1 /* Originally written by Bodo Moeller for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <string.h>
71
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 #include <openssl/thread.h>
76
77 #include "internal.h"
78 #include "../internal.h"
79
80
81 /* This file implements the wNAF-based interleaving multi-exponentation method
82 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
83 * */
84
85 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
86 * This is an array r[] of values that are either zero or odd with an
87 * absolute value less than 2^w satisfying
88 * scalar = \sum_j r[j]*2^j
89 * where at most one of any w+1 consecutive digits is non-zero
90 * with the exception that the most significant digit may be only
91 * w-1 zeros away from that next non-zero digit.
92 */
compute_wNAF(const BIGNUM * scalar,int w,size_t * ret_len)93 static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
94 int window_val;
95 int ok = 0;
96 int8_t *r = NULL;
97 int sign = 1;
98 int bit, next_bit, mask;
99 size_t len = 0, j;
100
101 if (BN_is_zero(scalar)) {
102 r = OPENSSL_malloc(1);
103 if (!r) {
104 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
105 goto err;
106 }
107 r[0] = 0;
108 *ret_len = 1;
109 return r;
110 }
111
112 /* 'int8_t' can represent integers with absolute values less than 2^7. */
113 if (w <= 0 || w > 7) {
114 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
115 goto err;
116 }
117 bit = 1 << w; /* at most 128 */
118 next_bit = bit << 1; /* at most 256 */
119 mask = next_bit - 1; /* at most 255 */
120
121 if (BN_is_negative(scalar)) {
122 sign = -1;
123 }
124
125 if (scalar->d == NULL || scalar->top == 0) {
126 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
127 goto err;
128 }
129
130 len = BN_num_bits(scalar);
131 /* The modified wNAF may be one digit longer than binary representation
132 * (*ret_len will be set to the actual length, i.e. at most
133 * BN_num_bits(scalar) + 1). */
134 r = OPENSSL_malloc(len + 1);
135 if (r == NULL) {
136 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
137 goto err;
138 }
139 window_val = scalar->d[0] & mask;
140 j = 0;
141 /* If j+w+1 >= len, window_val will not increase. */
142 while (window_val != 0 || j + w + 1 < len) {
143 int digit = 0;
144
145 /* 0 <= window_val <= 2^(w+1) */
146
147 if (window_val & 1) {
148 /* 0 < window_val < 2^(w+1) */
149
150 if (window_val & bit) {
151 digit = window_val - next_bit; /* -2^w < digit < 0 */
152
153 #if 1 /* modified wNAF */
154 if (j + w + 1 >= len) {
155 /* special case for generating modified wNAFs:
156 * no new bits will be added into window_val,
157 * so using a positive digit here will decrease
158 * the total length of the representation */
159
160 digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
161 }
162 #endif
163 } else {
164 digit = window_val; /* 0 < digit < 2^w */
165 }
166
167 if (digit <= -bit || digit >= bit || !(digit & 1)) {
168 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
169 goto err;
170 }
171
172 window_val -= digit;
173
174 /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
175 * for modified window NAFs, it may also be 2^w. */
176 if (window_val != 0 && window_val != next_bit && window_val != bit) {
177 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
178 goto err;
179 }
180 }
181
182 r[j++] = sign * digit;
183
184 window_val >>= 1;
185 window_val += bit * BN_is_bit_set(scalar, j + w);
186
187 if (window_val > next_bit) {
188 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
189 goto err;
190 }
191 }
192
193 if (j > len + 1) {
194 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
195 goto err;
196 }
197 len = j;
198 ok = 1;
199
200 err:
201 if (!ok) {
202 OPENSSL_free(r);
203 r = NULL;
204 }
205 if (ok) {
206 *ret_len = len;
207 }
208 return r;
209 }
210
211
212 /* TODO: table should be optimised for the wNAF-based implementation,
213 * sometimes smaller windows will give better performance
214 * (thus the boundaries should be increased)
215 */
window_bits_for_scalar_size(size_t b)216 static size_t window_bits_for_scalar_size(size_t b) {
217 if (b >= 2000) {
218 return 6;
219 }
220
221 if (b >= 800) {
222 return 5;
223 }
224
225 if (b >= 300) {
226 return 4;
227 }
228
229 if (b >= 70) {
230 return 3;
231 }
232
233 if (b >= 20) {
234 return 2;
235 }
236
237 return 1;
238 }
239
ec_wNAF_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)240 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
241 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
242 BN_CTX *new_ctx = NULL;
243 const EC_POINT *generator = NULL;
244 EC_POINT *tmp = NULL;
245 size_t total_num = 0;
246 size_t i, j;
247 int k;
248 int r_is_inverted = 0;
249 int r_is_at_infinity = 1;
250 size_t *wsize = NULL; /* individual window sizes */
251 int8_t **wNAF = NULL; /* individual wNAFs */
252 size_t *wNAF_len = NULL;
253 size_t max_len = 0;
254 size_t num_val = 0;
