1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111
112 #include <openssl/ex_data.h>
113 #include <openssl/thread.h>
114
115 #include <string.h>
116
117 #if defined(_MSC_VER)
118 #if !defined(__cplusplus) || _MSC_VER < 1900
119 #define alignas(x) __declspec(align(x))
120 #define alignof __alignof
121 #endif
122 #else
123 #include <stdalign.h>
124 #endif
125
126 #if !defined(OPENSSL_NO_THREADS) && \
127 (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
128 #include <pthread.h>
129 #define OPENSSL_PTHREADS
130 #endif
131
132 #if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
133 defined(OPENSSL_WINDOWS)
134 #define OPENSSL_WINDOWS_THREADS
135 OPENSSL_MSVC_PRAGMA(warning(push, 3))
136 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))137 OPENSSL_MSVC_PRAGMA(warning(pop))
138 #endif
139
140 #if defined(__cplusplus)
141 extern "C" {
142 #endif
143
144
145 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
146 defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
147 /* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
148 void OPENSSL_cpuid_setup(void);
149 #endif
150
151
152 #if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
153 typedef __int128_t int128_t;
154 typedef __uint128_t uint128_t;
155 #endif
156
157 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
158
159 /* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
160 static inline int buffers_alias(const uint8_t *a, size_t a_len,
161 const uint8_t *b, size_t b_len) {
162 /* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
163 * objects are undefined whereas pointer to integer conversions are merely
164 * implementation-defined. We assume the implementation defined it in a sane
165 * way. */
166 uintptr_t a_u = (uintptr_t)a;
167 uintptr_t b_u = (uintptr_t)b;
168 return a_u + a_len > b_u && b_u + b_len > a_u;
169 }
170
171
172 /* Constant-time utility functions.
173 *
174 * The following methods return a bitmask of all ones (0xff...f) for true and 0
175 * for false. This is useful for choosing a value based on the result of a
176 * conditional in constant time. For example,
177 *
178 * if (a < b) {
179 * c = a;
180 * } else {
181 * c = b;
182 * }
183 *
184 * can be written as
185 *
186 * unsigned int lt = constant_time_lt(a, b);
187 * c = constant_time_select(lt, a, b); */
188
189 /* constant_time_msb returns the given value with the MSB copied to all the
190 * other bits. */
191 static inline unsigned int constant_time_msb(unsigned int a) {
192 return (unsigned int)((int)(a) >> (sizeof(int) * 8 - 1));
193 }
194
195 /* constant_time_lt returns 0xff..f if a < b and 0 otherwise. */
196 static inline unsigned int constant_time_lt(unsigned int a, unsigned int b) {
197 /* Consider the two cases of the problem:
198 * msb(a) == msb(b): a < b iff the MSB of a - b is set.
199 * msb(a) != msb(b): a < b iff the MSB of b is set.
