1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <string.h>
71 
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 #include <openssl/thread.h>
76 
77 #include "internal.h"
78 #include "../internal.h"
79 
80 
81 /* This file implements the wNAF-based interleaving multi-exponentation method
82  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
83  * */
84 
85 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
86  * This is an array  r[]  of values that are either zero or odd with an
87  * absolute value less than  2^w  satisfying
88  *     scalar = \sum_j r[j]*2^j
89  * where at most one of any  w+1  consecutive digits is non-zero
90  * with the exception that the most significant digit may be only
91  * w-1 zeros away from that next non-zero digit.
92  */
compute_wNAF(const BIGNUM * scalar,int w,size_t * ret_len)93 static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
94   int window_val;
95   int ok = 0;
96   int8_t *r = NULL;
97   int sign = 1;
98   int bit, next_bit, mask;
99   size_t len = 0, j;
100 
101   if (BN_is_zero(scalar)) {
102     r = OPENSSL_malloc(1);
103     if (!r) {
104       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
105       goto err;
106     }
107     r[0] = 0;
108     *ret_len = 1;
109     return r;
110   }
111 
112   /* 'int8_t' can represent integers with absolute values less than 2^7. */
113   if (w <= 0 || w > 7) {
114     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
115     goto err;
116   }
117   bit = 1 << w;        /* at most 128 */
118   next_bit = bit << 1; /* at most 256 */
119   mask = next_bit - 1; /* at most 255 */
120 
121   if (BN_is_negative(scalar)) {
122     sign = -1;
123   }
124 
125   if (scalar->d == NULL || scalar->top == 0) {
126     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
127     goto err;
128   }
129 
130   len = BN_num_bits(scalar);
131   /* The modified wNAF may be one digit longer than binary representation
132    * (*ret_len will be set to the actual length, i.e. at most
133    * BN_num_bits(scalar) + 1). */
134   r = OPENSSL_malloc(len + 1);
135   if (r == NULL) {
136     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
137     goto err;
138   }
139   window_val = scalar->d[0] & mask;
140   j = 0;
141   /* If j+w+1 >= len, window_val will not increase. */
142   while (window_val != 0 || j + w + 1 < len) {
143     int digit = 0;
144 
145     /* 0 <= window_val <= 2^(w+1) */
146 
147     if (window_val & 1) {
148       /* 0 < window_val < 2^(w+1) */
149 
150       if (window_val & bit) {
151         digit = window_val - next_bit; /* -2^w < digit < 0 */
152 
153 #if 1 /* modified wNAF */
154         if (j + w + 1 >= len) {
155           /* special case for generating modified wNAFs:
156            * no new bits will be added into window_val,
157            * so using a positive digit here will decrease
158            * the total length of the representation */
159 
160           digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
161         }
162 #endif
163       } else {
164         digit = window_val; /* 0 < digit < 2^w */
165       }
166 
167       if (digit <= -bit || digit >= bit || !(digit & 1)) {
168         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
169         goto err;
170       }
171 
172       window_val -= digit;
173 
174       /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
175        * for modified window NAFs, it may also be 2^w. */
176       if (window_val != 0 && window_val != next_bit && window_val != bit) {
177         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
178         goto err;
179       }
180     }
181 
182     r[j++] = sign * digit;
183 
184     window_val >>= 1;
185     window_val += bit * BN_is_bit_set(scalar, j + w);
186 
187     if (window_val > next_bit) {
188       OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
189       goto err;
190     }
191   }
192 
193   if (j > len + 1) {
194     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
195     goto err;
196   }
197   len = j;
198   ok = 1;
199 
200 err:
201   if (!ok) {
202     OPENSSL_free(r);
203     r = NULL;
204   }
205   if (ok) {
206     *ret_len = len;
207   }
208   return r;
209 }
210 
211 
212 /* TODO: table should be optimised for the wNAF-based implementation,
213  *       sometimes smaller windows will give better performance
214  *       (thus the boundaries should be increased)
215  */
window_bits_for_scalar_size(size_t b)216 static size_t window_bits_for_scalar_size(size_t b) {
217   if (b >= 2000) {
218     return 6;
219   }
220 
221   if (b >= 800) {
222     return 5;
223   }
224 
225   if (b >= 300) {
226     return 4;
227   }
228 
229   if (b >= 70) {
230     return 3;
231   }
232 
233   if (b >= 20) {
234     return 2;
235   }
236 
237   return 1;
238 }
239 
ec_wNAF_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)240 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
241                 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
242   BN_CTX *new_ctx = NULL;
243   const EC_POINT *generator = NULL;
244   EC_POINT *tmp = NULL;
245   size_t total_num = 0;
246   size_t i, j;
247   int k;
248   int r_is_inverted = 0;
249   int r_is_at_infinity = 1;
250   size_t *wsize = NULL;      /* individual window sizes */
251   int8_t **wNAF = NULL; /* individual wNAFs */
252   size_t *wNAF_len = NULL;
253   size_t max_len = 0;
254   size_t num_val = 0;
255   EC_POINT **val = NULL; /* precomputation */
256   EC_POINT **v;
257   EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
258   int ret = 0;
259 
260   if (ctx == NULL) {
