1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the Apple runtime.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGObjCRuntime.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cstdio>
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 namespace {
45 
46 // FIXME: We should find a nicer way to make the labels for metadata, string
47 // concatenation is lame.
48 
49 class ObjCCommonTypesHelper {
50 protected:
51   llvm::LLVMContext &VMContext;
52 
53 private:
54   // The types of these functions don't really matter because we
55   // should always bitcast before calling them.
56 
57   /// id objc_msgSend (id, SEL, ...)
58   ///
59   /// The default messenger, used for sends whose ABI is unchanged from
60   /// the all-integer/pointer case.
getMessageSendFn() const61   llvm::Constant *getMessageSendFn() const {
62     // Add the non-lazy-bind attribute, since objc_msgSend is likely to
63     // be called a lot.
64     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
65     return
66       CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
67                                                         params, true),
68                                 "objc_msgSend",
69                                 llvm::AttributeSet::get(CGM.getLLVMContext(),
70                                               llvm::AttributeSet::FunctionIndex,
71                                                  llvm::Attribute::NonLazyBind));
72   }
73 
74   /// void objc_msgSend_stret (id, SEL, ...)
75   ///
76   /// The messenger used when the return value is an aggregate returned
77   /// by indirect reference in the first argument, and therefore the
78   /// self and selector parameters are shifted over by one.
getMessageSendStretFn() const79   llvm::Constant *getMessageSendStretFn() const {
80     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
81     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
82                                                              params, true),
83                                      "objc_msgSend_stret");
84 
85   }
86 
87   /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
88   ///
89   /// The messenger used when the return value is returned on the x87
90   /// floating-point stack; without a special entrypoint, the nil case
91   /// would be unbalanced.
getMessageSendFpretFn() const92   llvm::Constant *getMessageSendFpretFn() const {
93     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
94     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
95                                                              params, true),
96                                      "objc_msgSend_fpret");
97 
98   }
99 
100   /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
101   ///
102   /// The messenger used when the return value is returned in two values on the
103   /// x87 floating point stack; without a special entrypoint, the nil case
104   /// would be unbalanced. Only used on 64-bit X86.
getMessageSendFp2retFn() const105   llvm::Constant *getMessageSendFp2retFn() const {
106     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107     llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
108     llvm::Type *resultType =
109       llvm::StructType::get(longDoubleType, longDoubleType, nullptr);
110 
111     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
112                                                              params, true),
113                                      "objc_msgSend_fp2ret");
114   }
115 
116   /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
117   ///
118   /// The messenger used for super calls, which have different dispatch
119   /// semantics.  The class passed is the superclass of the current
120   /// class.
getMessageSendSuperFn() const121   llvm::Constant *getMessageSendSuperFn() const {
122     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
124                                                              params, true),
125                                      "objc_msgSendSuper");
126   }
127 
128   /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
129   ///
130   /// A slightly different messenger used for super calls.  The class
131   /// passed is the current class.
getMessageSendSuperFn2() const132   llvm::Constant *getMessageSendSuperFn2() const {
133     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
135                                                              params, true),
136                                      "objc_msgSendSuper2");
137   }
138 
139   /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140   ///                              SEL op, ...)
141   ///
142   /// The messenger used for super calls which return an aggregate indirectly.
getMessageSendSuperStretFn() const143   llvm::Constant *getMessageSendSuperStretFn() const {
144     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145     return CGM.CreateRuntimeFunction(
146       llvm::FunctionType::get(CGM.VoidTy, params, true),
147       "objc_msgSendSuper_stret");
148   }
149 
150   /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151   ///                               SEL op, ...)
152   ///
153   /// objc_msgSendSuper_stret with the super2 semantics.
getMessageSendSuperStretFn2() const154   llvm::Constant *getMessageSendSuperStretFn2() const {
155     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156     return CGM.CreateRuntimeFunction(
157       llvm::FunctionType::get(CGM.VoidTy, params, true),
158       "objc_msgSendSuper2_stret");
159   }
160 
getMessageSendSuperFpretFn() const161   llvm::Constant *getMessageSendSuperFpretFn() const {
162     // There is no objc_msgSendSuper_fpret? How can that work?
163     return getMessageSendSuperFn();
164   }
165 
getMessageSendSuperFpretFn2() const166   llvm::Constant *getMessageSendSuperFpretFn2() const {
167     // There is no objc_msgSendSuper_fpret? How can that work?
168     return getMessageSendSuperFn2();
169   }
170 
171 protected:
172   CodeGen::CodeGenModule &CGM;
173 
174 public:
175   llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy;
176   llvm::Type *Int8PtrTy, *Int8PtrPtrTy;
177   llvm::Type *IvarOffsetVarTy;
178 
179   /// ObjectPtrTy - LLVM type for object handles (typeof(id))
180   llvm::Type *ObjectPtrTy;
181 
182   /// PtrObjectPtrTy - LLVM type for id *
183   llvm::Type *PtrObjectPtrTy;
184 
185   /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
186   llvm::Type *SelectorPtrTy;
187 
188 private:
189   /// ProtocolPtrTy - LLVM type for external protocol handles
190   /// (typeof(Protocol))
191   llvm::Type *ExternalProtocolPtrTy;
192 
193 public:
getExternalProtocolPtrTy()194   llvm::Type *getExternalProtocolPtrTy() {
195     if (!ExternalProtocolPtrTy) {
196       // FIXME: It would be nice to unify this with the opaque type, so that the
197       // IR comes out a bit cleaner.
198       CodeGen::CodeGenTypes &Types = CGM.getTypes();
199       ASTContext &Ctx = CGM.getContext();
200       llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
201       ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
202     }
203 
204     return ExternalProtocolPtrTy;
205   }
206 
207   // SuperCTy - clang type for struct objc_super.
208   QualType SuperCTy;
209   // SuperPtrCTy - clang type for struct objc_super *.
210   QualType SuperPtrCTy;
211 
212   /// SuperTy - LLVM type for struct objc_super.
213   llvm::StructType *SuperTy;
214   /// SuperPtrTy - LLVM type for struct objc_super *.
215   llvm::Type *SuperPtrTy;
216 
217   /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
218   /// in GCC parlance).
219   llvm::StructType *PropertyTy;
220 
221   /// PropertyListTy - LLVM type for struct objc_property_list
222   /// (_prop_list_t in GCC parlance).
223   llvm::StructType *PropertyListTy;
224   /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
225   llvm::Type *PropertyListPtrTy;
226 
227   // MethodTy - LLVM type for struct objc_method.
228   llvm::StructType *MethodTy;
229 
230   /// CacheTy - LLVM type for struct objc_cache.
231   llvm::Type *CacheTy;
232   /// CachePtrTy - LLVM type for struct objc_cache *.
233   llvm::Type *CachePtrTy;
234 
getGetPropertyFn()235   llvm::Constant *getGetPropertyFn() {
236     CodeGen::CodeGenTypes &Types = CGM.getTypes();
237     ASTContext &Ctx = CGM.getContext();
238     // id objc_getProperty (id, SEL, ptrdiff_t, bool)
239     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
240     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
241     CanQualType Params[] = {
242         IdType, SelType,
243         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy};
244     llvm::FunctionType *FTy =
245         Types.GetFunctionType(
246           Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
247     return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
248   }
249 
getSetPropertyFn()250   llvm::Constant *getSetPropertyFn() {
251     CodeGen::CodeGenTypes &Types = CGM.getTypes();
252     ASTContext &Ctx = CGM.getContext();
253     // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
254     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
255     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
256     CanQualType Params[] = {
257         IdType,
258         SelType,
259         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(),
260         IdType,
261         Ctx.BoolTy,
262         Ctx.BoolTy};
263     llvm::FunctionType *FTy =
264         Types.GetFunctionType(
265           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
266     return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
267   }
268 
getOptimizedSetPropertyFn(bool atomic,bool copy)269   llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) {
270     CodeGen::CodeGenTypes &Types = CGM.getTypes();
271     ASTContext &Ctx = CGM.getContext();
272     // void objc_setProperty_atomic(id self, SEL _cmd,
273     //                              id newValue, ptrdiff_t offset);
274     // void objc_setProperty_nonatomic(id self, SEL _cmd,
275     //                                 id newValue, ptrdiff_t offset);
276     // void objc_setProperty_atomic_copy(id self, SEL _cmd,
277     //                                   id newValue, ptrdiff_t offset);
278     // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
279     //                                      id newValue, ptrdiff_t offset);
280 
281     SmallVector<CanQualType,4> Params;
282     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
283     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
284     Params.push_back(IdType);
285     Params.push_back(SelType);
286     Params.push_back(IdType);
287     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
288     llvm::FunctionType *FTy =
289         Types.GetFunctionType(
290           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
291     const char *name;
292     if (atomic && copy)
293       name = "objc_setProperty_atomic_copy";
294     else if (atomic && !copy)
295       name = "objc_setProperty_atomic";
296     else if (!atomic && copy)
297       name = "objc_setProperty_nonatomic_copy";
298     else
299       name = "objc_setProperty_nonatomic";
300 
301     return CGM.CreateRuntimeFunction(FTy, name);
302   }
303 
getCopyStructFn()304   llvm::Constant *getCopyStructFn() {
305     CodeGen::CodeGenTypes &Types = CGM.getTypes();
306     ASTContext &Ctx = CGM.getContext();
307     // void objc_copyStruct (void *, const void *, size_t, bool, bool)
308     SmallVector<CanQualType,5> Params;
309     Params.push_back(Ctx.VoidPtrTy);
310     Params.push_back(Ctx.VoidPtrTy);
311     Params.push_back(Ctx.LongTy);
312     Params.push_back(Ctx.BoolTy);
313     Params.push_back(Ctx.BoolTy);
314     llvm::FunctionType *FTy =
315         Types.GetFunctionType(
316           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
317     return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
318   }
319 
320   /// This routine declares and returns address of:
321   /// void objc_copyCppObjectAtomic(
322   ///         void *dest, const void *src,
323   ///         void (*copyHelper) (void *dest, const void *source));
getCppAtomicObjectFunction()324   llvm::Constant *getCppAtomicObjectFunction() {
325     CodeGen::CodeGenTypes &Types = CGM.getTypes();
326     ASTContext &Ctx = CGM.getContext();
327     /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
328     SmallVector<CanQualType,3> Params;
329     Params.push_back(Ctx.VoidPtrTy);
330     Params.push_back(Ctx.VoidPtrTy);
331     Params.push_back(Ctx.VoidPtrTy);
332     llvm::FunctionType *FTy =
333         Types.GetFunctionType(
334           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
335     return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
336   }
337 
getEnumerationMutationFn()338   llvm::Constant *getEnumerationMutationFn() {
339     CodeGen::CodeGenTypes &Types = CGM.getTypes();
340     ASTContext &Ctx = CGM.getContext();
341     // void objc_enumerationMutation (id)
342     SmallVector<CanQualType,1> Params;
343     Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
344     llvm::FunctionType *FTy =
345         Types.GetFunctionType(
346           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
347     return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
348   }
349 
getLookUpClassFn()350   llvm::Constant *getLookUpClassFn() {
351     CodeGen::CodeGenTypes &Types = CGM.getTypes();
352     ASTContext &Ctx = CGM.getContext();
353     // Class objc_lookUpClass (const char *)
354     SmallVector<CanQualType,1> Params;
355     Params.push_back(
356       Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
357     llvm::FunctionType *FTy =
358         Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration(
359                                 Ctx.getCanonicalType(Ctx.getObjCClassType()),
360                                 Params));
361     return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass");
362   }
363 
364   /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
getGcReadWeakFn()365   llvm::Constant *getGcReadWeakFn() {
366     // id objc_read_weak (id *)
367     llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
368     llvm::FunctionType *FTy =
369       llvm::FunctionType::get(ObjectPtrTy, args, false);
370     return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
371   }
372 
373   /// GcAssignWeakFn -- LLVM objc_assign_weak function.
getGcAssignWeakFn()374   llvm::Constant *getGcAssignWeakFn() {
375     // id objc_assign_weak (id, id *)
376     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
377     llvm::FunctionType *FTy =
378       llvm::FunctionType::get(ObjectPtrTy, args, false);
379     return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
380   }
381 
382   /// GcAssignGlobalFn -- LLVM objc_assign_global function.
getGcAssignGlobalFn()383   llvm::Constant *getGcAssignGlobalFn() {
384     // id objc_assign_global(id, id *)
385     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
386     llvm::FunctionType *FTy =
387       llvm::FunctionType::get(ObjectPtrTy, args, false);
388     return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
389   }
390 
391   /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
getGcAssignThreadLocalFn()392   llvm::Constant *getGcAssignThreadLocalFn() {
393     // id objc_assign_threadlocal(id src, id * dest)
394     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
395     llvm::FunctionType *FTy =
396       llvm::FunctionType::get(ObjectPtrTy, args, false);
397     return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
398   }
399 
400   /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
getGcAssignIvarFn()401   llvm::Constant *getGcAssignIvarFn() {
402     // id objc_assign_ivar(id, id *, ptrdiff_t)
403     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
404                            CGM.PtrDiffTy };
405     llvm::FunctionType *FTy =
406       llvm::FunctionType::get(ObjectPtrTy, args, false);
407     return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
408   }
409 
410   /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
GcMemmoveCollectableFn()411   llvm::Constant *GcMemmoveCollectableFn() {
412     // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
413     llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
414     llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
415     return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
416   }
417 
418   /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
getGcAssignStrongCastFn()419   llvm::Constant *getGcAssignStrongCastFn() {
420     // id objc_assign_strongCast(id, id *)
421     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
422     llvm::FunctionType *FTy =
423       llvm::FunctionType::get(ObjectPtrTy, args, false);
424     return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
425   }
426 
427   /// ExceptionThrowFn - LLVM objc_exception_throw function.
getExceptionThrowFn()428   llvm::Constant *getExceptionThrowFn() {
429     // void objc_exception_throw(id)
430     llvm::Type *args[] = { ObjectPtrTy };
431     llvm::FunctionType *FTy =
432       llvm::FunctionType::get(CGM.VoidTy, args, false);
433     return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
434   }
435 
436   /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
getExceptionRethrowFn()437   llvm::Constant *getExceptionRethrowFn() {
438     // void objc_exception_rethrow(void)
439     llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
440     return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
441   }
442 
443   /// SyncEnterFn - LLVM object_sync_enter function.
getSyncEnterFn()444   llvm::Constant *getSyncEnterFn() {
445     // int objc_sync_enter (id)
446     llvm::Type *args[] = { ObjectPtrTy };
447     llvm::FunctionType *FTy =
448       llvm::FunctionType::get(CGM.IntTy, args, false);
449     return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
450   }
451 
452   /// SyncExitFn - LLVM object_sync_exit function.
getSyncExitFn()453   llvm::Constant *getSyncExitFn() {
454     // int objc_sync_exit (id)
455     llvm::Type *args[] = { ObjectPtrTy };
456     llvm::FunctionType *FTy =
457       llvm::FunctionType::get(CGM.IntTy, args, false);
458     return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
459   }
460 
getSendFn(bool IsSuper) const461   llvm::Constant *getSendFn(bool IsSuper) const {
462     return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
463   }
464 
getSendFn2(bool IsSuper) const465   llvm::Constant *getSendFn2(bool IsSuper) const {
466     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
467   }
468 
getSendStretFn(bool IsSuper) const469   llvm::Constant *getSendStretFn(bool IsSuper) const {
470     return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
471   }
472 
getSendStretFn2(bool IsSuper) const473   llvm::Constant *getSendStretFn2(bool IsSuper) const {
474     return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
475   }
476 
getSendFpretFn(bool IsSuper) const477   llvm::Constant *getSendFpretFn(bool IsSuper) const {
478     return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
479   }
480 
getSendFpretFn2(bool IsSuper) const481   llvm::Constant *getSendFpretFn2(bool IsSuper) const {
482     return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
483   }
484 
getSendFp2retFn(bool IsSuper) const485   llvm::Constant *getSendFp2retFn(bool IsSuper) const {
486     return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
487   }
488 
getSendFp2RetFn2(bool IsSuper) const489   llvm::Constant *getSendFp2RetFn2(bool IsSuper) const {
490     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
491   }
492 
493   ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
494 };
495 
496 /// ObjCTypesHelper - Helper class that encapsulates lazy
497 /// construction of varies types used during ObjC generation.