200 *
201 * If msb(a) == msb(b) then the following evaluates as:
202 * msb(a^((a^b)|((a-b)^a))) ==
203 * msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
204 * msb(a^a^(a-b)) == (rearranging)
205 * msb(a-b) (because ∀x. x^x == 0)
206 *
207 * Else, if msb(a) != msb(b) then the following evaluates as:
208 * msb(a^((a^b)|((a-b)^a))) ==
209 * msb(a^( | ((a-b)^a))) == (because msb(a^b) == 1 and
210 * represents a value s.t. msb() = 1)
211 * msb(a^) == (because ORing with 1 results in 1)
212 * msb(b)
213 *
214 *
215 * Here is an SMT-LIB verification of this formula:
216 *
217 * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
218 * (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
219 * )
220 *
221 * (declare-fun a () (_ BitVec 32))
222 * (declare-fun b () (_ BitVec 32))
223 *
224 * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
225 * (check-sat)
226 * (get-model)
227 */
228 return constant_time_msb(a^((a^b)|((a-b)^a)));
229 }
230
231 /* constant_time_lt_8 acts like |constant_time_lt| but returns an 8-bit mask. */
232 static inline uint8_t constant_time_lt_8(unsigned int a, unsigned int b) {
233 return (uint8_t)(constant_time_lt(a, b));
234 }
235
236 /* constant_time_gt returns 0xff..f if a >= b and 0 otherwise. */
237 static inline unsigned int constant_time_ge(unsigned int a, unsigned int b) {
238 return ~constant_time_lt(a, b);
239 }
240
241 /* constant_time_ge_8 acts like |constant_time_ge| but returns an 8-bit mask. */
242 static inline uint8_t constant_time_ge_8(unsigned int a, unsigned int b) {
243 return (uint8_t)(constant_time_ge(a, b));
244 }
245
246 /* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
247 static inline unsigned int constant_time_is_zero(unsigned int a) {
248 /* Here is an SMT-LIB verification of this formula:
249 *
250 * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
251 * (bvand (bvnot a) (bvsub a #x00000001))
252 * )
253 *
254 * (declare-fun a () (_ BitVec 32))
255 *
256 * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
257 * (check-sat)
258 * (get-model)
259 */
260 return constant_time_msb(~a & (a - 1));
261 }
262
263 /* constant_time_is_zero_8 acts like constant_time_is_zero but returns an 8-bit
264 * mask. */
265 static inline uint8_t constant_time_is_zero_8(unsigned int a) {
266 return (uint8_t)(constant_time_is_zero(a));
267 }
268
269 /* constant_time_eq returns 0xff..f if a == b and 0 otherwise. */
270 static inline unsigned int constant_time_eq(unsigned int a, unsigned int b) {
271 return constant_time_is_zero(a ^ b);
272 }
273
274 /* constant_time_eq_8 acts like |constant_time_eq| but returns an 8-bit mask. */
275 static inline uint8_t constant_time_eq_8(unsigned int a, unsigned int b) {
276 return (uint8_t)(constant_time_eq(a, b));
277 }
278
279 /* constant_time_eq_int acts like |constant_time_eq| but works on int values. */
280 static inline unsigned int constant_time_eq_int(int a, int b) {
281 return constant_time_eq((unsigned)(a), (unsigned)(b));
282 }
283
284 /* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
285 * mask. */
286 static inline uint8_t constant_time_eq_int_8(int a, int b) {
287 return constant_time_eq_8((unsigned)(a), (unsigned)(b));
288 }
289
290 /* constant_time_select returns (mask & a) | (~mask & b). When |mask| is all 1s
291 * or all 0s (as returned by the methods above), the select methods return
292 * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
293 static inline unsigned int constant_time_select(unsigned int mask,
294 unsigned int a, unsigned int b) {
295 return (mask & a) | (~mask & b);
296 }
297
298 /* constant_time_select_8 acts like |constant_time_select| but operates on
299 * 8-bit values. */
300 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
301 uint8_t b) {
302 return (uint8_t)(constant_time_select(mask, a, b));
303 }
304
305 /* constant_time_select_int acts like |constant_time_select| but operates on
306 * ints. */
307 static inline int constant_time_select_int(unsigned int mask, int a, int b) {
308 return (int)(constant_time_select(mask, (unsigned)(a), (unsigned)(b)));
309 }
310
311
312 /* Thread-safe initialisation. */
313
314 #if defined(OPENSSL_NO_THREADS)
315 typedef uint32_t CRYPTO_once_t;
316 #define CRYPTO_ONCE_INIT 0
317 #elif defined(OPENSSL_WINDOWS_THREADS)
318 typedef INIT_ONCE CRYPTO_once_t;
319 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
320 #elif defined(OPENSSL_PTHREADS)
321 typedef pthread_once_t CRYPTO_once_t;
322 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
323 #else
324 #error "Unknown threading library"
325 #endif
326
327 /* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
328 * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
329 * then they will block until |init| completes, but |init| will have only been
330 * called once.