261     ctx = new_ctx = BN_CTX_new();
262     if (ctx == NULL) {
263       goto err;
264     }
265   }
266 
267   /* TODO: This function used to take |points| and |scalars| as arrays of
268    * |num| elements. The code below should be simplified to work in terms of |p|
269    * and |p_scalar|. */
270   size_t num = p != NULL ? 1 : 0;
271   const EC_POINT **points = p != NULL ? &p : NULL;
272   const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
273 
274   total_num = num;
275 
276   if (g_scalar != NULL) {
277     generator = EC_GROUP_get0_generator(group);
278     if (generator == NULL) {
279       OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
280       goto err;
281     }
282 
283     ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
284   }
285 
286 
287   wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
288   wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
289   wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
290   val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
291 
292   /* Ensure wNAF is initialised in case we end up going to err. */
293   if (wNAF != NULL) {
294     OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
295   }
296 
297   if (!wsize || !wNAF_len || !wNAF || !val_sub) {
298     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
299     goto err;
300   }
301 
302   /* num_val will be the total number of temporarily precomputed points */
303   num_val = 0;
304 
305   for (i = 0; i < total_num; i++) {
306     size_t bits;
307 
308     bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
309     wsize[i] = window_bits_for_scalar_size(bits);
310     num_val += (size_t)1 << (wsize[i] - 1);
311     wNAF[i] =
312         compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
313     if (wNAF[i] == NULL) {
314       goto err;
315     }
316     if (wNAF_len[i] > max_len) {
317       max_len = wNAF_len[i];
318     }
319   }
320 
321   /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
322    * a pointer to the subarray for the i-th point. */
323   val = OPENSSL_malloc(num_val * sizeof(val[0]));
324   if (val == NULL) {
325     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
326     goto err;
327   }
328   OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
329 
330   /* allocate points for precomputation */
331   v = val;
332   for (i = 0; i < total_num; i++) {
333     val_sub[i] = v;
334     for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
335       *v = EC_POINT_new(group);
336       if (*v == NULL) {
337         goto err;
338       }
339       v++;
340     }
341   }
342   if (!(v == val + num_val)) {
343     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
344     goto err;
345   }
346 
347   if (!(tmp = EC_POINT_new(group))) {
348     goto err;
349   }
350 
351   /* prepare precomputed values:
352    *    val_sub[i][0] :=     points[i]
353    *    val_sub[i][1] := 3 * points[i]
354    *    val_sub[i][2] := 5 * points[i]
355    *    ...
356    */
357   for (i = 0; i < total_num; i++) {
358     if (i < num) {
359       if (!EC_POINT_copy(val_sub[i][0], points[i])) {
360         goto err;
361       }
362     } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
363       goto err;
364     }
365 
366     if (wsize[i] > 1) {
367       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
368         goto err;
369       }
370       for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
371         if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
372           goto err;
373         }
374       }
375     }
376   }
377 
378 #if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
379   if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
380     goto err;
381   }
382 #endif
383 
384   r_is_at_infinity = 1;
385 
386   for (k = max_len - 1; k >= 0; k--) {
387     if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
388       goto err;
389     }
390 
391     for (i = 0; i < total_num; i++) {
392       if (wNAF_len[i] > (size_t)k) {
393         int digit = wNAF[i][k];
394         int is_neg;
395 
396         if (digit) {
397           is_neg = digit < 0;
398 
399           if (is_neg) {
400             digit = -digit;
401           }
402 
403           if (is_neg != r_is_inverted) {
404             if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
405               goto err;
406             }
407             r_is_inverted = !r_is_inverted;
408           }
409 
410           /* digit > 0 */
411 
412           if (r_is_at_infinity) {
413             if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
414               goto err;
415             }
416             r_is_at_infinity = 0;
417           } else {
418             if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
419               goto err;
420             }
421           }
422         }
423       }
424     }
425   }
426 
427   if (r_is_at_infinity) {
428     if (!EC_POINT_set_to_infinity(group, r)) {
429       goto err;
430     }
431   } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
432     goto err;
433   }
434 
435   ret = 1;
436 
437 err:
438   BN_CTX_free(new_ctx);
439   EC_POINT_free(tmp);
440   OPENSSL_free(wsize);
441   OPENSSL_free(wNAF_len);
442   if (wNAF != NULL) {
443     for (i = 0; i < total_num; i++) {
444       OPENSSL_free(wNAF[i]);
445     }
446 
447     OPENSSL_free(wNAF);
448   }
449   if (val != NULL) {
450     for (i = 0; i < num_val; i++) {
451       EC_POINT_clear_free(val[i]);
452     }
453 
454     OPENSSL_free(val);
455   }
456   OPENSSL_free(val_sub);
457   return ret;
458 }
459