498 class ObjCTypesHelper : public ObjCCommonTypesHelper {
499 public:
500   /// SymtabTy - LLVM type for struct objc_symtab.
501   llvm::StructType *SymtabTy;
502   /// SymtabPtrTy - LLVM type for struct objc_symtab *.
503   llvm::Type *SymtabPtrTy;
504   /// ModuleTy - LLVM type for struct objc_module.
505   llvm::StructType *ModuleTy;
506 
507   /// ProtocolTy - LLVM type for struct objc_protocol.
508   llvm::StructType *ProtocolTy;
509   /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
510   llvm::Type *ProtocolPtrTy;
511   /// ProtocolExtensionTy - LLVM type for struct
512   /// objc_protocol_extension.
513   llvm::StructType *ProtocolExtensionTy;
514   /// ProtocolExtensionTy - LLVM type for struct
515   /// objc_protocol_extension *.
516   llvm::Type *ProtocolExtensionPtrTy;
517   /// MethodDescriptionTy - LLVM type for struct
518   /// objc_method_description.
519   llvm::StructType *MethodDescriptionTy;
520   /// MethodDescriptionListTy - LLVM type for struct
521   /// objc_method_description_list.
522   llvm::StructType *MethodDescriptionListTy;
523   /// MethodDescriptionListPtrTy - LLVM type for struct
524   /// objc_method_description_list *.
525   llvm::Type *MethodDescriptionListPtrTy;
526   /// ProtocolListTy - LLVM type for struct objc_property_list.
527   llvm::StructType *ProtocolListTy;
528   /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
529   llvm::Type *ProtocolListPtrTy;
530   /// CategoryTy - LLVM type for struct objc_category.
531   llvm::StructType *CategoryTy;
532   /// ClassTy - LLVM type for struct objc_class.
533   llvm::StructType *ClassTy;
534   /// ClassPtrTy - LLVM type for struct objc_class *.
535   llvm::Type *ClassPtrTy;
536   /// ClassExtensionTy - LLVM type for struct objc_class_ext.
537   llvm::StructType *ClassExtensionTy;
538   /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
539   llvm::Type *ClassExtensionPtrTy;
540   // IvarTy - LLVM type for struct objc_ivar.
541   llvm::StructType *IvarTy;
542   /// IvarListTy - LLVM type for struct objc_ivar_list.
543   llvm::Type *IvarListTy;
544   /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
545   llvm::Type *IvarListPtrTy;
546   /// MethodListTy - LLVM type for struct objc_method_list.
547   llvm::Type *MethodListTy;
548   /// MethodListPtrTy - LLVM type for struct objc_method_list *.
549   llvm::Type *MethodListPtrTy;
550 
551   /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
552   llvm::Type *ExceptionDataTy;
553 
554   /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
getExceptionTryEnterFn()555   llvm::Constant *getExceptionTryEnterFn() {
556     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
557     return CGM.CreateRuntimeFunction(
558       llvm::FunctionType::get(CGM.VoidTy, params, false),
559       "objc_exception_try_enter");
560   }
561 
562   /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
getExceptionTryExitFn()563   llvm::Constant *getExceptionTryExitFn() {
564     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
565     return CGM.CreateRuntimeFunction(
566       llvm::FunctionType::get(CGM.VoidTy, params, false),
567       "objc_exception_try_exit");
568   }
569 
570   /// ExceptionExtractFn - LLVM objc_exception_extract function.
getExceptionExtractFn()571   llvm::Constant *getExceptionExtractFn() {
572     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
573     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
574                                                              params, false),
575                                      "objc_exception_extract");
576   }
577 
578   /// ExceptionMatchFn - LLVM objc_exception_match function.
getExceptionMatchFn()579   llvm::Constant *getExceptionMatchFn() {
580     llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
581     return CGM.CreateRuntimeFunction(
582       llvm::FunctionType::get(CGM.Int32Ty, params, false),
583       "objc_exception_match");
584   }
585 
586   /// SetJmpFn - LLVM _setjmp function.
getSetJmpFn()587   llvm::Constant *getSetJmpFn() {
588     // This is specifically the prototype for x86.
589     llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
590     return
591       CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty,
592                                                         params, false),
593                                 "_setjmp",
594                                 llvm::AttributeSet::get(CGM.getLLVMContext(),
595                                               llvm::AttributeSet::FunctionIndex,
596                                                  llvm::Attribute::NonLazyBind));
597   }
598 
599 public:
600   ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
601 };
602 
603 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
604 /// modern abi
605 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
606 public:
607   // MethodListnfABITy - LLVM for struct _method_list_t
608   llvm::StructType *MethodListnfABITy;
609 
610   // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
611   llvm::Type *MethodListnfABIPtrTy;
612 
613   // ProtocolnfABITy = LLVM for struct _protocol_t
614   llvm::StructType *ProtocolnfABITy;
615 
616   // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
617   llvm::Type *ProtocolnfABIPtrTy;
618 
619   // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
620   llvm::StructType *ProtocolListnfABITy;
621 
622   // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
623   llvm::Type *ProtocolListnfABIPtrTy;
624 
625   // ClassnfABITy - LLVM for struct _class_t
626   llvm::StructType *ClassnfABITy;
627 
628   // ClassnfABIPtrTy - LLVM for struct _class_t*
629   llvm::Type *ClassnfABIPtrTy;
630 
631   // IvarnfABITy - LLVM for struct _ivar_t
632   llvm::StructType *IvarnfABITy;
633 
634   // IvarListnfABITy - LLVM for struct _ivar_list_t
635   llvm::StructType *IvarListnfABITy;
636 
637   // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
638   llvm::Type *IvarListnfABIPtrTy;
639 
640   // ClassRonfABITy - LLVM for struct _class_ro_t
641   llvm::StructType *ClassRonfABITy;
642 
643   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
644   llvm::Type *ImpnfABITy;
645 
646   // CategorynfABITy - LLVM for struct _category_t
647   llvm::StructType *CategorynfABITy;
648 
649   // New types for nonfragile abi messaging.
650 
651   // MessageRefTy - LLVM for:
652   // struct _message_ref_t {
653   //   IMP messenger;
654   //   SEL name;
655   // };
656   llvm::StructType *MessageRefTy;
657   // MessageRefCTy - clang type for struct _message_ref_t
658   QualType MessageRefCTy;
659 
660   // MessageRefPtrTy - LLVM for struct _message_ref_t*
661   llvm::Type *MessageRefPtrTy;
662   // MessageRefCPtrTy - clang type for struct _message_ref_t*
663   QualType MessageRefCPtrTy;
664 
665   // SuperMessageRefTy - LLVM for:
666   // struct _super_message_ref_t {
667   //   SUPER_IMP messenger;
668   //   SEL name;
669   // };
670   llvm::StructType *SuperMessageRefTy;
671 
672   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
673   llvm::Type *SuperMessageRefPtrTy;
674 
getMessageSendFixupFn()675   llvm::Constant *getMessageSendFixupFn() {
676     // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
677     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
678     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
679                                                              params, true),
680                                      "objc_msgSend_fixup");
681   }
682 
getMessageSendFpretFixupFn()683   llvm::Constant *getMessageSendFpretFixupFn() {
684     // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
685     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
686     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
687                                                              params, true),
688                                      "objc_msgSend_fpret_fixup");
689   }
690 
getMessageSendStretFixupFn()691   llvm::Constant *getMessageSendStretFixupFn() {
692     // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
693     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
694     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
695                                                              params, true),
696                                      "objc_msgSend_stret_fixup");
697   }
698 
getMessageSendSuper2FixupFn()699   llvm::Constant *getMessageSendSuper2FixupFn() {
700     // id objc_msgSendSuper2_fixup (struct objc_super *,
701     //                              struct _super_message_ref_t*, ...)
702     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
703     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
704                                                               params, true),
705                                       "objc_msgSendSuper2_fixup");
706   }
707 
getMessageSendSuper2StretFixupFn()708   llvm::Constant *getMessageSendSuper2StretFixupFn() {
709     // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
710     //                                   struct _super_message_ref_t*, ...)
711     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
712     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
713                                                               params, true),
714                                       "objc_msgSendSuper2_stret_fixup");
715   }
716 
getObjCEndCatchFn()717   llvm::Constant *getObjCEndCatchFn() {
718     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
719                                      "objc_end_catch");
720 
721   }
722 
getObjCBeginCatchFn()723   llvm::Constant *getObjCBeginCatchFn() {
724     llvm::Type *params[] = { Int8PtrTy };
725     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
726                                                              params, false),
727                                      "objc_begin_catch");
728   }
729 
730   llvm::StructType *EHTypeTy;
731   llvm::Type *EHTypePtrTy;
732 
733   ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
734 };
735 
736 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
737 public:
738   class SKIP_SCAN {
739   public:
740     unsigned skip;
741     unsigned scan;
SKIP_SCAN(unsigned _skip=0,unsigned _scan=0)742     SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
743       : skip(_skip), scan(_scan) {}
744   };
745 
746   /// opcode for captured block variables layout 'instructions'.
747   /// In the following descriptions, 'I' is the value of the immediate field.
748   /// (field following the opcode).
749   ///
750   enum BLOCK_LAYOUT_OPCODE {
751     /// An operator which affects how the following layout should be
752     /// interpreted.
753     ///   I == 0: Halt interpretation and treat everything else as
754     ///           a non-pointer.  Note that this instruction is equal
755     ///           to '\0'.
756     ///   I != 0: Currently unused.
757     BLOCK_LAYOUT_OPERATOR            = 0,
758 
759     /// The next I+1 bytes do not contain a value of object pointer type.
760     /// Note that this can leave the stream unaligned, meaning that
761     /// subsequent word-size instructions do not begin at a multiple of
762     /// the pointer size.
763     BLOCK_LAYOUT_NON_OBJECT_BYTES    = 1,
764 
765     /// The next I+1 words do not contain a value of object pointer type.
766     /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
767     /// when the required skip quantity is a multiple of the pointer size.
768     BLOCK_LAYOUT_NON_OBJECT_WORDS    = 2,
769 
770     /// The next I+1 words are __strong pointers to Objective-C
771     /// objects or blocks.
772     BLOCK_LAYOUT_STRONG              = 3,
773 
774     /// The next I+1 words are pointers to __block variables.
775     BLOCK_LAYOUT_BYREF               = 4,
776 
777     /// The next I+1 words are __weak pointers to Objective-C
778     /// objects or blocks.
779     BLOCK_LAYOUT_WEAK                = 5,
780 
781     /// The next I+1 words are __unsafe_unretained pointers to
782     /// Objective-C objects or blocks.
783     BLOCK_LAYOUT_UNRETAINED          = 6
784 
785     /// The next I+1 words are block or object pointers with some
786     /// as-yet-unspecified ownership semantics.  If we add more
787     /// flavors of ownership semantics, values will be taken from
788     /// this range.
789     ///
790     /// This is included so that older tools can at least continue
791     /// processing the layout past such things.
792     //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
793 
794     /// All other opcodes are reserved.  Halt interpretation and
795     /// treat everything else as opaque.
796   };
797 
798   class RUN_SKIP {
799   public:
800     enum BLOCK_LAYOUT_OPCODE opcode;
801     CharUnits block_var_bytepos;
802     CharUnits block_var_size;
RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode=BLOCK_LAYOUT_OPERATOR,CharUnits BytePos=CharUnits::Zero (),CharUnits Size=CharUnits::Zero ())803     RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
804              CharUnits BytePos = CharUnits::Zero(),
805              CharUnits Size = CharUnits::Zero())
806     : opcode(Opcode), block_var_bytepos(BytePos),  block_var_size(Size) {}
807 
808     // Allow sorting based on byte pos.
operator <(const RUN_SKIP & b) const809     bool operator<(const RUN_SKIP &b) const {
810       return block_var_bytepos < b.block_var_bytepos;
811     }
812   };
813 
814 protected:
815   llvm::LLVMContext &VMContext;
816   // FIXME! May not be needing this after all.
817   unsigned ObjCABI;
818 
819   // arc/mrr layout of captured block literal variables.
820   SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
821 
822   /// LazySymbols - Symbols to generate a lazy reference for. See
823   /// DefinedSymbols and FinishModule().
824   llvm::SetVector<IdentifierInfo*> LazySymbols;
825 
826   /// DefinedSymbols - External symbols which are defined by this
827   /// module. The symbols in this list and LazySymbols are used to add
828   /// special linker symbols which ensure that Objective-C modules are
829   /// linked properly.
830   llvm::SetVector<IdentifierInfo*> DefinedSymbols;
831 
832   /// ClassNames - uniqued class names.
833   llvm::StringMap<llvm::GlobalVariable*> ClassNames;
834 
835   /// MethodVarNames - uniqued method variable names.
836   llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
837 
838   /// DefinedCategoryNames - list of category names in form Class_Category.
839   llvm::SmallSetVector<std::string, 16> DefinedCategoryNames;
840 
841   /// MethodVarTypes - uniqued method type signatures. We have to use
842   /// a StringMap here because have no other unique reference.
843   llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
844 
845   /// MethodDefinitions - map of methods which have been defined in
846   /// this translation unit.
847   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
848 
849   /// PropertyNames - uniqued method variable names.
850   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
851 
852   /// ClassReferences - uniqued class references.
853   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
854 
855   /// SelectorReferences - uniqued selector references.
856   llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
857 
858   /// Protocols - Protocols for which an objc_protocol structure has
859   /// been emitted. Forward declarations are handled by creating an
860   /// empty structure whose initializer is filled in when/if defined.
861   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
862 
863   /// DefinedProtocols - Protocols which have actually been
864   /// defined. We should not need this, see FIXME in GenerateProtocol.
865   llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
866 
867   /// DefinedClasses - List of defined classes.
868   SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
869 
870   /// ImplementedClasses - List of @implemented classes.
871   SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
872 
873   /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
874   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
875 
876   /// DefinedCategories - List of defined categories.
877   SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
878 
879   /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
880   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
881 
882   /// GetNameForMethod - Return a name for the given method.
883   /// \param[out] NameOut - The return value.
884   void GetNameForMethod(const ObjCMethodDecl *OMD,
885                         const ObjCContainerDecl *CD,
886                         SmallVectorImpl<char> &NameOut);
887 
888   /// GetMethodVarName - Return a unique constant for the given
889   /// selector's name. The return value has type char *.
890   llvm::Constant *GetMethodVarName(Selector Sel);
891   llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
892 
893   /// GetMethodVarType - Return a unique constant for the given
894   /// method's type encoding string. The return value has type char *.
895 
896   // FIXME: This is a horrible name.
897   llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
898                                    bool Extended = false);
899   llvm::Constant *GetMethodVarType(const FieldDecl *D);
900 
901   /// GetPropertyName - Return a unique constant for the given
902   /// name. The return value has type char *.
903   llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
904 
905   // FIXME: This can be dropped once string functions are unified.
906   llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
907                                         const Decl *Container);
908 
909   /// GetClassName - Return a unique constant for the given selector's
910   /// runtime name (which may change via use of objc_runtime_name attribute on
911   /// class or protocol definition. The return value has type char *.
912   llvm::Constant *GetClassName(StringRef RuntimeName);
913 
914   llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
915 
916   /// BuildIvarLayout - Builds ivar layout bitmap for the class
917   /// implementation for the __strong or __weak case.
918   ///
919   /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
920   ///   are any weak ivars defined directly in the class.  Meaningless unless
921   ///   building a weak layout.  Does not guarantee that the layout will
922   ///   actually have any entries, because the ivar might be under-aligned.
