1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// +build amd64,!gccgo,!appengine
6
7package curve25519
8
9// These functions are implemented in the .s files. The names of the functions
10// in the rest of the file are also taken from the SUPERCOP sources to help
11// people following along.
12
13//go:noescape
14
15func cswap(inout *[5]uint64, v uint64)
16
17//go:noescape
18
19func ladderstep(inout *[5][5]uint64)
20
21//go:noescape
22
23func freeze(inout *[5]uint64)
24
25//go:noescape
26
27func mul(dest, a, b *[5]uint64)
28
29//go:noescape
30
31func square(out, in *[5]uint64)
32
33// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
34func mladder(xr, zr *[5]uint64, s *[32]byte) {
35	var work [5][5]uint64
36
37	work[0] = *xr
38	setint(&work[1], 1)
39	setint(&work[2], 0)
40	work[3] = *xr
41	setint(&work[4], 1)
42
43	j := uint(6)
44	var prevbit byte
45
46	for i := 31; i >= 0; i-- {
47		for j < 8 {
48			bit := ((*s)[i] >> j) & 1
49			swap := bit ^ prevbit
50			prevbit = bit
51			cswap(&work[1], uint64(swap))
52			ladderstep(&work)
53			j--
54		}
55		j = 7
56	}
57
58	*xr = work[1]
59	*zr = work[2]
60}
61
62func scalarMult(out, in, base *[32]byte) {
63	var e [32]byte
64	copy(e[:], (*in)[:])
65	e[0] &= 248
66	e[31] &= 127
67	e[31] |= 64
68
69	var t, z [5]uint64
70	unpack(&t, base)
71	mladder(&t, &z, &e)
72	invert(&z, &z)
73	mul(&t, &t, &z)
74	pack(out, &t)
75}
76
77func setint(r *[5]uint64, v uint64) {
78	r[0] = v
79	r[1] = 0
80	r[2] = 0
81	r[3] = 0
82	r[4] = 0
83}
84
85// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
86// order.
87func unpack(r *[5]uint64, x *[32]byte) {
88	r[0] = uint64(x[0]) |
89		uint64(x[1])<<8 |
90		uint64(x[2])<<16 |
91		uint64(x[3])<<24 |
92		uint64(x[4])<<32 |
93		uint64(x[5])<<40 |
94		uint64(x[6]&7)<<48
95
96	r[1] = uint64(x[6])>>3 |
97		uint64(x[7])<<5 |
98		uint64(x[8])<<13 |
99		uint64(x[9])<<21 |
100		uint64(x[10])<<29 |
101		uint64(x[11])<<37 |
102		uint64(x[12]&63)<<45
103
104	r[2] = uint64(x[12])>>6 |
105		uint64(x[13])<<2 |
106		uint64(x[14])<<10 |
107		uint64(x[15])<<18 |
108		uint64(x[16])<<26 |
109		uint64(x[17])<<34 |
110		uint64(x[18])<<42 |
111		uint64(x[19]&1)<<50
112
113	r[3] = uint64(x[19])>>1 |
114		uint64(x[20])<<7 |
115		uint64(x[21])<<15 |
116		uint64(x[22])<<23 |
117		uint64(x[23])<<31 |
118		uint64(x[24])<<39 |
119		uint64(x[25]&15)<<47
120
121	r[4] = uint64(x[25])>>4 |
122		uint64(x[26])<<4 |
123		uint64(x[27])<<12 |
124		uint64(x[28])<<20 |
125		uint64(x[29])<<28 |
126		uint64(x[30])<<36 |
127		uint64(x[31]&127)<<44
128}
129
130// pack sets out = x where out is the usual, little-endian form of the 5,
131// 51-bit limbs in x.
132func pack(out *[32]byte, x *[5]uint64) {
133	t := *x
134	freeze(&t)
135
136	out[0] = byte(t[0])
137	out[1] = byte(t[0] >> 8)
138	out[2] = byte(t[0] >> 16)
139	out[3] = byte(t[0] >> 24)
140	out[4] = byte(t[0] >> 32)
141	out[5] = byte(t[0] >> 40)
142	out[6] = byte(t[0] >> 48)
143
144	out[6] ^= byte(t[1]<<3) & 0xf8
145	out[7] = byte(t[1] >> 5)
146	out[8] = byte(t[1] >> 13)
147	out[9] = byte(t[1] >> 21)
148	out[10] = byte(t[1] >> 29)
149	out[11] = byte(t[1] >> 37)
150	out[12] = byte(t[1] >> 45)
151
152	out[12] ^= byte(t[2]<<6) & 0xc0
153	out[13] = byte(t[2] >> 2)
154	out[14] = byte(t[2] >> 10)
155	out[15] = byte(t[2] >> 18)
156	out[16] = byte(t[2] >> 26)
157	out[17] = byte(t[2] >> 34)
158	out[18] = byte(t[2] >> 42)
159	out[19] = byte(t[2] >> 50)
160
161	out[19] ^= byte(t[3]<<1) & 0xfe
162	out[20] = byte(t[3] >> 7)
163	out[21] = byte(t[3] >> 15)
164	out[22] = byte(t[3] >> 23)
165	out[23] = byte(t[3] >> 31)
166	out[24] = byte(t[3] >> 39)
167	out[25] = byte(t[3] >> 47)
168
169	out[25] ^= byte(t[4]<<4) & 0xf0
170	out[26] = byte(t[4] >> 4)
171	out[27] = byte(t[4] >> 12)
172	out[28] = byte(t[4] >> 20)
173	out[29] = byte(t[4] >> 28)
174	out[30] = byte(t[4] >> 36)
175	out[31] = byte(t[4] >> 44)
176}
177
178// invert calculates r = x^-1 mod p using Fermat's little theorem.
179func invert(r *[5]uint64, x *[5]uint64) {
180	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
181
182	square(&z2, x)        /* 2 */
183	square(&t, &z2)       /* 4 */
184	square(&t, &t)        /* 8 */
185	mul(&z9, &t, x)       /* 9 */
186	mul(&z11, &z9, &z2)   /* 11 */
187	square(&t, &z11)      /* 22 */
188	mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
189
190	square(&t, &z2_5_0)      /* 2^6 - 2^1 */
191	for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
192		square(&t, &t)
193	}
194	mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
195
196	square(&t, &z2_10_0)      /* 2^11 - 2^1 */
197	for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
198		square(&t, &t)
199	}
200	mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
201
202	square(&t, &z2_20_0)      /* 2^21 - 2^1 */
203	for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
204		square(&t, &t)
205	}
206	mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
207
208	square(&t, &t)            /* 2^41 - 2^1 */
209	for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
210		square(&t, &t)
211	}
212	mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
213
214	square(&t, &z2_50_0)      /* 2^51 - 2^1 */
215	for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
216		square(&t, &t)
217	}
218	mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
219
220	square(&t, &z2_100_0)      /* 2^101 - 2^1 */
221	for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
222		square(&t, &t)
223	}
224	mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
225
226	square(&t, &t)            /* 2^201 - 2^1 */
227	for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
228		square(&t, &t)
229	}
230	mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
231
232	square(&t, &t) /* 2^251 - 2^1 */
233	square(&t, &t) /* 2^252 - 2^2 */
234	square(&t, &t) /* 2^253 - 2^3 */
235
236	square(&t, &t) /* 2^254 - 2^4 */
237
238	square(&t, &t)   /* 2^255 - 2^5 */
239	mul(r, &t, &z11) /* 2^255 - 21 */
240}
241