331 *
332 * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
333 * the value |CRYPTO_ONCE_INIT|. */
334 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
335
336
337 /* Reference counting. */
338
339 /* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
340 #define CRYPTO_REFCOUNT_MAX 0xffffffff
341
342 /* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
343 * value would overflow. It's safe for multiple threads to concurrently call
344 * this or |CRYPTO_refcount_dec_and_test_zero| on the same
345 * |CRYPTO_refcount_t|. */
346 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
347
348 /* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
349 * if it's zero, it crashes the address space.
350 * if it's the maximum value, it returns zero.
351 * otherwise, it atomically decrements it and returns one iff the resulting
352 * value is zero.
353 *
354 * It's safe for multiple threads to concurrently call this or
355 * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
356 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
357
358
359 /* Locks.
360 *
361 * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
362 * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
363 * a global lock. A global lock must be initialised to the value
364 * |CRYPTO_STATIC_MUTEX_INIT|.
365 *
366 * |CRYPTO_MUTEX| can appear in public structures and so is defined in
367 * thread.h as a structure large enough to fit the real type. The global lock is
368 * a different type so it may be initialized with platform initializer macros.*/
369
370 #if defined(OPENSSL_NO_THREADS)
371 struct CRYPTO_STATIC_MUTEX {
372 char padding; /* Empty structs have different sizes in C and C++. */
373 };
374 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
375 #elif defined(OPENSSL_WINDOWS_THREADS)
376 struct CRYPTO_STATIC_MUTEX {
377 SRWLOCK lock;
378 };
379 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
380 #elif defined(OPENSSL_PTHREADS)
381 struct CRYPTO_STATIC_MUTEX {
382 pthread_rwlock_t lock;
383 };
384 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
385 #else
386 #error "Unknown threading library"
387 #endif
388
389 /* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
390 * |CRYPTO_STATIC_MUTEX|. */
391 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
392
393 /* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
394 * read lock, but none may have a write lock. */
395 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
396
397 /* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
398 * of lock on it. */
399 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
400
401 /* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
402 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
403
404 /* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
405 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
406
407 /* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
408 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
409
410 /* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
411 * have a read lock, but none may have a write lock. The |lock| variable does
412 * not need to be initialised by any function, but must have been statically
413 * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
414 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
415 struct CRYPTO_STATIC_MUTEX *lock);
416
417 /* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
418 * any type of lock on it. The |lock| variable does not need to be initialised
419 * by any function, but must have been statically initialised with
420 * |CRYPTO_STATIC_MUTEX_INIT|. */
421 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
422 struct CRYPTO_STATIC_MUTEX *lock);
423
424 /* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
425 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
426 struct CRYPTO_STATIC_MUTEX *lock);
427
428 /* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
429 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
430 struct CRYPTO_STATIC_MUTEX *lock);
431
432
433 /* Thread local storage. */
434
435 /* thread_local_data_t enumerates the types of thread-local data that can be
436 * stored. */
437 typedef enum {
438 OPENSSL_THREAD_LOCAL_ERR = 0,
439 OPENSSL_THREAD_LOCAL_RAND,
440 OPENSSL_THREAD_LOCAL_URANDOM_BUF,
441 OPENSSL_THREAD_LOCAL_TEST,
442 NUM_OPENSSL_THREAD_LOCALS,
443 } thread_local_data_t;
444
445 /* thread_local_destructor_t is the type of a destructor function that will be
446 * called when a thread exits and its thread-local storage needs to be freed. */
447 typedef void (*thread_local_destructor_t)(void *);
448
449 /* CRYPTO_get_thread_local gets the pointer value that is stored for the
450 * current thread for the given index, or NULL if none has been set. */
451 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
452
453 /* CRYPTO_set_thread_local sets a pointer value for the current thread at the
454 * given index. This function should only be called once per thread for a given
455 * |index|: rather than update the pointer value itself, update the data that
456 * is pointed to.