923   llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
924                                   CharUnits beginOffset,
925                                   CharUnits endOffset,
926                                   bool forStrongLayout,
927                                   bool hasMRCWeakIvars);
928 
BuildStrongIvarLayout(const ObjCImplementationDecl * OI,CharUnits beginOffset,CharUnits endOffset)929   llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
930                                         CharUnits beginOffset,
931                                         CharUnits endOffset) {
932     return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
933   }
934 
BuildWeakIvarLayout(const ObjCImplementationDecl * OI,CharUnits beginOffset,CharUnits endOffset,bool hasMRCWeakIvars)935   llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
936                                       CharUnits beginOffset,
937                                       CharUnits endOffset,
938                                       bool hasMRCWeakIvars) {
939     return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
940   }
941 
942   Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
943 
944   void UpdateRunSkipBlockVars(bool IsByref,
945                               Qualifiers::ObjCLifetime LifeTime,
946                               CharUnits FieldOffset,
947                               CharUnits FieldSize);
948 
949   void BuildRCBlockVarRecordLayout(const RecordType *RT,
950                                    CharUnits BytePos, bool &HasUnion,
951                                    bool ByrefLayout=false);
952 
953   void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
954                            const RecordDecl *RD,
955                            ArrayRef<const FieldDecl*> RecFields,
956                            CharUnits BytePos, bool &HasUnion,
957                            bool ByrefLayout);
958 
959   uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
960 
961   llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
962 
963   /// GetIvarLayoutName - Returns a unique constant for the given
964   /// ivar layout bitmap.
965   llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
966                                     const ObjCCommonTypesHelper &ObjCTypes);
967 
968   /// EmitPropertyList - Emit the given property list. The return
969   /// value has type PropertyListPtrTy.
970   llvm::Constant *EmitPropertyList(Twine Name,
971                                    const Decl *Container,
972                                    const ObjCContainerDecl *OCD,
973                                    const ObjCCommonTypesHelper &ObjCTypes,
974                                    bool IsClassProperty);
975 
976   /// EmitProtocolMethodTypes - Generate the array of extended method type
977   /// strings. The return value has type Int8PtrPtrTy.
978   llvm::Constant *EmitProtocolMethodTypes(Twine Name,
979                                           ArrayRef<llvm::Constant*> MethodTypes,
980                                        const ObjCCommonTypesHelper &ObjCTypes);
981 
982   /// PushProtocolProperties - Push protocol's property on the input stack.
983   void PushProtocolProperties(
984     llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet,
985     SmallVectorImpl<llvm::Constant*> &Properties,
986     const Decl *Container,
987     const ObjCProtocolDecl *Proto,
988     const ObjCCommonTypesHelper &ObjCTypes,
989     bool IsClassProperty);
990 
991   /// GetProtocolRef - Return a reference to the internal protocol
992   /// description, creating an empty one if it has not been
993   /// defined. The return value has type ProtocolPtrTy.
994   llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
995 
996   /// Return a reference to the given Class using runtime calls rather than
997   /// by a symbol reference.
998   llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
999                                       const ObjCInterfaceDecl *ID,
1000                                       ObjCCommonTypesHelper &ObjCTypes);
1001 
1002 public:
1003   /// CreateMetadataVar - Create a global variable with internal
1004   /// linkage for use by the Objective-C runtime.
1005   ///
1006   /// This is a convenience wrapper which not only creates the
1007   /// variable, but also sets the section and alignment and adds the
1008   /// global to the "llvm.used" list.
1009   ///
1010   /// \param Name - The variable name.
1011   /// \param Init - The variable initializer; this is also used to
1012   /// define the type of the variable.
1013   /// \param Section - The section the variable should go into, or empty.
1014   /// \param Align - The alignment for the variable, or 0.
1015   /// \param AddToUsed - Whether the variable should be added to
1016   /// "llvm.used".
1017   llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init,
1018                                           StringRef Section, CharUnits Align,
1019                                           bool AddToUsed);
1020 
1021 protected:
1022   CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1023                                   ReturnValueSlot Return,
1024                                   QualType ResultType,
1025                                   llvm::Value *Sel,
1026                                   llvm::Value *Arg0,
1027                                   QualType Arg0Ty,
1028                                   bool IsSuper,
1029                                   const CallArgList &CallArgs,
1030                                   const ObjCMethodDecl *OMD,
1031                                   const ObjCInterfaceDecl *ClassReceiver,
1032                                   const ObjCCommonTypesHelper &ObjCTypes);
1033 
1034   /// EmitImageInfo - Emit the image info marker used to encode some module
1035   /// level information.
1036   void EmitImageInfo();
1037 
1038 public:
CGObjCCommonMac(CodeGen::CodeGenModule & cgm)1039   CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
1040     CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { }
1041 
isNonFragileABI() const1042   bool isNonFragileABI() const {
1043     return ObjCABI == 2;
1044   }
1045 
1046   ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1047 
1048   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1049                                  const ObjCContainerDecl *CD=nullptr) override;
1050 
1051   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1052 
1053   /// GetOrEmitProtocol - Get the protocol object for the given
1054   /// declaration, emitting it if necessary. The return value has type
1055   /// ProtocolPtrTy.
1056   virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
1057 
1058   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1059   /// object for the given declaration, emitting it if needed. These
1060   /// forward references will be filled in with empty bodies if no
1061   /// definition is seen. The return value has type ProtocolPtrTy.
1062   virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1063   llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1064                                      const CGBlockInfo &blockInfo) override;
1065   llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1066                                      const CGBlockInfo &blockInfo) override;
1067 
1068   llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1069                                    QualType T) override;
1070 };
1071 
1072 class CGObjCMac : public CGObjCCommonMac {
1073 private:
1074   ObjCTypesHelper ObjCTypes;
1075 
1076   /// EmitModuleInfo - Another marker encoding module level
1077   /// information.
1078   void EmitModuleInfo();
1079 
1080   /// EmitModuleSymols - Emit module symbols, the list of defined
1081   /// classes and categories. The result has type SymtabPtrTy.
1082   llvm::Constant *EmitModuleSymbols();
1083 
1084   /// FinishModule - Write out global data structures at the end of
1085   /// processing a translation unit.
1086   void FinishModule();
1087 
1088   /// EmitClassExtension - Generate the class extension structure used
1089   /// to store the weak ivar layout and properties. The return value
1090   /// has type ClassExtensionPtrTy.
1091   llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1092                                      CharUnits instanceSize,
1093                                      bool hasMRCWeakIvars,
1094                                      bool isClassProperty);
1095 
1096   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1097   /// for the given class.
1098   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1099                             const ObjCInterfaceDecl *ID);
1100 
1101   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1102                                   IdentifierInfo *II);
1103 
1104   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1105 
1106   /// EmitSuperClassRef - Emits reference to class's main metadata class.
1107   llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1108 
1109   /// EmitIvarList - Emit the ivar list for the given
1110   /// implementation. If ForClass is true the list of class ivars
1111   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1112   /// interface ivars will be emitted. The return value has type
1113   /// IvarListPtrTy.
1114   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1115                                bool ForClass);
1116 
1117   /// EmitMetaClass - Emit a forward reference to the class structure
1118   /// for the metaclass of the given interface. The return value has
1119   /// type ClassPtrTy.
1120   llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1121 
1122   /// EmitMetaClass - Emit a class structure for the metaclass of the
1123   /// given implementation. The return value has type ClassPtrTy.
1124   llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1125                                 llvm::Constant *Protocols,
1126                                 ArrayRef<llvm::Constant*> Methods);
1127 
1128   llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
1129 
1130   llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
1131 
1132   /// EmitMethodList - Emit the method list for the given
1133   /// implementation. The return value has type MethodListPtrTy.
1134   llvm::Constant *EmitMethodList(Twine Name, StringRef Section,
1135                                  ArrayRef<llvm::Constant *> Methods);
1136 
1137   /// EmitMethodDescList - Emit a method description list for a list of
1138   /// method declarations.
1139   ///  - TypeName: The name for the type containing the methods.
1140   ///  - IsProtocol: True iff these methods are for a protocol.
1141   ///  - ClassMethds: True iff these are class methods.
1142   ///  - Required: When true, only "required" methods are
1143   ///    listed. Similarly, when false only "optional" methods are
1144   ///    listed. For classes this should always be true.
1145   ///  - begin, end: The method list to output.
1146   ///
1147   /// The return value has type MethodDescriptionListPtrTy.
1148   llvm::Constant *EmitMethodDescList(Twine Name, StringRef Section,
1149                                      ArrayRef<llvm::Constant *> Methods);
1150 
1151   /// GetOrEmitProtocol - Get the protocol object for the given
1152   /// declaration, emitting it if necessary. The return value has type
1153   /// ProtocolPtrTy.
1154   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1155 
1156   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1157   /// object for the given declaration, emitting it if needed. These
1158   /// forward references will be filled in with empty bodies if no
1159   /// definition is seen. The return value has type ProtocolPtrTy.
1160   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1161 
1162   /// EmitProtocolExtension - Generate the protocol extension
1163   /// structure used to store optional instance and class methods, and
1164   /// protocol properties. The return value has type
1165   /// ProtocolExtensionPtrTy.
1166   llvm::Constant *
1167   EmitProtocolExtension(const ObjCProtocolDecl *PD,
1168                         ArrayRef<llvm::Constant*> OptInstanceMethods,
1169                         ArrayRef<llvm::Constant*> OptClassMethods,
1170                         ArrayRef<llvm::Constant*> MethodTypesExt);
1171 
1172   /// EmitProtocolList - Generate the list of referenced
1173   /// protocols. The return value has type ProtocolListPtrTy.
1174   llvm::Constant *EmitProtocolList(Twine Name,
1175                                    ObjCProtocolDecl::protocol_iterator begin,
1176                                    ObjCProtocolDecl::protocol_iterator end);
1177 
1178   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1179   /// for the given selector.
1180   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1181   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1182 
1183 public:
1184   CGObjCMac(CodeGen::CodeGenModule &cgm);
1185 
1186   llvm::Function *ModuleInitFunction() override;
1187 
1188   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1189                                       ReturnValueSlot Return,
1190                                       QualType ResultType,
1191                                       Selector Sel, llvm::Value *Receiver,
1192                                       const CallArgList &CallArgs,
1193                                       const ObjCInterfaceDecl *Class,
1194                                       const ObjCMethodDecl *Method) override;
1195 
1196   CodeGen::RValue
1197   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1198                            ReturnValueSlot Return, QualType ResultType,
1199                            Selector Sel, const ObjCInterfaceDecl *Class,
1200                            bool isCategoryImpl, llvm::Value *Receiver,
1201                            bool IsClassMessage, const CallArgList &CallArgs,
1202                            const ObjCMethodDecl *Method) override;
1203 
1204   llvm::Value *GetClass(CodeGenFunction &CGF,
1205                         const ObjCInterfaceDecl *ID) override;
1206 
1207   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1208   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1209 
1210   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1211   /// untyped one.
1212   llvm::Value *GetSelector(CodeGenFunction &CGF,
1213                            const ObjCMethodDecl *Method) override;
1214 
1215   llvm::Constant *GetEHType(QualType T) override;
1216 
1217   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1218 
1219   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1220 
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)1221   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1222 
1223   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1224                                    const ObjCProtocolDecl *PD) override;
1225 
1226   llvm::Constant *GetPropertyGetFunction() override;
1227   llvm::Constant *GetPropertySetFunction() override;
1228   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1229                                                   bool copy) override;
1230   llvm::Constant *GetGetStructFunction() override;
1231   llvm::Constant *GetSetStructFunction() override;
1232   llvm::Constant *GetCppAtomicObjectGetFunction() override;
1233   llvm::Constant *GetCppAtomicObjectSetFunction() override;
1234   llvm::Constant *EnumerationMutationFunction() override;
1235 
1236   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1237                    const ObjCAtTryStmt &S) override;
1238   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1239                             const ObjCAtSynchronizedStmt &S) override;
1240   void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1241   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1242                      bool ClearInsertionPoint=true) override;
1243   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1244                                  Address AddrWeakObj) override;
1245   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1246                           llvm::Value *src, Address dst) override;
1247   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1248                             llvm::Value *src, Address dest,
1249                             bool threadlocal = false) override;
1250   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1251                           llvm::Value *src, Address dest,
1252                           llvm::Value *ivarOffset) override;
1253   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1254                                 llvm::Value *src, Address dest) override;
1255   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1256                                 Address dest, Address src,
1257                                 llvm::Value *size) override;
1258 
1259   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1260                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1261                               unsigned CVRQualifiers) override;
1262   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1263                               const ObjCInterfaceDecl *Interface,
1264                               const ObjCIvarDecl *Ivar) override;
1265 
1266   /// GetClassGlobal - Return the global variable for the Objective-C
1267   /// class of the given name.
GetClassGlobal(StringRef Name,bool Weak=false)1268   llvm::GlobalVariable *GetClassGlobal(StringRef Name,
1269                                        bool Weak = false) override {
1270     llvm_unreachable("CGObjCMac::GetClassGlobal");
1271   }
1272 };
1273 
1274 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1275 private:
1276   ObjCNonFragileABITypesHelper ObjCTypes;
1277   llvm::GlobalVariable* ObjCEmptyCacheVar;
1278   llvm::GlobalVariable* ObjCEmptyVtableVar;
1279 
1280   /// SuperClassReferences - uniqued super class references.
1281   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1282 
1283   /// MetaClassReferences - uniqued meta class references.
1284   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1285 
1286   /// EHTypeReferences - uniqued class ehtype references.
1287   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1288 
1289   /// VTableDispatchMethods - List of methods for which we generate
1290   /// vtable-based message dispatch.
1291   llvm::DenseSet<Selector> VTableDispatchMethods;
1292 
1293   /// DefinedMetaClasses - List of defined meta-classes.
1294   std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1295 
1296   /// isVTableDispatchedSelector - Returns true if SEL is a
1297   /// vtable-based selector.
1298   bool isVTableDispatchedSelector(Selector Sel);
1299 
1300   /// FinishNonFragileABIModule - Write out global data structures at the end of
1301   /// processing a translation unit.
1302   void FinishNonFragileABIModule();
1303 
1304   /// AddModuleClassList - Add the given list of class pointers to the
1305   /// module with the provided symbol and section names.
1306   void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1307                           StringRef SymbolName, StringRef SectionName);
1308 
1309   llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1310                                               unsigned InstanceStart,
1311                                               unsigned InstanceSize,
1312                                               const ObjCImplementationDecl *ID);
1313   llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName,
1314                                             llvm::Constant *IsAGV,
1315                                             llvm::Constant *SuperClassGV,
1316                                             llvm::Constant *ClassRoGV,
1317                                             bool HiddenVisibility,
1318                                             bool Weak);
1319 
1320   llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
1321 
1322   llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
1323 
1324   /// EmitMethodList - Emit the method list for the given
1325   /// implementation. The return value has type MethodListnfABITy.
1326   llvm::Constant *EmitMethodList(Twine Name, StringRef Section,
1327                                  ArrayRef<llvm::Constant *> Methods);
1328   /// EmitIvarList - Emit the ivar list for the given
1329   /// implementation. If ForClass is true the list of class ivars
1330   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1331   /// interface ivars will be emitted. The return value has type
1332   /// IvarListnfABIPtrTy.
1333   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1334 
1335   llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1336                                     const ObjCIvarDecl *Ivar,
1337                                     unsigned long int offset);
1338 
1339   /// GetOrEmitProtocol - Get the protocol object for the given
1340   /// declaration, emitting it if necessary. The return value has type
1341   /// ProtocolPtrTy.
1342   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1343 
1344   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1345   /// object for the given declaration, emitting it if needed. These
1346   /// forward references will be filled in with empty bodies if no
1347   /// definition is seen. The return value has type ProtocolPtrTy.
1348   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1349 
1350   /// EmitProtocolList - Generate the list of referenced
1351   /// protocols. The return value has type ProtocolListPtrTy.
1352   llvm::Constant *EmitProtocolList(Twine Name,
1353                                    ObjCProtocolDecl::protocol_iterator begin,
1354                                    ObjCProtocolDecl::protocol_iterator end);
1355 
1356   CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1357                                         ReturnValueSlot Return,
1358                                         QualType ResultType,
1359                                         Selector Sel,
1360                                         llvm::Value *Receiver,
1361                                         QualType Arg0Ty,
1362                                         bool IsSuper,
1363                                         const CallArgList &CallArgs,
1364                                         const ObjCMethodDecl *Method);
1365 
1366   /// GetClassGlobal - Return the global variable for the Objective-C
1367   /// class of the given name.
