW(empty_sav[0], fail_fast);
545 CHECK_THROW(empty_sav.begin()[0], fail_fast);
546 CHECK_THROW(empty_sav.cbegin()[0], fail_fast);
547
548 for (auto& v : empty_sav)
549 {
550 (void)v;
551 CHECK(false);
552 }
553 }
554 }
555
556 void iterate_every_other_element(multi_span<int, dynamic_range> av)
557 {
558 // pick every other element
559
560 auto length = av.size() / 2;
561 #if _MSC_VER > 1800
562 auto bounds = strided_bounds<1>({length}, {2});
563 #else
564 auto bounds = strided_bounds<1>(index<1>{ length }, index<1>{ 2 });
565 #endif
566 strided_span<int, 1> strided(&av.data()[1], av.size() - 1, bounds);
567
568 CHECK(strided.size() == length);
569 CHECK(strided.bounds().index_bounds()[0] == length);
570 for (auto i = 0; i < strided.size(); ++i)
571 {
572 CHECK(strided[i] == av[2 * i + 1]);
573 }
574
575 int idx = 0;
576 for (auto num : strided)
577 {
578 CHECK(num == av[2 * idx + 1]);
579 idx++;
580 }
581 }
582
583 TEST(strided_span_section_iteration)
584 {
585 int arr[8] = {4,0,5,1,6,2,7,3};
586
587 // static bounds
588 {
589 multi_span<int, 8> av(arr, 8);
590 iterate_every_other_element(av);
591 }
592
593 // dynamic bounds
594 {
595 multi_span<int, dynamic_range> av(arr, 8);
596 iterate_every_other_element(av);
597 }
598 }
599
600 TEST(dynamic_strided_span_section_iteration)
601 {
602 auto arr = new int[8];
603 for (int i = 0; i < 4; ++i)
604 {
605 arr[2 * i] = 4 + i;
606 arr[2 * i + 1] = i;
607 }
608
609 auto av = as_multi_span(arr, 8);
610 iterate_every_other_element(av);
611
612 delete[] arr;
613 }
614
615 void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av)
616 {
617 int expected[6] = {2,3,10,11,18,19};
618 auto section = av.section({0,1,0}, {3,1,2});
619
620 for (auto i = 0; i < section.extent<0>(); ++i)
621 {
622 for (auto j = 0; j < section.extent<1>(); ++j)
623 for (auto k = 0; k < section.extent<2>(); ++k)
624 {
625 auto idx = index<3>{i,j,k}; // avoid braces in the CHECK macro
626 CHECK(section[idx] == expected[2 * i + 2 * j + k]);
627 }
628 }
629
630 for (auto i = 0; i < section.extent<0>(); ++i)
631 {
632 for (auto j = 0; j < section.extent<1>(); ++j)
633 for (auto k = 0; k < section.extent<2>(); ++k)
634 CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]);
635 }
636
637 int i = 0;
638 for (auto num : section)
639 {
640 CHECK(num == expected[i]);
641 i++;
642 }
643 }
644
645 TEST(strided_span_section_iteration_3d)
646 {
647 int arr[3][4][2];
648 for (auto i = 0; i < 3; ++i)
649 {
650 for (auto j = 0; j < 4; ++j)
651 for (auto k = 0; k < 2; ++k)
652 arr[i][j][k] = 8 * i + 2 * j + k;
653 }
654
655 {
656 multi_span<int, 3, 4, 2> av = arr;
657 iterate_second_slice(av);
658 }
659 }
660
661 TEST(dynamic_strided_span_section_iteration_3d)
662 {
663 auto height = 12, width = 2;
664 auto size = height * width;
665
666 auto arr = new int[size];
667 for (auto i = 0; i < size; ++i)
668 {
669 arr[i] = i;
670 }
671
672 {
673 auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>());
674 iterate_second_slice(av);
675 }
676
677 {
678 auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>());
679 iterate_second_slice(av);
680 }
681
682 {
683 auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>());
684 iterate_second_slice(av);
685 }
686
687 {
688 auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2));
689 iterate_second_slice(av);
690 }
691 delete[] arr;
692 }
693
694 TEST(strided_span_conversion)
695 {
696 // get an multi_span of 'c' values from the list of X's
697
698 struct X { int a; int b; int c; };
699
700 X arr[4] = {{0,1,2},{3,4,5},{6,7,8},{9,10,11}};
701
702 int s = sizeof(int) / sizeof(byte);
703 auto d2 = 3 * s;
704 auto d1 = sizeof(int) * 12 / d2;
705
706 // convert to 4x12 array of bytes
707 auto av = as_multi_span(as_bytes(as_multi_span(arr, 4)), dim(d1), dim(d2));
708
709 CHECK(av.bounds().index_bounds()[0] == 4);
710 CHECK(av.bounds().index_bounds()[1] == 12);
711
712 // get the last 4 columns
713 auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2], arr[0].c[3] } , { arr[1].c[0], ... } , ... }
714
715 // convert to array 4x1 array of integers
716 auto cs = section.as_strided_span<int>(); // { { arr[0].c }, {arr[1].c } , ... }
717
718 CHECK(cs.bounds().index_bounds()[0] == 4);
719 CHECK(cs.bounds().index_bounds()[1] == 1);
720
721 // transpose to 1x4 array
722 strided_bounds<2> reverse_bounds{
723 {cs.bounds().index_bounds()[1] , cs.bounds().index_bounds()[0]},
724 {cs.bounds().strides()[1], cs.bounds().strides()[0]}
725 };
726
727 strided_span<int, 2> transposed{cs.data(), cs.bounds().total_size(), reverse_bounds};
728
729 // slice to get a one-dimensional array of c's
730 strided_span<int, 1> result = transposed[0];
731
732 CHECK(result.bounds().index_bounds()[0] == 4);
733 CHECK_THROW(result.bounds().index_bounds()[1], fail_fast);
734
735 int i = 0;
736 for (auto& num : result)
737 {
738 CHECK(num == arr[i].c);
739 i++;
740 }
741
742 }
743 }
744
main(int,const char * [])745 int main(int, const char *[])
746 {
747 return UnitTest::RunAllTests();
748 }
749