255 EC_POINT **val = NULL; /* precomputation */
256 EC_POINT **v;
257 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
258 int ret = 0;
259
260 if (ctx == NULL) {
261 ctx = new_ctx = BN_CTX_new();
262 if (ctx == NULL) {
263 goto err;
264 }
265 }
266
267 /* TODO: This function used to take |points| and |scalars| as arrays of
268 * |num| elements. The code below should be simplified to work in terms of |p|
269 * and |p_scalar|. */
270 size_t num = p != NULL ? 1 : 0;
271 const EC_POINT **points = p != NULL ? &p : NULL;
272 const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
273
274 total_num = num;
275
276 if (g_scalar != NULL) {
277 generator = EC_GROUP_get0_generator(group);
278 if (generator == NULL) {
279 OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
280 goto err;
281 }
282
283 ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
284 }
285
286
287 wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
288 wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
289 wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
290 val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
291
292 /* Ensure wNAF is initialised in case we end up going to err. */
293 if (wNAF != NULL) {
294 OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
295 }
296
297 if (!wsize || !wNAF_len || !wNAF || !val_sub) {
298 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
299 goto err;
300 }
301
302 /* num_val will be the total number of temporarily precomputed points */
303 num_val = 0;
304
305 for (i = 0; i < total_num; i++) {
306 size_t bits;
307
308 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
309 wsize[i] = window_bits_for_scalar_size(bits);
310 num_val += (size_t)1 << (wsize[i] - 1);
311 wNAF[i] =
312 compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
313 if (wNAF[i] == NULL) {
314 goto err;
315 }
316 if (wNAF_len[i] > max_len) {
317 max_len = wNAF_len[i];
318 }
319 }
320
321 /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
322 * a pointer to the subarray for the i-th point. */
323 val = OPENSSL_malloc(num_val * sizeof(val[0]));
324 if (val == NULL) {
325 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
326 goto err;
327 }
328 OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
329
330 /* allocate points for precomputation */
331 v = val;
332 for (i = 0; i < total_num; i++) {
333 val_sub[i] = v;
334 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
335 *v = EC_POINT_new(group);
336 if (*v == NULL) {
337 goto err;
338 }
339 v++;
340 }
341 }
342 if (!(v == val + num_val)) {
343 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
344 goto err;
345 }
346
347 if (!(tmp = EC_POINT_new(group))) {
348 goto err;
349 }
350
351 /* prepare precomputed values:
352 * val_sub[i][0] := points[i]
353 * val_sub[i][1] := 3 * points[i]
354 * val_sub[i][2] := 5 * points[i]
355 * ...
356 */
357 for (i = 0; i < total_num; i++) {
358 if (i < num) {
359 if (!EC_POINT_copy(val_sub[i][0], points[i])) {
360 goto err;
361 }
362 } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
363 goto err;
364 }
365
366 if (wsize[i] > 1) {
367 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
368 goto err;
369 }
370 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
371 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
372 goto err;
373 }
374 }
375 }
376 }
377
378 #if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
379 if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
380 goto err;
381 }
382 #endif
383
384 r_is_at_infinity = 1;
385
386 for (k = max_len - 1; k >= 0; k--) {
387 if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
388 goto err;
389 }
390
391 for (i = 0; i < total_num; i++) {
392 if (wNAF_len[i] > (size_t)k) {
393 int digit = wNAF[i][k];
394 int is_neg;
395
396 if (digit) {
397 is_neg = digit < 0;
398
399 if (is_neg) {
400 digit = -digit;
401 }
402
403 if (is_neg != r_is_inverted) {
404 if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
405 goto err;
406 }
407 r_is_inverted = !r_is_inverted;
408 }
409
410 /* digit > 0 */
411
412 if (r_is_at_infinity) {
413 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
414 goto err;
415 }
416 r_is_at_infinity = 0;
417 } else {
418 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
419 goto err;
420 }
421 }
422 }
423 }
424 }
425 }
426
427 if (r_is_at_infinity) {
428 if (!EC_POINT_set_to_infinity(group, r)) {
429 goto err;
430 }
431 } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
432 goto err;
433 }
434
435 ret = 1;
436
437 err:
438 BN_CTX_free(new_ctx);
439 EC_POINT_free(tmp);
440 OPENSSL_free(wsize);
441 OPENSSL_free(wNAF_len);
442 if (wNAF != NULL) {
443 for (i = 0; i < total_num; i++) {
444 OPENSSL_free(wNAF[i]);
445 }
446
447 OPENSSL_free(wNAF);
448 }
449 if (val != NULL) {
450 for (i = 0; i < num_val; i++) {
451 EC_POINT_clear_free(val[i]);
452 }
453
454 OPENSSL_free(val);
455 }
456 OPENSSL_free(val_sub);
457 return ret;
458 }
459