1368   llvm::GlobalVariable *GetClassGlobal(StringRef Name,
1369                                        bool Weak = false) override;
1370 
1371   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1372   /// for the given class reference.
1373   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1374                             const ObjCInterfaceDecl *ID);
1375 
1376   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1377                                   IdentifierInfo *II, bool Weak,
1378                                   const ObjCInterfaceDecl *ID);
1379 
1380   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1381 
1382   /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1383   /// for the given super class reference.
1384   llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1385                                  const ObjCInterfaceDecl *ID);
1386 
1387   /// EmitMetaClassRef - Return a Value * of the address of _class_t
1388   /// meta-data
1389   llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1390                                 const ObjCInterfaceDecl *ID, bool Weak);
1391 
1392   /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1393   /// the given ivar.
1394   ///
1395   llvm::GlobalVariable * ObjCIvarOffsetVariable(
1396     const ObjCInterfaceDecl *ID,
1397     const ObjCIvarDecl *Ivar);
1398 
1399   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1400   /// for the given selector.
1401   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1402   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1403 
1404   /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1405   /// interface. The return value has type EHTypePtrTy.
1406   llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1407                                   bool ForDefinition);
1408 
getMetaclassSymbolPrefix() const1409   StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1410 
getClassSymbolPrefix() const1411   StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1412 
1413   void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1414                         uint32_t &InstanceStart,
1415                         uint32_t &InstanceSize);
1416 
1417   // Shamelessly stolen from Analysis/CFRefCount.cpp
GetNullarySelector(const char * name) const1418   Selector GetNullarySelector(const char* name) const {
1419     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1420     return CGM.getContext().Selectors.getSelector(0, &II);
1421   }
1422 
GetUnarySelector(const char * name) const1423   Selector GetUnarySelector(const char* name) const {
1424     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1425     return CGM.getContext().Selectors.getSelector(1, &II);
1426   }
1427 
1428   /// ImplementationIsNonLazy - Check whether the given category or
1429   /// class implementation is "non-lazy".
1430   bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1431 
IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction & CGF,const ObjCIvarDecl * IV)1432   bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1433                                    const ObjCIvarDecl *IV) {
1434     // Annotate the load as an invariant load iff inside an instance method
1435     // and ivar belongs to instance method's class and one of its super class.
1436     // This check is needed because the ivar offset is a lazily
1437     // initialised value that may depend on objc_msgSend to perform a fixup on
1438     // the first message dispatch.
1439     //
1440     // An additional opportunity to mark the load as invariant arises when the
1441     // base of the ivar access is a parameter to an Objective C method.
1442     // However, because the parameters are not available in the current
1443     // interface, we cannot perform this check.
1444     if (const ObjCMethodDecl *MD =
1445           dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1446       if (MD->isInstanceMethod())
1447         if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1448           return IV->getContainingInterface()->isSuperClassOf(ID);
1449     return false;
1450   }
1451 
1452 public:
1453   CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1454   // FIXME. All stubs for now!
1455   llvm::Function *ModuleInitFunction() override;
1456 
1457   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1458                                       ReturnValueSlot Return,
1459                                       QualType ResultType, Selector Sel,
1460                                       llvm::Value *Receiver,
1461                                       const CallArgList &CallArgs,
1462                                       const ObjCInterfaceDecl *Class,
1463                                       const ObjCMethodDecl *Method) override;
1464 
1465   CodeGen::RValue
1466   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1467                            ReturnValueSlot Return, QualType ResultType,
1468                            Selector Sel, const ObjCInterfaceDecl *Class,
1469                            bool isCategoryImpl, llvm::Value *Receiver,
1470                            bool IsClassMessage, const CallArgList &CallArgs,
1471                            const ObjCMethodDecl *Method) override;
1472 
1473   llvm::Value *GetClass(CodeGenFunction &CGF,
1474                         const ObjCInterfaceDecl *ID) override;
1475 
GetSelector(CodeGenFunction & CGF,Selector Sel)1476   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1477     { return EmitSelector(CGF, Sel); }
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)1478   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1479     { return EmitSelectorAddr(CGF, Sel); }
1480 
1481   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1482   /// untyped one.
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1483   llvm::Value *GetSelector(CodeGenFunction &CGF,
1484                            const ObjCMethodDecl *Method) override
1485     { return EmitSelector(CGF, Method->getSelector()); }
1486 
1487   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1488 
1489   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1490 
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)1491   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1492 
1493   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1494                                    const ObjCProtocolDecl *PD) override;
1495 
1496   llvm::Constant *GetEHType(QualType T) override;
1497 
GetPropertyGetFunction()1498   llvm::Constant *GetPropertyGetFunction() override {
1499     return ObjCTypes.getGetPropertyFn();
1500   }
GetPropertySetFunction()1501   llvm::Constant *GetPropertySetFunction() override {
1502     return ObjCTypes.getSetPropertyFn();
1503   }
1504 
GetOptimizedPropertySetFunction(bool atomic,bool copy)1505   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1506                                                   bool copy) override {
1507     return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1508   }
1509 
GetSetStructFunction()1510   llvm::Constant *GetSetStructFunction() override {
1511     return ObjCTypes.getCopyStructFn();
1512   }
1513 
GetGetStructFunction()1514   llvm::Constant *GetGetStructFunction() override {
1515     return ObjCTypes.getCopyStructFn();
1516   }
1517 
GetCppAtomicObjectSetFunction()1518   llvm::Constant *GetCppAtomicObjectSetFunction() override {
1519     return ObjCTypes.getCppAtomicObjectFunction();
1520   }
1521 
GetCppAtomicObjectGetFunction()1522   llvm::Constant *GetCppAtomicObjectGetFunction() override {
1523     return ObjCTypes.getCppAtomicObjectFunction();
1524   }
1525 
EnumerationMutationFunction()1526   llvm::Constant *EnumerationMutationFunction() override {
1527     return ObjCTypes.getEnumerationMutationFn();
1528   }
1529 
1530   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1531                    const ObjCAtTryStmt &S) override;
1532   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1533                             const ObjCAtSynchronizedStmt &S) override;
1534   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1535                      bool ClearInsertionPoint=true) override;
1536   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1537                                  Address AddrWeakObj) override;
1538   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1539                           llvm::Value *src, Address edst) override;
1540   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1541                             llvm::Value *src, Address dest,
1542                             bool threadlocal = false) override;
1543   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1544                           llvm::Value *src, Address dest,
1545                           llvm::Value *ivarOffset) override;
1546   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1547                                 llvm::Value *src, Address dest) override;
1548   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1549                                 Address dest, Address src,
1550                                 llvm::Value *size) override;
1551   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1552                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1553                               unsigned CVRQualifiers) override;
1554   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1555                               const ObjCInterfaceDecl *Interface,
1556                               const ObjCIvarDecl *Ivar) override;
1557 };
1558 
1559 /// A helper class for performing the null-initialization of a return
1560 /// value.
1561 struct NullReturnState {
1562   llvm::BasicBlock *NullBB;
NullReturnState__anon0ea151f90111::NullReturnState1563   NullReturnState() : NullBB(nullptr) {}
1564 
1565   /// Perform a null-check of the given receiver.
init__anon0ea151f90111::NullReturnState1566   void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1567     // Make blocks for the null-receiver and call edges.
1568     NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1569     llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1570 
1571     // Check for a null receiver and, if there is one, jump to the
1572     // null-receiver block.  There's no point in trying to avoid it:
1573     // we're always going to put *something* there, because otherwise
1574     // we shouldn't have done this null-check in the first place.
1575     llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1576     CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1577 
1578     // Otherwise, start performing the call.
1579     CGF.EmitBlock(callBB);
1580   }
1581 
1582   /// Complete the null-return operation.  It is valid to call this
1583   /// regardless of whether 'init' has been called.
complete__anon0ea151f90111::NullReturnState1584   RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType,
1585                   const CallArgList &CallArgs,
1586                   const ObjCMethodDecl *Method) {
1587     // If we never had to do a null-check, just use the raw result.
1588     if (!NullBB) return result;
1589 
1590     // The continuation block.  This will be left null if we don't have an
1591     // IP, which can happen if the method we're calling is marked noreturn.
1592     llvm::BasicBlock *contBB = nullptr;
1593 
1594     // Finish the call path.
1595     llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1596     if (callBB) {
1597       contBB = CGF.createBasicBlock("msgSend.cont");
1598       CGF.Builder.CreateBr(contBB);
1599     }
1600 
1601     // Okay, start emitting the null-receiver block.
1602     CGF.EmitBlock(NullBB);
1603 
1604     // Release any consumed arguments we've got.
1605     if (Method) {
1606       CallArgList::const_iterator I = CallArgs.begin();
1607       for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(),
1608            e = Method->param_end(); i != e; ++i, ++I) {
1609         const ParmVarDecl *ParamDecl = (*i);
1610         if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1611           RValue RV = I->RV;
1612           assert(RV.isScalar() &&
1613                  "NullReturnState::complete - arg not on object");
1614           CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
1615         }
1616       }
1617     }
1618 
1619     // The phi code below assumes that we haven't needed any control flow yet.
1620     assert(CGF.Builder.GetInsertBlock() == NullBB);
1621 
1622     // If we've got a void return, just jump to the continuation block.
1623     if (result.isScalar() && resultType->isVoidType()) {
1624       // No jumps required if the message-send was noreturn.
1625       if (contBB) CGF.EmitBlock(contBB);
1626       return result;
1627     }
1628 
1629     // If we've got a scalar return, build a phi.
1630     if (result.isScalar()) {
1631       // Derive the null-initialization value.
1632       llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType);
1633 
1634       // If no join is necessary, just flow out.
1635       if (!contBB) return RValue::get(null);
1636 
1637       // Otherwise, build a phi.
1638       CGF.EmitBlock(contBB);
1639       llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1640       phi->addIncoming(result.getScalarVal(), callBB);
1641       phi->addIncoming(null, NullBB);
1642       return RValue::get(phi);
1643     }
1644 
1645     // If we've got an aggregate return, null the buffer out.
1646     // FIXME: maybe we should be doing things differently for all the
1647     // cases where the ABI has us returning (1) non-agg values in
1648     // memory or (2) agg values in registers.
1649     if (result.isAggregate()) {
1650       assert(result.isAggregate() && "null init of non-aggregate result?");
1651       CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1652       if (contBB) CGF.EmitBlock(contBB);
1653       return result;
1654     }
1655 
1656     // Complex types.
1657     CGF.EmitBlock(contBB);
1658     CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1659 
1660     // Find the scalar type and its zero value.
1661     llvm::Type *scalarTy = callResult.first->getType();
1662     llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1663 
1664     // Build phis for both coordinates.
1665     llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1666     real->addIncoming(callResult.first, callBB);
1667     real->addIncoming(scalarZero, NullBB);
1668     llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1669     imag->addIncoming(callResult.second, callBB);
1670     imag->addIncoming(scalarZero, NullBB);
1671     return RValue::getComplex(real, imag);
1672   }
1673 };
1674 
1675 } // end anonymous namespace
1676 
1677 /* *** Helper Functions *** */
1678 
1679 /// getConstantGEP() - Help routine to construct simple GEPs.
getConstantGEP(llvm::LLVMContext & VMContext,llvm::GlobalVariable * C,unsigned idx0,unsigned idx1)1680 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1681                                       llvm::GlobalVariable *C, unsigned idx0,
1682                                       unsigned idx1) {
1683   llvm::Value *Idxs[] = {
1684     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1685     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1686   };
1687   return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1688 }
1689 
1690 /// hasObjCExceptionAttribute - Return true if this class or any super
1691 /// class has the __objc_exception__ attribute.
hasObjCExceptionAttribute(ASTContext & Context,const ObjCInterfaceDecl * OID)1692 static bool hasObjCExceptionAttribute(ASTContext &Context,
1693                                       const ObjCInterfaceDecl *OID) {
1694   if (OID->hasAttr<ObjCExceptionAttr>())
1695     return true;
1696   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1697     return hasObjCExceptionAttribute(Context, Super);
1698   return false;
1699 }
1700 
1701 /* *** CGObjCMac Public Interface *** */
1702 
CGObjCMac(CodeGen::CodeGenModule & cgm)1703 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1704                                                     ObjCTypes(cgm) {
1705   ObjCABI = 1;
1706   EmitImageInfo();
1707 }
1708 
1709 /// GetClass - Return a reference to the class for the given interface
1710 /// decl.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)1711 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1712                                  const ObjCInterfaceDecl *ID) {
1713   return EmitClassRef(CGF, ID);
1714 }
1715 
1716 /// GetSelector - Return the pointer to the unique'd string for this selector.
GetSelector(CodeGenFunction & CGF,Selector Sel)1717 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1718   return EmitSelector(CGF, Sel);
1719 }
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)1720 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1721   return EmitSelectorAddr(CGF, Sel);
1722 }
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1723 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1724                                     *Method) {
1725   return EmitSelector(CGF, Method->getSelector());
1726 }
1727 
GetEHType(QualType T)1728 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1729   if (T->isObjCIdType() ||
1730       T->isObjCQualifiedIdType()) {
1731     return CGM.GetAddrOfRTTIDescriptor(
1732               CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1733   }
1734   if (T->isObjCClassType() ||
1735       T->isObjCQualifiedClassType()) {
1736     return CGM.GetAddrOfRTTIDescriptor(
1737              CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1738   }
1739   if (T->isObjCObjectPointerType())
1740     return CGM.GetAddrOfRTTIDescriptor(T,  /*ForEH=*/true);
1741 
1742   llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1743 }
1744 
1745 /// Generate a constant CFString object.
1746 /*
1747   struct __builtin_CFString {
1748   const int *isa; // point to __CFConstantStringClassReference
1749   int flags;
1750   const char *str;
1751   long length;
1752   };
1753 */
1754 
1755 /// or Generate a constant NSString object.
1756 /*
1757    struct __builtin_NSString {
1758      const int *isa; // point to __NSConstantStringClassReference
1759      const char *str;
1760      unsigned int length;
1761    };
1762 */
1763 
GenerateConstantString(const StringLiteral * SL)1764 ConstantAddress CGObjCCommonMac::GenerateConstantString(
1765   const StringLiteral *SL) {
1766   return (CGM.getLangOpts().NoConstantCFStrings == 0 ?
1767           CGM.GetAddrOfConstantCFString(SL) :
1768           CGM.GetAddrOfConstantString(SL));
1769 }
1770 
1771 enum {
1772   kCFTaggedObjectID_Integer = (1 << 1) + 1
1773 };
1774 
1775 /// Generates a message send where the super is the receiver.  This is
1776 /// a message send to self with special delivery semantics indicating
1777 /// which class's method should be called.
1778 CodeGen::RValue
GenerateMessageSendSuper(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CodeGen::CallArgList & CallArgs,const ObjCMethodDecl * Method)1779 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1780                                     ReturnValueSlot Return,
1781                                     QualType ResultType,
1782                                     Selector Sel,
1783                                     const ObjCInterfaceDecl *Class,
1784                                     bool isCategoryImpl,
1785                                     llvm::Value *Receiver,
1786                                     bool IsClassMessage,
1787                                     const CodeGen::CallArgList &CallArgs,
1788                                     const ObjCMethodDecl *Method) {
1789   // Create and init a super structure; this is a (receiver, class)
1790   // pair we will pass to objc_msgSendSuper.
1791   Address ObjCSuper =
1792     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
1793                          "objc_super");
1794   llvm::Value *ReceiverAsObject =
1795     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
1796   CGF.Builder.CreateStore(
1797       ReceiverAsObject,
1798       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
1799 
1800   // If this is a class message the metaclass is passed as the target.
1801   llvm::Value *Target;
1802   if (IsClassMessage) {
1803     if (isCategoryImpl) {
1804       // Message sent to 'super' in a class method defined in a category
1805       // implementation requires an odd treatment.