457 *
458 * The destructor function will be called when a thread exits to free this
459 * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
460 * |index| should have the same |destructor| argument. The destructor may be
461 * called with a NULL argument if a thread that never set a thread-local
462 * pointer for |index|, exits. The destructor may be called concurrently with
463 * different arguments.
464 *
465 * This function returns one on success or zero on error. If it returns zero
466 * then |destructor| has been called with |value| already. */
467 OPENSSL_EXPORT int CRYPTO_set_thread_local(
468 thread_local_data_t index, void *value,
469 thread_local_destructor_t destructor);
470
471
472 /* ex_data */
473
474 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
475
476 /* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
477 * supports ex_data. It should defined as a static global within the module
478 * which defines that type. */
479 typedef struct {
480 struct CRYPTO_STATIC_MUTEX lock;
481 STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
482 /* num_reserved is one if the ex_data index zero is reserved for legacy
483 * |TYPE_get_app_data| functions. */
484 uint8_t num_reserved;
485 } CRYPTO_EX_DATA_CLASS;
486
487 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
488 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
489 {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
490
491 /* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
492 * it to |*out_index|. Each class of object should provide a wrapper function
493 * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
494 * zero otherwise. */
495 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
496 int *out_index, long argl,
497 void *argp, CRYPTO_EX_dup *dup_func,
498 CRYPTO_EX_free *free_func);
499
500 /* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
501 * of object should provide a wrapper function. */
502 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
503
504 /* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
505 * if no such index exists. Each class of object should provide a wrapper
506 * function. */
507 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
508
509 /* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
510 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
511
512 /* CRYPTO_dup_ex_data duplicates |from| into a freshly allocated
513 * |CRYPTO_EX_DATA|, |to|. Both of which are inside objects of the given
514 * class. It returns one on success and zero otherwise. */
515 OPENSSL_EXPORT int CRYPTO_dup_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
516 CRYPTO_EX_DATA *to,
517 const CRYPTO_EX_DATA *from);
518
519 /* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
520 * object of the given class. */
521 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
522 void *obj, CRYPTO_EX_DATA *ad);
523
524
525 /* Language bug workarounds.
526 *
527 * Most C standard library functions are undefined if passed NULL, even when the
528 * corresponding length is zero. This gives them (and, in turn, all functions
529 * which call them) surprising behavior on empty arrays. Some compilers will
530 * miscompile code due to this rule. See also
531 * https://www.imperialviolet.org/2016/06/26/nonnull.html
532 *
533 * These wrapper functions behave the same as the corresponding C standard
534 * functions, but behave as expected when passed NULL if the length is zero.
535 *
536 * Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
537
538 /* C++ defines |memchr| as a const-correct overload. */
539 #if defined(__cplusplus)
540 extern "C++" {
541
542 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
543 if (n == 0) {
544 return NULL;
545 }
546
547 return memchr(s, c, n);
548 }
549
550 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
551 if (n == 0) {
552 return NULL;
553 }
554
555 return memchr(s, c, n);
556 }
557
558 } /* extern "C++" */
559 #else /* __cplusplus */
560
561 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
562 if (n == 0) {
563 return NULL;
564 }
565
566 return memchr(s, c, n);
567 }
568
569 #endif /* __cplusplus */
570
571 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
572 if (n == 0) {
573 return 0;
574 }
575
576 return memcmp(s1, s2, n);
577 }
578
579 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
580 if (n == 0) {
581 return dst;
582 }
583
584 return memcpy(dst, src, n);
585 }
586
587 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
588 if (n == 0) {
589 return dst;
590 }
591
592 return memmove(dst, src, n);
593 }
594
595 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
596 if (n == 0) {
597 return dst;
598 }
599
600 return memset(dst, c, n);
601 }
602
603
604 #if defined(__cplusplus)
605 } /* extern C */
606 #endif
607
608 #endif /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
609