1806       // If we are in a class method, we must retrieve the
1807       // _metaclass_ for the current class, pointed at by
1808       // the class's "isa" pointer.  The following assumes that
1809       // isa" is the first ivar in a class (which it must be).
1810       Target = EmitClassRef(CGF, Class->getSuperClass());
1811       Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
1812       Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign());
1813     } else {
1814       llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
1815       llvm::Value *SuperPtr =
1816           CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
1817       llvm::Value *Super =
1818         CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign());
1819       Target = Super;
1820     }
1821   } else if (isCategoryImpl)
1822     Target = EmitClassRef(CGF, Class->getSuperClass());
1823   else {
1824     llvm::Value *ClassPtr = EmitSuperClassRef(Class);
1825     ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
1826     Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign());
1827   }
1828   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
1829   // ObjCTypes types.
1830   llvm::Type *ClassTy =
1831     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
1832   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
1833   CGF.Builder.CreateStore(Target,
1834           CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
1835   return EmitMessageSend(CGF, Return, ResultType,
1836                          EmitSelector(CGF, Sel),
1837                          ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
1838                          true, CallArgs, Method, Class, ObjCTypes);
1839 }
1840 
1841 /// Generate code for a message send expression.
GenerateMessageSend(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1842 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1843                                                ReturnValueSlot Return,
1844                                                QualType ResultType,
1845                                                Selector Sel,
1846                                                llvm::Value *Receiver,
1847                                                const CallArgList &CallArgs,
1848                                                const ObjCInterfaceDecl *Class,
1849                                                const ObjCMethodDecl *Method) {
1850   return EmitMessageSend(CGF, Return, ResultType,
1851                          EmitSelector(CGF, Sel),
1852                          Receiver, CGF.getContext().getObjCIdType(),
1853                          false, CallArgs, Method, Class, ObjCTypes);
1854 }
1855 
isWeakLinkedClass(const ObjCInterfaceDecl * ID)1856 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) {
1857   do {
1858     if (ID->isWeakImported())
1859       return true;
1860   } while ((ID = ID->getSuperClass()));
1861 
1862   return false;
1863 }
1864 
1865 CodeGen::RValue
EmitMessageSend(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,llvm::Value * Sel,llvm::Value * Arg0,QualType Arg0Ty,bool IsSuper,const CallArgList & CallArgs,const ObjCMethodDecl * Method,const ObjCInterfaceDecl * ClassReceiver,const ObjCCommonTypesHelper & ObjCTypes)1866 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1867                                  ReturnValueSlot Return,
1868                                  QualType ResultType,
1869                                  llvm::Value *Sel,
1870                                  llvm::Value *Arg0,
1871                                  QualType Arg0Ty,
1872                                  bool IsSuper,
1873                                  const CallArgList &CallArgs,
1874                                  const ObjCMethodDecl *Method,
1875                                  const ObjCInterfaceDecl *ClassReceiver,
1876                                  const ObjCCommonTypesHelper &ObjCTypes) {
1877   CallArgList ActualArgs;
1878   if (!IsSuper)
1879     Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
1880   ActualArgs.add(RValue::get(Arg0), Arg0Ty);
1881   ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType());
1882   ActualArgs.addFrom(CallArgs);
1883 
1884   // If we're calling a method, use the formal signature.
1885   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1886 
1887   if (Method)
1888     assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
1889                CGM.getContext().getCanonicalType(ResultType) &&
1890            "Result type mismatch!");
1891 
1892   bool ReceiverCanBeNull = true;
1893 
1894   // Super dispatch assumes that self is non-null; even the messenger
1895   // doesn't have a null check internally.
1896   if (IsSuper) {
1897     ReceiverCanBeNull = false;
1898 
1899   // If this is a direct dispatch of a class method, check whether the class,
1900   // or anything in its hierarchy, was weak-linked.
1901   } else if (ClassReceiver && Method && Method->isClassMethod()) {
1902     ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver);
1903 
1904   // If we're emitting a method, and self is const (meaning just ARC, for now),
1905   // and the receiver is a load of self, then self is a valid object.
1906   } else if (auto CurMethod =
1907                dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) {
1908     auto Self = CurMethod->getSelfDecl();
1909     if (Self->getType().isConstQualified()) {
1910       if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) {
1911         llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer();
1912         if (SelfAddr == LI->getPointerOperand()) {
1913           ReceiverCanBeNull = false;
1914         }
1915       }
1916     }
1917   }
1918 
1919   NullReturnState nullReturn;
1920 
1921   llvm::Constant *Fn = nullptr;
1922   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
1923     if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0);
1924     Fn = (ObjCABI == 2) ?  ObjCTypes.getSendStretFn2(IsSuper)
1925       : ObjCTypes.getSendStretFn(IsSuper);
1926   } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1927     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
1928       : ObjCTypes.getSendFpretFn(IsSuper);
1929   } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
1930     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
1931       : ObjCTypes.getSendFp2retFn(IsSuper);
1932   } else {
1933     // arm64 uses objc_msgSend for stret methods and yet null receiver check
1934     // must be made for it.
1935     if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1936       nullReturn.init(CGF, Arg0);
1937     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
1938       : ObjCTypes.getSendFn(IsSuper);
1939   }
1940 
1941   // Emit a null-check if there's a consumed argument other than the receiver.
1942   bool RequiresNullCheck = false;
1943   if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) {
1944     for (const auto *ParamDecl : Method->parameters()) {
1945       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1946         if (!nullReturn.NullBB)
1947           nullReturn.init(CGF, Arg0);
1948         RequiresNullCheck = true;
1949         break;
1950       }
1951     }
1952   }
1953 
1954   llvm::Instruction *CallSite;
1955   Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType);
1956   RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs,
1957                                CGCalleeInfo(), &CallSite);
1958 
1959   // Mark the call as noreturn if the method is marked noreturn and the
1960   // receiver cannot be null.
1961   if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
1962     llvm::CallSite(CallSite).setDoesNotReturn();
1963   }
1964 
1965   return nullReturn.complete(CGF, rvalue, ResultType, CallArgs,
1966                              RequiresNullCheck ? Method : nullptr);
1967 }
1968 
GetGCAttrTypeForType(ASTContext & Ctx,QualType FQT,bool pointee=false)1969 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
1970                                            bool pointee = false) {
1971   // Note that GC qualification applies recursively to C pointer types
1972   // that aren't otherwise decorated.  This is weird, but it's probably
1973   // an intentional workaround to the unreliable placement of GC qualifiers.
1974   if (FQT.isObjCGCStrong())
1975     return Qualifiers::Strong;
1976 
1977   if (FQT.isObjCGCWeak())
1978     return Qualifiers::Weak;
1979 
1980   if (auto ownership = FQT.getObjCLifetime()) {
1981     // Ownership does not apply recursively to C pointer types.
1982     if (pointee) return Qualifiers::GCNone;
1983     switch (ownership) {
1984     case Qualifiers::OCL_Weak: return Qualifiers::Weak;
1985     case Qualifiers::OCL_Strong: return Qualifiers::Strong;
1986     case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
1987     case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
1988     case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
1989     }
1990     llvm_unreachable("bad objc ownership");
1991   }
1992 
1993   // Treat unqualified retainable pointers as strong.
1994   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
1995     return Qualifiers::Strong;
1996 
1997   // Walk into C pointer types, but only in GC.
1998   if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
1999     if (const PointerType *PT = FQT->getAs<PointerType>())
2000       return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
2001   }
2002 
2003   return Qualifiers::GCNone;
2004 }
2005 
2006 namespace {
2007   struct IvarInfo {
2008     CharUnits Offset;
2009     uint64_t SizeInWords;
IvarInfo__anon0ea151f90311::IvarInfo2010     IvarInfo(CharUnits offset, uint64_t sizeInWords)
2011       : Offset(offset), SizeInWords(sizeInWords) {}
2012 
2013     // Allow sorting based on byte pos.
operator <__anon0ea151f90311::IvarInfo2014     bool operator<(const IvarInfo &other) const {
2015       return Offset < other.Offset;
2016     }
2017   };
2018 
2019   /// A helper class for building GC layout strings.
2020   class IvarLayoutBuilder {
2021     CodeGenModule &CGM;
2022 
2023     /// The start of the layout.  Offsets will be relative to this value,
2024     /// and entries less than this value will be silently discarded.
2025     CharUnits InstanceBegin;
2026 
2027     /// The end of the layout.  Offsets will never exceed this value.
2028     CharUnits InstanceEnd;
2029 
2030     /// Whether we're generating the strong layout or the weak layout.
2031     bool ForStrongLayout;
2032 
2033     /// Whether the offsets in IvarsInfo might be out-of-order.
2034     bool IsDisordered = false;
2035 
2036     llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2037 
2038   public:
IvarLayoutBuilder(CodeGenModule & CGM,CharUnits instanceBegin,CharUnits instanceEnd,bool forStrongLayout)2039     IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2040                       CharUnits instanceEnd, bool forStrongLayout)
2041       : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2042         ForStrongLayout(forStrongLayout) {
2043     }
2044 
2045     void visitRecord(const RecordType *RT, CharUnits offset);
2046 
2047     template <class Iterator, class GetOffsetFn>
2048     void visitAggregate(Iterator begin, Iterator end,
2049                         CharUnits aggrOffset,
2050                         const GetOffsetFn &getOffset);
2051 
2052     void visitField(const FieldDecl *field, CharUnits offset);
2053 
2054     /// Add the layout of a block implementation.
2055     void visitBlock(const CGBlockInfo &blockInfo);
2056 
2057     /// Is there any information for an interesting bitmap?
hasBitmapData() const2058     bool hasBitmapData() const { return !IvarsInfo.empty(); }
2059 
2060     llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2061                                 llvm::SmallVectorImpl<unsigned char> &buffer);
2062 
dump(ArrayRef<unsigned char> buffer)2063     static void dump(ArrayRef<unsigned char> buffer) {
2064       const unsigned char *s = buffer.data();
2065       for (unsigned i = 0, e = buffer.size(); i < e; i++)
2066         if (!(s[i] & 0xf0))
2067           printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2068         else
2069           printf("0x%x%s",  s[i], s[i] != 0 ? ", " : "");
2070       printf("\n");
2071     }
2072   };
2073 } // end anonymous namespace
2074 
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)2075 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2076                                                 const CGBlockInfo &blockInfo) {
2077 
2078   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2079   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2080     return nullPtr;
2081 
2082   IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2083                             /*for strong layout*/ true);
2084 
2085   builder.visitBlock(blockInfo);
2086 
2087   if (!builder.hasBitmapData())
2088     return nullPtr;
2089 
2090   llvm::SmallVector<unsigned char, 32> buffer;
2091   llvm::Constant *C = builder.buildBitmap(*this, buffer);
2092   if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2093     printf("\n block variable layout for block: ");
2094     builder.dump(buffer);
2095   }
2096 
2097   return C;
2098 }
2099 
visitBlock(const CGBlockInfo & blockInfo)2100 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2101   // __isa is the first field in block descriptor and must assume by runtime's
2102   // convention that it is GC'able.
2103   IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2104 
2105   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2106 
2107   // Ignore the optional 'this' capture: C++ objects are not assumed
2108   // to be GC'ed.
2109 
2110   CharUnits lastFieldOffset;
2111 
2112   // Walk the captured variables.
2113   for (const auto &CI : blockDecl->captures()) {
2114     const VarDecl *variable = CI.getVariable();
2115     QualType type = variable->getType();
2116 
2117     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2118 
2119     // Ignore constant captures.
2120     if (capture.isConstant()) continue;
2121 
2122     CharUnits fieldOffset = capture.getOffset();
2123 
2124     // Block fields are not necessarily ordered; if we detect that we're
2125     // adding them out-of-order, make sure we sort later.
2126     if (fieldOffset < lastFieldOffset)
2127       IsDisordered = true;
2128     lastFieldOffset = fieldOffset;
2129 
2130     // __block variables are passed by their descriptor address.
2131     if (CI.isByRef()) {
2132       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2133       continue;
2134     }
2135 
2136     assert(!type->isArrayType() && "array variable should not be caught");
2137     if (const RecordType *record = type->getAs<RecordType>()) {
2138       visitRecord(record, fieldOffset);
2139       continue;
2140     }
2141 
2142     Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2143 
2144     if (GCAttr == Qualifiers::Strong) {
2145       assert(CGM.getContext().getTypeSize(type)
2146                 == CGM.getTarget().getPointerWidth(0));
2147       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2148     }
2149   }
2150 }
2151 
2152 /// getBlockCaptureLifetime - This routine returns life time of the captured
2153 /// block variable for the purpose of block layout meta-data generation. FQT is
2154 /// the type of the variable captured in the block.
getBlockCaptureLifetime(QualType FQT,bool ByrefLayout)2155 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2156                                                                   bool ByrefLayout) {
2157   // If it has an ownership qualifier, we're done.
2158   if (auto lifetime = FQT.getObjCLifetime())
2159     return lifetime;
2160 
2161   // If it doesn't, and this is ARC, it has no ownership.
2162   if (CGM.getLangOpts().ObjCAutoRefCount)
2163     return Qualifiers::OCL_None;
2164 
2165   // In MRC, retainable pointers are owned by non-__block variables.
2166   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2167     return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2168 
2169   return Qualifiers::OCL_None;
2170 }
2171 
UpdateRunSkipBlockVars(bool IsByref,Qualifiers::ObjCLifetime LifeTime,CharUnits FieldOffset,CharUnits FieldSize)2172 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2173                                              Qualifiers::ObjCLifetime LifeTime,
2174                                              CharUnits FieldOffset,
2175                                              CharUnits FieldSize) {
2176   // __block variables are passed by their descriptor address.
2177   if (IsByref)
2178     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2179                                         FieldSize));
2180   else if (LifeTime == Qualifiers::OCL_Strong)
2181     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2182                                         FieldSize));
2183   else if (LifeTime == Qualifiers::OCL_Weak)
2184     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2185                                         FieldSize));
2186   else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2187     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2188                                         FieldSize));
2189   else
2190     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2191                                         FieldOffset,
2192                                         FieldSize));
2193 }
2194 
BuildRCRecordLayout(const llvm::StructLayout * RecLayout,const RecordDecl * RD,ArrayRef<const FieldDecl * > RecFields,CharUnits BytePos,bool & HasUnion,bool ByrefLayout)2195 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2196                                           const RecordDecl *RD,
2197                                           ArrayRef<const FieldDecl*> RecFields,
2198                                           CharUnits BytePos, bool &HasUnion,
2199                                           bool ByrefLayout) {
2200   bool IsUnion = (RD && RD->isUnion());
2201   CharUnits MaxUnionSize = CharUnits::Zero();
2202   const FieldDecl *MaxField = nullptr;
2203   const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2204   CharUnits MaxFieldOffset = CharUnits::Zero();
2205   CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2206 
2207   if (RecFields.empty())
2208     return;
2209   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2210 
2211   for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2212     const FieldDecl *Field = RecFields[i];
2213     // Note that 'i' here is actually the field index inside RD of Field,
2214     // although this dependency is hidden.
2215     const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2216     CharUnits FieldOffset =
2217       CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2218 
2219     // Skip over unnamed or bitfields
2220     if (!Field->getIdentifier() || Field->isBitField()) {
2221       LastFieldBitfieldOrUnnamed = Field;
2222       LastBitfieldOrUnnamedOffset = FieldOffset;
2223       continue;
2224     }
2225 
2226     LastFieldBitfieldOrUnnamed = nullptr;
2227     QualType FQT = Field->getType();
2228     if (FQT->isRecordType() || FQT->isUnionType()) {
2229       if (FQT->isUnionType())
2230         HasUnion = true;
2231 
2232       BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
2233                                   BytePos + FieldOffset, HasUnion);
2234       continue;
2235     }
2236 
2237     if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2238       const ConstantArrayType *CArray =
2239         dyn_cast_or_null<ConstantArrayType>(Array);
2240       uint64_t ElCount = CArray->getSize().getZExtValue();
2241       assert(CArray && "only array with known element size is supported");
2242       FQT = CArray->getElementType();
2243       while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2244         const ConstantArrayType *CArray =
2245           dyn_cast_or_null<ConstantArrayType>(Array);
2246         ElCount *= CArray->getSize().getZExtValue();
2247         FQT = CArray->getElementType();
2248       }
2249       if (FQT->isRecordType() && ElCount) {
2250         int OldIndex = RunSkipBlockVars.size() - 1;
2251         const RecordType *RT = FQT->getAs<RecordType>();
2252         BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset,
2253                                     HasUnion);
2254 
2255         // Replicate layout information for each array element. Note that
2256         // one element is already done.
2257         uint64_t ElIx = 1;
2258         for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2259           CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2260           for (int i = OldIndex+1; i <= FirstIndex; ++i)
2261             RunSkipBlockVars.push_back(
2262               RUN_SKIP(RunSkipBlockVars[i].opcode,
2263               RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2264               RunSkipBlockVars[i].block_var_size));
2265         }
2266         continue;
2267       }
2268     }
2269     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2270     if (IsUnion) {
2271       CharUnits UnionIvarSize = FieldSize;
2272       if (UnionIvarSize > MaxUnionSize) {
2273         MaxUnionSize = UnionIvarSize;
2274         MaxField = Field;
2275         MaxFieldOffset = FieldOffset;
2276       }
2277     } else {
2278       UpdateRunSkipBlockVars(false,
2279                              getBlockCaptureLifetime(FQT, ByrefLayout),
2280                              BytePos + FieldOffset,
2281                              FieldSize);
2282     }
2283   }
2284 
2285   if (LastFieldBitfieldOrUnnamed) {
2286     if (LastFieldBitfieldOrUnnamed->isBitField()) {
2287       // Last field was a bitfield. Must update the info.
2288       uint64_t BitFieldSize
2289         = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2290       unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2291                         ((BitFieldSize % ByteSizeInBits) != 0);
2292       CharUnits Size = CharUnits::fromQuantity(UnsSize);
2293       Size += LastBitfieldOrUnnamedOffset;
2294       UpdateRunSkipBlockVars(false,
2295                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2296                                                      ByrefLayout),
2297                              BytePos + LastBitfieldOrUnnamedOffset,
2298                              Size);
2299     } else {
2300       assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2301       // Last field was unnamed. Must update skip info.
2302       CharUnits FieldSize
2303         = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2304       UpdateRunSkipBlockVars(false,
2305                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2306                                                      ByrefLayout),
2307                              BytePos + LastBitfieldOrUnnamedOffset,
2308                              FieldSize);
2309     }
2310   }
2311 
2312   if (MaxField)
2313     UpdateRunSkipBlockVars(false,
2314                            getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2315                            BytePos + MaxFieldOffset,
2316                            MaxUnionSize);
2317 }
2318 
BuildRCBlockVarRecordLayout(const RecordType * RT,CharUnits BytePos,bool & HasUnion,bool ByrefLayout)2319 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2320                                                   CharUnits BytePos,
2321                                                   bool &HasUnion,
2322                                                   bool ByrefLayout) {
2323   const RecordDecl *RD = RT->getDecl();
2324   SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2325   llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2326   const llvm::StructLayout *RecLayout =
2327     CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2328 
2329   BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2330 }
2331 
2332 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2333 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2334 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2335 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2336 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2337 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2338 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2339 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2340 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
InlineLayoutInstruction(SmallVectorImpl<unsigned char> & Layout)2341 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2342                                     SmallVectorImpl<unsigned char> &Layout) {
2343   uint64_t Result = 0;
2344   if (Layout.size() <= 3) {
2345     unsigned size = Layout.size();
2346     unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2347     unsigned char inst;
2348     enum BLOCK_LAYOUT_OPCODE opcode ;
2349     switch (size) {
2350       case 3:
2351         inst = Layout[0];
2352         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2353         if (opcode == BLOCK_LAYOUT_STRONG)
2354           strong_word_count = (inst & 0xF)+1;
2355         else
2356           return 0;
2357         inst = Layout[1];
2358         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2359         if (opcode == BLOCK_LAYOUT_BYREF)
2360           byref_word_count = (inst & 0xF)+1;
2361         else
2362           return 0;
2363         inst = Layout[2];
2364         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2365         if (opcode == BLOCK_LAYOUT_WEAK)
2366           weak_word_count = (inst & 0xF)+1;
2367         else
2368           return 0;
2369         break;
2370 
2371       case 2:
2372         inst = Layout[0];
2373         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2374         if (opcode == BLOCK_LAYOUT_STRONG) {
2375           strong_word_count = (inst & 0xF)+1;
2376           inst = Layout[1];
2377           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2378           if (opcode == BLOCK_LAYOUT_BYREF)
2379             byref_word_count = (inst & 0xF)+1;
2380           else if (opcode == BLOCK_LAYOUT_WEAK)
2381             weak_word_count = (inst & 0xF)+1;
2382           else
2383             return 0;
2384         }
2385         else if (opcode == BLOCK_LAYOUT_BYREF) {
2386           byref_word_count = (inst & 0xF)+1;
2387           inst = Layout[1];
2388           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2389           if (opcode == BLOCK_LAYOUT_WEAK)
2390             weak_word_count = (inst & 0xF)+1;
2391           else
2392             return 0;
2393         }
2394         else
2395           return 0;
2396         break;
2397 
2398       case 1:
2399         inst = Layout[0];
2400         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2401         if (opcode == BLOCK_LAYOUT_STRONG)
2402           strong_word_count = (inst & 0xF)+1;
2403         else if (opcode == BLOCK_LAYOUT_BYREF)
2404           byref_word_count = (inst & 0xF)+1;
2405         else if (opcode == BLOCK_LAYOUT_WEAK)
2406           weak_word_count = (inst & 0xF)+1;
2407         else
2408           return 0;
2409         break;
2410 
2411       default:
2412         return 0;
2413     }
2414 
2415     // Cannot inline when any of the word counts is 15. Because this is one less
2416     // than the actual work count (so 15 means 16 actual word counts),
2417     // and we can only display 0 thru 15 word counts.
2418     if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2419       return 0;
2420 
2421     unsigned count =
2422       (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2423 
2424     if (size == count) {
2425       if (strong_word_count)
2426         Result = strong_word_count;
2427       Result <<= 4;
2428       if (byref_word_count)
2429         Result += byref_word_count;
2430       Result <<= 4;
2431       if (weak_word_count)
2432         Result += weak_word_count;
2433     }
2434   }
2435   return Result;
2436 }
2437 
getBitmapBlockLayout(bool ComputeByrefLayout)2438 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2439   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2440   if (RunSkipBlockVars.empty())
2441     return nullPtr;
2442   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2443   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2444   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2445 
2446   // Sort on byte position; captures might not be allocated in order,
2447   // and unions can do funny things.
2448   llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2449   SmallVector<unsigned char, 16> Layout;
2450 
2451   unsigned size = RunSkipBlockVars.size();
2452   for (unsigned i = 0; i < size; i++) {
2453     enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2454     CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2455     CharUnits end_byte_pos = start_byte_pos;
2456     unsigned j = i+1;
2457     while (j < size) {
2458       if (opcode == RunSkipBlockVars[j].opcode) {
2459         end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2460         i++;
2461       }
2462       else
2463         break;
2464     }
2465     CharUnits size_in_bytes =
2466     end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2467     if (j < size) {
2468       CharUnits gap =
2469       RunSkipBlockVars[j].block_var_bytepos -
2470       RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2471       size_in_bytes += gap;
2472     }
2473     CharUnits residue_in_bytes = CharUnits::Zero();
2474     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2475       residue_in_bytes = size_in_bytes % WordSizeInBytes;
2476       size_in_bytes -= residue_in_bytes;
2477       opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2478     }
2479 
2480     unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2481     while (size_in_words >= 16) {
2482       // Note that value in imm. is one less that the actual
2483       // value. So, 0xf means 16 words follow!
2484       unsigned char inst = (opcode << 4) | 0xf;
2485       Layout.push_back(inst);
2486       size_in_words -= 16;
2487     }
2488     if (size_in_words > 0) {
2489       // Note that value in imm. is one less that the actual
2490       // value. So, we subtract 1 away!
2491       unsigned char inst = (opcode << 4) | (size_in_words-1);
2492       Layout.push_back(inst);
2493     }
2494     if (residue_in_bytes > CharUnits::Zero()) {
2495       unsigned char inst =
2496       (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2497       Layout.push_back(inst);
2498     }
2499   }
2500 
2501   while (!Layout.empty()) {
2502     unsigned char inst = Layout.back();
2503     enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2504     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2505       Layout.pop_back();
2506     else
2507       break;
2508   }
2509 
2510   uint64_t Result = InlineLayoutInstruction(Layout);
2511   if (Result != 0) {
2512     // Block variable layout instruction has been inlined.
2513     if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2514       if (ComputeByrefLayout)
2515         printf("\n Inline BYREF variable layout: ");
2516       else
2517         printf("\n Inline block variable layout: ");
2518       printf("0x0%" PRIx64 "", Result);
2519       if (auto numStrong = (Result & 0xF00) >> 8)
2520         printf(", BL_STRONG:%d", (int) numStrong);
2521       if (auto numByref = (Result & 0x0F0) >> 4)
2522         printf(", BL_BYREF:%d", (int) numByref);
2523       if (auto numWeak = (Result & 0x00F) >> 0)
2524         printf(", BL_WEAK:%d", (int) numWeak);
2525       printf(", BL_OPERATOR:0\n");
2526     }
2527     return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2528   }
2529 
2530   unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2531   Layout.push_back(inst);
2532   std::string BitMap;
2533   for (unsigned i = 0, e = Layout.size(); i != e; i++)
2534     BitMap += Layout[i];
2535 
2536   if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2537     if (ComputeByrefLayout)
2538       printf("\n Byref variable layout: ");
2539     else
2540       printf("\n Block variable layout: ");
2541     for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2542       unsigned char inst = BitMap[i];
2543       enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2544       unsigned delta = 1;
2545       switch (opcode) {
2546         case BLOCK_LAYOUT_OPERATOR:
2547           printf("BL_OPERATOR:");
2548           delta = 0;
2549           break;
2550         case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2551           printf("BL_NON_OBJECT_BYTES:");
2552           break;
2553         case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2554           printf("BL_NON_OBJECT_WORD:");
2555           break;
2556         case BLOCK_LAYOUT_STRONG:
2557           printf("BL_STRONG:");
2558           break;
2559         case BLOCK_LAYOUT_BYREF:
2560           printf("BL_BYREF:");
2561           break;
2562         case BLOCK_LAYOUT_WEAK:
2563           printf("BL_WEAK:");
2564           break;
2565         case BLOCK_LAYOUT_UNRETAINED:
2566           printf("BL_UNRETAINED:");
2567           break;
2568       }
2569       // Actual value of word count is one more that what is in the imm.
2570       // field of the instruction
2571       printf("%d", (inst & 0xf) + delta);
2572       if (i < e-1)
2573         printf(", ");
2574       else
2575         printf("\n");
2576     }
2577   }
2578 
2579   llvm::GlobalVariable *Entry = CreateMetadataVar(
2580       "OBJC_CLASS_NAME_",
2581       llvm::ConstantDataArray::getString(VMContext, BitMap, false),
2582       "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true);
2583   return getConstantGEP(VMContext, Entry, 0, 0);
2584 }
2585 
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)2586 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2587                                                     const CGBlockInfo &blockInfo) {
2588   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2589 
2590   RunSkipBlockVars.clear();
2591   bool hasUnion = false;
2592 
2593   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2594   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2595   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2596 
2597   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2598 
2599   // Calculate the basic layout of the block structure.
2600   const llvm::StructLayout *layout =
2601   CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2602 
2603   // Ignore the optional 'this' capture: C++ objects are not assumed
2604   // to be GC'ed.
2605   if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2606     UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2607                            blockInfo.BlockHeaderForcedGapOffset,
2608                            blockInfo.BlockHeaderForcedGapSize);
2609   // Walk the captured variables.
2610   for (const auto &CI : blockDecl->captures()) {
2611     const VarDecl *variable = CI.getVariable();
2612     QualType type = variable->getType();
2613 
2614     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2615 
2616     // Ignore constant captures.
2617     if (capture.isConstant()) continue;
2618 
2619     CharUnits fieldOffset =
2620        CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2621 
2622     assert(!type->isArrayType() && "array variable should not be caught");
2623     if (!CI.isByRef())
2624       if (const RecordType *record = type->getAs<RecordType>()) {
2625         BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2626         continue;
2627       }
2628     CharUnits fieldSize;
2629     if (CI.isByRef())
2630       fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2631     else
2632       fieldSize = CGM.getContext().getTypeSizeInChars(type);
2633     UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2634                            fieldOffset, fieldSize);
2635   }
2636   return getBitmapBlockLayout(false);
2637 }
2638 
BuildByrefLayout(CodeGen::CodeGenModule & CGM,QualType T)2639 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2640                                                   QualType T) {
2641   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2642   assert(!T->isArrayType() && "__block array variable should not be caught");
2643   CharUnits fieldOffset;
2644   RunSkipBlockVars.clear();
2645   bool hasUnion = false;
2646   if (const RecordType *record = T->getAs<RecordType>()) {
2647     BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2648     llvm::Constant *Result = getBitmapBlockLayout(true);
2649     if (isa<llvm::ConstantInt>(Result))
2650       Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2651     return Result;
2652   }
2653   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2654   return nullPtr;
2655 }
2656 
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)2657 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2658                                             const ObjCProtocolDecl *PD) {
2659   // FIXME: I don't understand why gcc generates this, or where it is
2660   // resolved. Investigate. Its also wasteful to look this up over and over.
2661   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2662 
2663   return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2664                                         ObjCTypes.getExternalProtocolPtrTy());
2665 }
2666 
GenerateProtocol(const ObjCProtocolDecl * PD)2667 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2668   // FIXME: We shouldn't need this, the protocol decl should contain enough
2669   // information to tell us whether this was a declaration or a definition.
2670   DefinedProtocols.insert(PD->getIdentifier());
2671 
2672   // If we have generated a forward reference to this protocol, emit
2673   // it now. Otherwise do nothing, the protocol objects are lazily
2674   // emitted.
2675   if (Protocols.count(PD->getIdentifier()))
2676     GetOrEmitProtocol(PD);
2677 }
2678 
GetProtocolRef(const ObjCProtocolDecl * PD)2679 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2680   if (DefinedProtocols.count(PD->getIdentifier()))
2681     return GetOrEmitProtocol(PD);
2682 
2683   return GetOrEmitProtocolRef(PD);
2684 }
2685 
EmitClassRefViaRuntime(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID,ObjCCommonTypesHelper & ObjCTypes)2686 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2687                CodeGenFunction &CGF,
2688                const ObjCInterfaceDecl *ID,
2689                ObjCCommonTypesHelper &ObjCTypes) {
2690   llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn();
2691 
2692   llvm::Value *className =
2693       CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString())
2694         .getPointer();
2695   ASTContext &ctx = CGF.CGM.getContext();
2696   className =
2697       CGF.Builder.CreateBitCast(className,
2698                                 CGF.ConvertType(
2699                                   ctx.getPointerType(ctx.CharTy.withConst())));
2700   llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className);
2701   call->setDoesNotThrow();
2702   return call;
2703 }
2704 
2705 /*
2706 // Objective-C 1.0 extensions
2707 struct _objc_protocol {
2708 struct _objc_protocol_extension *isa;
2709 char *protocol_name;
2710 struct _objc_protocol_list *protocol_list;
2711 struct _objc__method_prototype_list *instance_methods;
2712 struct _objc__method_prototype_list *class_methods
2713 };
2714 
2715 See EmitProtocolExtension().
2716 */
GetOrEmitProtocol(const ObjCProtocolDecl * PD)2717 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
2718   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
2719 
2720   // Early exit if a defining object has already been generated.
2721   if (Entry && Entry->hasInitializer())
2722     return Entry;
2723 
2724   // Use the protocol definition, if there is one.
2725   if (const ObjCProtocolDecl *Def = PD->getDefinition())
2726     PD = Def;
2727 
2728   // FIXME: I don't understand why gcc generates this, or where it is
2729   // resolved. Investigate. Its also wasteful to look this up over and over.
2730   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2731 
2732   // Construct method lists.
2733   std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
2734   std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
2735   std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
2736   for (const auto *MD : PD->instance_methods()) {
2737     llvm::Constant *C = GetMethodDescriptionConstant(MD);
2738     if (!C)
2739       return GetOrEmitProtocolRef(PD);
2740 
2741     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
2742       OptInstanceMethods.push_back(C);
2743       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
2744     } else {
2745       InstanceMethods.push_back(C);
2746       MethodTypesExt.push_back(GetMethodVarType(MD, true));
2747     }
2748   }
2749 
2750   for (const auto *MD : PD->class_methods()) {
2751     llvm::Constant *C = GetMethodDescriptionConstant(MD);
2752     if (!C)
2753       return GetOrEmitProtocolRef(PD);
2754 
2755     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
2756       OptClassMethods.push_back(C);
2757       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
2758     } else {
2759       ClassMethods.push_back(C);
2760       MethodTypesExt.push_back(GetMethodVarType(MD, true));
2761     }
2762   }
2763 
2764   MethodTypesExt.insert(MethodTypesExt.end(),
2765                         OptMethodTypesExt.begin(), OptMethodTypesExt.end());
2766 
2767   llvm::Constant *Values[] = {
2768       EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods,
2769                             MethodTypesExt),
2770       GetClassName(PD->getObjCRuntimeNameAsString()),
2771       EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
2772                        PD->protocol_begin(), PD->protocol_end()),
2773       EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(),
2774                          "__OBJC,__cat_inst_meth,regular,no_dead_strip",
2775                          InstanceMethods),
2776       EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(),
2777                          "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2778                          ClassMethods)};
2779   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
2780                                                    Values);
2781 
2782   if (Entry) {
2783     // Already created, update the initializer.
2784     assert(Entry->hasPrivateLinkage());
2785     Entry->setInitializer(Init);
2786   } else {
2787     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2788                                      false, llvm::GlobalValue::PrivateLinkage,
2789                                      Init, "OBJC_PROTOCOL_" + PD->getName());
2790     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2791     // FIXME: Is this necessary? Why only for protocol?
2792     Entry->setAlignment(4);
2793 
2794     Protocols[PD->getIdentifier()] = Entry;
2795   }
2796   CGM.addCompilerUsedGlobal(Entry);
2797 
2798   return Entry;
2799 }
2800 
GetOrEmitProtocolRef(const ObjCProtocolDecl * PD)2801 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
2802   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
2803 
2804   if (!Entry) {
2805     // We use the initializer as a marker of whether this is a forward
2806     // reference or not. At module finalization we add the empty
2807     // contents for protocols which were referenced but never defined.
2808     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2809                                      false, llvm::GlobalValue::PrivateLinkage,
2810                                      nullptr, "OBJC_PROTOCOL_" + PD->getName());
2811     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2812     // FIXME: Is this necessary? Why only for protocol?
2813     Entry->setAlignment(4);
2814   }
2815 
2816   return Entry;
2817 }
2818 
2819 /*
2820   struct _objc_protocol_extension {
2821   uint32_t size;
2822   struct objc_method_description_list *optional_instance_methods;
2823   struct objc_method_description_list *optional_class_methods;
2824   struct objc_property_list *instance_properties;
2825   const char ** extendedMethodTypes;
2826   struct objc_property_list *class_properties;
2827   };
2828 */
2829 llvm::Constant *
EmitProtocolExtension(const ObjCProtocolDecl * PD,ArrayRef<llvm::Constant * > OptInstanceMethods,ArrayRef<llvm::Constant * > OptClassMethods,ArrayRef<llvm::Constant * > MethodTypesExt)2830 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
2831                                  ArrayRef<llvm::Constant*> OptInstanceMethods,
2832                                  ArrayRef<llvm::Constant*> OptClassMethods,
2833                                  ArrayRef<llvm::Constant*> MethodTypesExt) {
2834   uint64_t Size =
2835     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
2836   llvm::Constant *Values[] = {
2837       llvm::ConstantInt::get(ObjCTypes.IntTy, Size),
2838       EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(),
2839                          "__OBJC,__cat_inst_meth,regular,no_dead_strip",
2840                          OptInstanceMethods),
2841       EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(),
2842                          "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2843                          OptClassMethods),
2844       EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
2845                        ObjCTypes, false),
2846       EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
2847                               MethodTypesExt, ObjCTypes),
2848       EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
2849                        PD, ObjCTypes, true)};
2850 
2851   // Return null if no extension bits are used.
2852   if (Values[1]->isNullValue() && Values[2]->isNullValue() &&
2853       Values[3]->isNullValue() && Values[4]->isNullValue() &&
2854       Values[5]->isNullValue())
2855     return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
2856 
2857   llvm::Constant *Init =
2858     llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values);
2859 
2860   // No special section, but goes in llvm.used
2861   return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init,
2862                            StringRef(), CGM.getPointerAlign(), true);
2863 }
2864 
2865 /*
2866   struct objc_protocol_list {
2867     struct objc_protocol_list *next;
2868     long count;
2869     Protocol *list[];
2870   };
2871 */
2872 llvm::Constant *
EmitProtocolList(Twine Name,ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)2873 CGObjCMac::EmitProtocolList(Twine Name,
2874                             ObjCProtocolDecl::protocol_iterator begin,
2875                             ObjCProtocolDecl::protocol_iterator end) {
2876   SmallVector<llvm::Constant *, 16> ProtocolRefs;
2877 
2878   for (; begin != end; ++begin)
2879     ProtocolRefs.push_back(GetProtocolRef(*begin));
2880 
2881   // Just return null for empty protocol lists
2882   if (ProtocolRefs.empty())
2883     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
2884 
2885   // This list is null terminated.
2886   ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy));
2887 
2888   llvm::Constant *Values[3];
2889   // This field is only used by the runtime.
2890   Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
2891   Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy,
2892                                      ProtocolRefs.size() - 1);
2893   Values[2] =
2894     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy,
2895                                                   ProtocolRefs.size()),
2896                              ProtocolRefs);
2897 
2898   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
2899   llvm::GlobalVariable *GV =
2900     CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2901                       CGM.getPointerAlign(), false);
2902   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
2903 }
2904 
2905 void CGObjCCommonMac::
PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo *,16> & PropertySet,SmallVectorImpl<llvm::Constant * > & Properties,const Decl * Container,const ObjCProtocolDecl * Proto,const ObjCCommonTypesHelper & ObjCTypes,bool IsClassProperty)2906 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
2907                        SmallVectorImpl<llvm::Constant *> &Properties,
2908                        const Decl *Container,
2909                        const ObjCProtocolDecl *Proto,
2910                        const ObjCCommonTypesHelper &ObjCTypes,
2911                        bool IsClassProperty) {
2912   for (const auto *P : Proto->protocols())
2913     PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes,
2914                            IsClassProperty);
2915 
2916   for (const auto *PD : Proto->properties()) {
2917     if (IsClassProperty != PD->isClassProperty())
2918       continue;
2919     if (!PropertySet.insert(PD->getIdentifier()).second)
2920       continue;
2921     llvm::Constant *Prop[] = {
2922       GetPropertyName(PD->getIdentifier()),
2923       GetPropertyTypeString(PD, Container)
2924     };
2925     Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
2926   }
2927 }
2928 
2929 /*
2930   struct _objc_property {
2931     const char * const name;
2932     const char * const attributes;
2933   };
2934 
2935   struct _objc_property_list {
2936     uint32_t entsize; // sizeof (struct _objc_property)
2937     uint32_t prop_count;
2938     struct _objc_property[prop_count];
2939   };
2940 */
EmitPropertyList(Twine Name,const Decl * Container,const ObjCContainerDecl * OCD,const ObjCCommonTypesHelper & ObjCTypes,bool IsClassProperty)2941 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
2942                                        const Decl *Container,
2943                                        const ObjCContainerDecl *OCD,
2944                                        const ObjCCommonTypesHelper &ObjCTypes,
2945                                        bool IsClassProperty) {
2946   if (IsClassProperty) {
2947     // Make this entry NULL for OS X with deployment target < 10.11, for iOS
2948     // with deployment target < 9.0.
2949     const llvm::Triple &Triple = CGM.getTarget().getTriple();
2950     if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) ||
2951         (Triple.isiOS() && Triple.isOSVersionLT(9)))
2952       return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
2953   }
2954 
2955   SmallVector<llvm::Constant *, 16> Properties;
2956   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
2957 
2958   auto AddProperty = [&](const ObjCPropertyDecl *PD) {
2959     llvm::Constant *Prop[] = {GetPropertyName(PD->getIdentifier()),
2960                               GetPropertyTypeString(PD, Container)};
2961     Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
2962   };
2963   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
2964     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
2965       for (auto *PD : ClassExt->properties()) {
2966         if (IsClassProperty != PD->isClassProperty())
2967           continue;
2968         PropertySet.insert(PD->getIdentifier());
2969         AddProperty(PD);
2970       }
2971 
2972   for (const auto *PD : OCD->properties()) {
2973     if (IsClassProperty != PD->isClassProperty())
2974       continue;
2975     // Don't emit duplicate metadata for properties that were already in a
2976     // class extension.
2977     if (!PropertySet.insert(PD->getIdentifier()).second)
2978       continue;
2979     AddProperty(PD);
2980   }
2981 
2982   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
2983     for (const auto *P : OID->all_referenced_protocols())
2984       PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes,
2985                              IsClassProperty);
2986   }
2987   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
2988     for (const auto *P : CD->protocols())
2989       PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes,
2990                              IsClassProperty);
2991   }
2992 
2993   // Return null for empty list.
2994   if (Properties.empty())
2995     return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
2996 
2997   unsigned PropertySize =
2998     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
2999   llvm::Constant *Values[3];
3000   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize);
3001   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size());
3002   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy,
3003                                              Properties.size());
3004   Values[2] = llvm::ConstantArray::get(AT, Properties);
3005   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3006 
3007   llvm::GlobalVariable *GV =
3008     CreateMetadataVar(Name, Init,
3009                       (ObjCABI == 2) ? "__DATA, __objc_const" :
3010                       "__OBJC,__property,regular,no_dead_strip",
3011                       CGM.getPointerAlign(),
3012                       true);
3013   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
3014 }
3015 
3016 llvm::Constant *
EmitProtocolMethodTypes(Twine Name,ArrayRef<llvm::Constant * > MethodTypes,const ObjCCommonTypesHelper & ObjCTypes)3017 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3018                                          ArrayRef<llvm::Constant*> MethodTypes,
3019                                          const ObjCCommonTypesHelper &ObjCTypes) {
3020   // Return null for empty list.
3021   if (MethodTypes.empty())
3022     return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
3023 
3024   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
3025                                              MethodTypes.size());
3026   llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
3027 
3028   llvm::GlobalVariable *GV = CreateMetadataVar(
3029       Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(),
3030       CGM.getPointerAlign(), true);
3031   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
3032 }
3033 
3034 /*
3035   struct objc_method_description_list {
3036   int count;
3037   struct objc_method_description list[];
3038   };
3039 */
3040 llvm::Constant *
GetMethodDescriptionConstant(const ObjCMethodDecl * MD)3041 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
3042   llvm::Constant *Desc[] = {
3043     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
3044                                    ObjCTypes.SelectorPtrTy),
3045     GetMethodVarType(MD)
3046   };
3047   if (!Desc[1])
3048     return nullptr;
3049 
3050   return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy,
3051                                    Desc);
3052 }
3053 
3054 llvm::Constant *
EmitMethodDescList(Twine Name,StringRef Section,ArrayRef<llvm::Constant * > Methods)3055 CGObjCMac::EmitMethodDescList(Twine Name, StringRef Section,
3056                               ArrayRef<llvm::Constant *> Methods) {
3057   // Return null for empty list.
3058   if (Methods.empty())
3059     return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
3060 
3061   llvm::Constant *Values[2];
3062   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
3063   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy,
3064                                              Methods.size());
3065   Values[1] = llvm::ConstantArray::get(AT, Methods);
3066   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3067 
3068   llvm::GlobalVariable *GV =
3069     CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3070   return llvm::ConstantExpr::getBitCast(GV,
3071                                         ObjCTypes.MethodDescriptionListPtrTy);
3072 }
3073 
3074 /*
3075   struct _objc_category {
3076   char *category_name;
3077   char *class_name;
3078   struct _objc_method_list *instance_methods;
3079   struct _objc_method_list *class_methods;
3080   struct _objc_protocol_list *protocols;
3081   uint32_t size; // <rdar://4585769>
3082   struct _objc_property_list *instance_properties;
3083   struct _objc_property_list *class_properties;
3084   };
3085 */
GenerateCategory(const ObjCCategoryImplDecl * OCD)3086 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3087   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3088 
3089   // FIXME: This is poor design, the OCD should have a pointer to the category
3090   // decl. Additionally, note that Category can be null for the @implementation
3091   // w/o an @interface case. Sema should just create one for us as it does for
3092   // @implementation so everyone else can live life under a clear blue sky.
3093   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3094   const ObjCCategoryDecl *Category =
3095     Interface->FindCategoryDeclaration(OCD->getIdentifier());
3096 
3097   SmallString<256> ExtName;
3098   llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3099                                      << OCD->getName();
3100 
3101   SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
3102   for (const auto *I : OCD->instance_methods())
3103     // Instance methods should always be defined.
3104     InstanceMethods.push_back(GetMethodConstant(I));
3105 
3106   for (const auto *I : OCD->class_methods())
3107     // Class methods should always be defined.
3108     ClassMethods.push_back(GetMethodConstant(I));
3109 
3110   llvm::Constant *Values[8];
3111   Values[0] = GetClassName(OCD->getName());
3112   Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString());
3113   LazySymbols.insert(Interface->getIdentifier());
3114   Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(),
3115                              "__OBJC,__cat_inst_meth,regular,no_dead_strip",
3116                              InstanceMethods);
3117   Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(),
3118                              "__OBJC,__cat_cls_meth,regular,no_dead_strip",
3119                              ClassMethods);
3120   if (Category) {
3121     Values[4] =
3122         EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3123                          Category->protocol_begin(), Category->protocol_end());
3124   } else {
3125     Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3126   }
3127   Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
3128 
3129   // If there is no category @interface then there can be no properties.
3130   if (Category) {
3131     Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
3132                                  OCD, Category, ObjCTypes, false);
3133     Values[7] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3134                                  OCD, Category, ObjCTypes, true);
3135   } else {
3136     Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3137     Values[7] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3138   }
3139 
3140   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy,
3141                                                    Values);
3142 
3143   llvm::GlobalVariable *GV =
3144       CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init,
3145                         "__OBJC,__category,regular,no_dead_strip",
3146                         CGM.getPointerAlign(), true);
3147   DefinedCategories.push_back(GV);
3148   DefinedCategoryNames.insert(ExtName.str());
3149   // method definition entries must be clear for next implementation.
3150   MethodDefinitions.clear();
3151 }
3152 
3153 enum FragileClassFlags {
3154   /// Apparently: is not a meta-class.
3155   FragileABI_Class_Factory                 = 0x00001,
3156 
3157   /// Is a meta-class.
3158   FragileABI_Class_Meta                    = 0x00002,
3159 
3160   /// Has a non-trivial constructor or destructor.
3161   FragileABI_Class_HasCXXStructors         = 0x02000,
3162 
3163   /// Has hidden visibility.
3164   FragileABI_Class_Hidden                  = 0x20000,
3165 
3166   /// Class implementation was compiled under ARC.
3167   FragileABI_Class_CompiledByARC           = 0x04000000,
3168 
3169   /// Class implementation was compiled under MRC and has MRC weak ivars.
3170   /// Exclusive with CompiledByARC.
3171   FragileABI_Class_HasMRCWeakIvars         = 0x08000000,
3172 };
3173 
3174 enum NonFragileClassFlags {
3175   /// Is a meta-class.
3176   NonFragileABI_Class_Meta                 = 0x00001,
3177 
3178   /// Is a root class.
3179   NonFragileABI_Class_Root                 = 0x00002,
3180 
3181   /// Has a non-trivial constructor or destructor.
3182   NonFragileABI_Class_HasCXXStructors      = 0x00004,
3183 
3184   /// Has hidden visibility.
3185   NonFragileABI_Class_Hidden               = 0x00010,
3186 
3187   /// Has the exception attribute.
3188   NonFragileABI_Class_Exception            = 0x00020,
3189 
3190   /// (Obsolete) ARC-specific: this class has a .release_ivars method
3191   NonFragileABI_Class_HasIvarReleaser      = 0x00040,
3192 
3193   /// Class implementation was compiled under ARC.
3194   NonFragileABI_Class_CompiledByARC        = 0x00080,
3195 
3196   /// Class has non-trivial destructors, but zero-initialization is okay.
3197   NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3198 
3199   /// Class implementation was compiled under MRC and has MRC weak ivars.
3200   /// Exclusive with CompiledByARC.
3201   NonFragileABI_Class_HasMRCWeakIvars      = 0x00200,
3202 };
3203 
hasWeakMember(QualType type)3204 static bool hasWeakMember(QualType type) {
3205   if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3206     return true;
3207   }
3208 
3209   if (auto recType = type->getAs<RecordType>()) {
3210     for (auto field : recType->getDecl()->fields()) {
3211       if (hasWeakMember(field->getType()))
3212         return true;
3213     }
3214   }
3215 
3216   return false;
3217 }
3218 
3219 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3220 /// (and actually fill in a layout string) if we really do have any
3221 /// __weak ivars.
hasMRCWeakIvars(CodeGenModule & CGM,const ObjCImplementationDecl * ID)3222 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3223                             const ObjCImplementationDecl *ID) {
3224   if (!CGM.getLangOpts().ObjCWeak) return false;
3225   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3226 
3227   for (const ObjCIvarDecl *ivar =
3228          ID->getClassInterface()->all_declared_ivar_begin();
3229        ivar; ivar = ivar->getNextIvar()) {
3230     if (hasWeakMember(ivar->getType()))
3231       return true;
3232   }
3233 
3234   return false;
3235 }
3236 
3237 /*
3238   struct _objc_class {
3239   Class isa;
3240   Class super_class;
3241   const char *name;
3242   long version;
3243   long info;
3244   long instance_size;
3245   struct _objc_ivar_list *ivars;
3246   struct _objc_method_list *methods;
3247   struct _objc_cache *cache;
3248   struct _objc_protocol_list *protocols;
3249   // Objective-C 1.0 extensions (<rdr://4585769>)
3250   const char *ivar_layout;
3251   struct _objc_class_ext *ext;
3252   };
3253 
3254   See EmitClassExtension();
3255 */
GenerateClass(const ObjCImplementationDecl * ID)3256 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3257   DefinedSymbols.insert(ID->getIdentifier());
3258 
3259   std::string ClassName = ID->getNameAsString();
3260   // FIXME: Gross
3261   ObjCInterfaceDecl *Interface =
3262     const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3263   llvm::Constant *Protocols =
3264       EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3265                        Interface->all_referenced_protocol_begin(),
3266                        Interface->all_referenced_protocol_end());
3267   unsigned Flags = FragileABI_Class_Factory;
3268   if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3269     Flags |= FragileABI_Class_HasCXXStructors;
3270 
3271   bool hasMRCWeak = false;
3272 
3273   if (CGM.getLangOpts().ObjCAutoRefCount)
3274     Flags |= FragileABI_Class_CompiledByARC;
3275   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3276     Flags |= FragileABI_Class_HasMRCWeakIvars;
3277 
3278   CharUnits Size =
3279     CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3280 
3281   // FIXME: Set CXX-structors flag.
3282   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3283     Flags |= FragileABI_Class_Hidden;
3284 
3285   SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
3286   for (const auto *I : ID->instance_methods())
3287     // Instance methods should always be defined.
3288     InstanceMethods.push_back(GetMethodConstant(I));
3289 
3290   for (const auto *I : ID->class_methods())
3291     // Class methods should always be defined.
3292     ClassMethods.push_back(GetMethodConstant(I));
3293 
3294   for (const auto *PID : ID->property_impls()) {
3295     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3296       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3297 
3298       if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
3299         if (llvm::Constant *C = GetMethodConstant(MD))
3300           InstanceMethods.push_back(C);
3301       if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
3302         if (llvm::Constant *C = GetMethodConstant(MD))
3303           InstanceMethods.push_back(C);
3304     }
3305   }
3306 
3307   llvm::Constant *Values[12];
3308   Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods);
3309   if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3310     // Record a reference to the super class.
3311     LazySymbols.insert(Super->getIdentifier());
3312 
3313     Values[ 1] =
3314       llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3315                                      ObjCTypes.ClassPtrTy);
3316   } else {
3317     Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
3318   }
3319   Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
3320   // Version is always 0.
3321   Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
3322   Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
3323   Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity());
3324   Values[ 6] = EmitIvarList(ID, false);
3325   Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(),
3326                              "__OBJC,__inst_meth,regular,no_dead_strip",
3327                              InstanceMethods);
3328   // cache is always NULL.
3329   Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
3330   Values[ 9] = Protocols;
3331   Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size);
3332   Values[11] = EmitClassExtension(ID, Size, hasMRCWeak,
3333                                   false/*isClassProperty*/);
3334   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
3335                                                    Values);
3336   std::string Name("OBJC_CLASS_");
3337   Name += ClassName;
3338   const char *Section = "__OBJC,__class,regular,no_dead_strip";
3339   // Check for a forward reference.
3340   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3341   if (GV) {
3342     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3343            "Forward metaclass reference has incorrect type.");
3344     GV->setInitializer(Init);
3345     GV->setSection(Section);
3346     GV->setAlignment(CGM.getPointerAlign().getQuantity());
3347     CGM.addCompilerUsedGlobal(GV);
3348   } else
3349     GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3350   DefinedClasses.push_back(GV);
3351   ImplementedClasses.push_back(Interface);
3352   // method definition entries must be clear for next implementation.
3353   MethodDefinitions.clear();
3354 }
3355 
EmitMetaClass(const ObjCImplementationDecl * ID,llvm::Constant * Protocols,ArrayRef<llvm::Constant * > Methods)3356 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3357                                          llvm::Constant *Protocols,
3358                                          ArrayRef<llvm::Constant*> Methods) {
3359   unsigned Flags = FragileABI_Class_Meta;
3360   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3361 
3362   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3363     Flags |= FragileABI_Class_Hidden;
3364 
3365   llvm::Constant *Values[12];
3366   // The isa for the metaclass is the root of the hierarchy.
3367   const ObjCInterfaceDecl *Root = ID->getClassInterface();
3368   while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3369     Root = Super;
3370   Values[ 0] =
3371     llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3372                                    ObjCTypes.ClassPtrTy);
3373   // The super class for the metaclass is emitted as the name of the
3374   // super class. The runtime fixes this up to point to the
3375   // *metaclass* for the super class.
3376   if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3377     Values[ 1] =
3378       llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3379                                      ObjCTypes.ClassPtrTy);
3380   } else {
3381     Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
3382   }
3383   Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
3384   // Version is always 0.
3385   Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
3386   Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
3387   Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
3388   Values[ 6] = EmitIvarList(ID, true);
3389   Values[7] =
3390       EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(),
3391                      "__OBJC,__cls_meth,regular,no_dead_strip", Methods);
3392   // cache is always NULL.
3393   Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
3394   Values[ 9] = Protocols;
3395   // ivar_layout for metaclass is always NULL.
3396   Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
3397   // The class extension is used to store class properties for metaclasses.
3398   Values[11] = EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/,
3399                                   true/*isClassProperty*/);
3400   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
3401                                                    Values);
3402 
3403   std::string Name("OBJC_METACLASS_");
3404   Name += ID->getName();
3405 
3406   // Check for a forward reference.
3407   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3408   if (GV) {
3409     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3410            "Forward metaclass reference has incorrect type.");
3411     GV->setInitializer(Init);
3412   } else {
3413     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3414                                   llvm::GlobalValue::PrivateLinkage,
3415                                   Init, Name);
3416   }
3417   GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3418   GV->setAlignment(4);
3419   CGM.addCompilerUsedGlobal(GV);
3420 
3421   return GV;
3422 }
3423 
EmitMetaClassRef(const ObjCInterfaceDecl * ID)3424 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3425   std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3426 
3427   // FIXME: Should we look these up somewhere other than the module. Its a bit
3428   // silly since we only generate these while processing an implementation, so
3429   // exactly one pointer would work if know when we entered/exitted an
3430   // implementation block.
3431 
3432   // Check for an existing forward reference.
3433   // Previously, metaclass with internal linkage may have been defined.
3434   // pass 'true' as 2nd argument so it is returned.
3435   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3436   if (!GV)
3437     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3438                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3439                                   Name);
3440 
3441   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3442          "Forward metaclass reference has incorrect type.");
3443   return GV;
3444 }
3445 
EmitSuperClassRef(const ObjCInterfaceDecl * ID)3446 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3447   std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3448   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3449 
3450   if (!GV)
3451     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3452                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3453                                   Name);
3454 
3455   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3456          "Forward class metadata reference has incorrect type.");
3457   return GV;
3458 }
3459 
3460 /*
3461   Emit a "class extension", which in this specific context means extra
3462   data that doesn't fit in the normal fragile-ABI class structure, and
3463   has nothing to do with the language concept of a class extension.
3464 
3465   struct objc_class_ext {
3466   uint32_t size;
3467   const char *weak_ivar_layout;
3468   struct _objc_property_list *properties;
3469   };
3470 */
3471 llvm::Constant *
EmitClassExtension(const ObjCImplementationDecl * ID,CharUnits InstanceSize,bool hasMRCWeakIvars,bool isClassProperty)3472 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3473                               CharUnits InstanceSize, bool hasMRCWeakIvars,
3474                               bool isClassProperty) {
3475   uint64_t Size =
3476     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3477 
3478   llvm::Constant *Values[3];
3479   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
3480   if (isClassProperty) {
3481     llvm::Type *PtrTy = CGM.Int8PtrTy;
3482     Values[1] = llvm::Constant::getNullValue(PtrTy);
3483   } else
3484     Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3485                                     hasMRCWeakIvars);
3486   if (isClassProperty)
3487     Values[2] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getName(),
3488                                  ID, ID->getClassInterface(), ObjCTypes, true);
3489   else
3490     Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(),
3491                                  ID, ID->getClassInterface(), ObjCTypes, false);
3492 
3493   // Return null if no extension bits are used.
3494   if ((!Values[1] || Values[1]->isNullValue()) && Values[2]->isNullValue())
3495     return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3496 
3497   llvm::Constant *Init =
3498     llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values);
3499   return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init,
3500                            "__OBJC,__class_ext,regular,no_dead_strip",
3501                            CGM.getPointerAlign(), true);
3502 }
3503 
3504 /*
3505   struct objc_ivar {
3506     char *ivar_name;
3507     char *ivar_type;
3508     int ivar_offset;
3509   };
3510 
3511   struct objc_ivar_list {
3512     int ivar_count;
3513     struct objc_ivar list[count];
3514   };
3515 */
EmitIvarList(const ObjCImplementationDecl * ID,bool ForClass)3516 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3517                                         bool ForClass) {
3518   std::vector<llvm::Constant*> Ivars;
3519 
3520   // When emitting the root class GCC emits ivar entries for the
3521   // actual class structure. It is not clear if we need to follow this
3522   // behavior; for now lets try and get away with not doing it. If so,
3523   // the cleanest solution would be to make up an ObjCInterfaceDecl
3524   // for the class.
3525   if (ForClass)
3526     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3527 
3528   const ObjCInterfaceDecl *OID = ID->getClassInterface();
3529 
3530   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3531        IVD; IVD = IVD->getNextIvar()) {
3532     // Ignore unnamed bit-fields.
3533     if (!IVD->getDeclName())
3534       continue;
3535     llvm::Constant *Ivar[] = {
3536       GetMethodVarName(IVD->getIdentifier()),
3537       GetMethodVarType(IVD),
3538       llvm::ConstantInt::get(ObjCTypes.IntTy,
3539                              ComputeIvarBaseOffset(CGM, OID, IVD))
3540     };
3541     Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar));
3542   }
3543 
3544   // Return null for empty list.
3545   if (Ivars.empty())
3546     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3547 
3548   llvm::Constant *Values[2];
3549   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
3550   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy,
3551                                              Ivars.size());
3552   Values[1] = llvm::ConstantArray::get(AT, Ivars);
3553   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3554 
3555   llvm::GlobalVariable *GV;
3556   if (ForClass)
3557     GV =
3558         CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init,
3559                           "__OBJC,__class_vars,regular,no_dead_strip",
3560                           CGM.getPointerAlign(), true);
3561   else
3562     GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init,
3563                            "__OBJC,__instance_vars,regular,no_dead_strip",
3564                            CGM.getPointerAlign(), true);
3565   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3566 }
3567 
3568 /*
3569   struct objc_method {
3570   SEL method_name;
3571   char *method_types;
3572   void *method;
3573   };
3574 
3575   struct objc_method_list {
3576   struct objc_method_list *obsolete;
3577   int count;
3578   struct objc_method methods_list[count];
3579   };
3580 */
3581 
3582 /// GetMethodConstant - Return a struct objc_method constant for the
3583 /// given method if it has been defined. The result is null if the
3584 /// method has not been defined. The return value has type MethodPtrTy.
GetMethodConstant(const ObjCMethodDecl * MD)3585 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) {
3586   llvm::Function *Fn = GetMethodDefinition(MD);
3587   if (!Fn)
3588     return nullptr;
3589 
3590   llvm::Constant *Method[] = {
3591     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
3592                                    ObjCTypes.SelectorPtrTy),
3593     GetMethodVarType(MD),
3594     llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
3595   };
3596   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
3597 }
3598 
EmitMethodList(Twine Name,StringRef Section,ArrayRef<llvm::Constant * > Methods)3599 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, StringRef Section,
3600                                           ArrayRef<llvm::Constant *> Methods) {
3601   // Return null for empty list.
3602   if (Methods.empty())
3603     return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy);
3604 
3605   llvm::Constant *Values[3];
3606   Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
3607   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
3608   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
3609                                              Methods.size());
3610   Values[2] = llvm::ConstantArray::get(AT, Methods);
3611   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3612 
3613   llvm::GlobalVariable *GV =
3614     CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3615   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3616 }
3617 
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)3618 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3619                                                 const ObjCContainerDecl *CD) {
3620   SmallString<256> Name;
3621   GetNameForMethod(OMD, CD, Name);
3622 
3623   CodeGenTypes &Types = CGM.getTypes();
3624   llvm::FunctionType *MethodTy =
3625     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3626   llvm::Function *Method =
3627     llvm::Function::Create(MethodTy,
3628                            llvm::GlobalValue::InternalLinkage,
3629                            Name.str(),
3630                            &CGM.getModule());
3631   MethodDefinitions.insert(std::make_pair(OMD, Method));
3632 
3633   return Method;
3634 }
3635 
CreateMetadataVar(Twine Name,llvm::Constant * Init,StringRef Section,CharUnits Align,bool AddToUsed)3636 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3637                                                          llvm::Constant *Init,
3638                                                          StringRef Section,
3639                                                          CharUnits Align,
3640                                                          bool AddToUsed) {
3641   llvm::Type *Ty = Init->getType();
3642   llvm::GlobalVariable *GV =
3643     new llvm::GlobalVariable(CGM.getModule(), Ty, false,
3644                              llvm::GlobalValue::PrivateLinkage, Init, Name);
3645   if (!Section.empty())
3646     GV->setSection(Section);
3647   GV->setAlignment(Align.getQuantity());
3648   if (AddToUsed)
3649     CGM.addCompilerUsedGlobal(GV);
3650   return GV;
3651 }
3652 
ModuleInitFunction()3653 llvm::Function *CGObjCMac::ModuleInitFunction() {
3654   // Abuse this interface function as a place to finalize.
3655   FinishModule();
3656   return nullptr;
3657 }
3658 
GetPropertyGetFunction()3659 llvm::Constant *CGObjCMac::GetPropertyGetFunction() {
3660   return ObjCTypes.getGetPropertyFn();
3661 }
3662 
GetPropertySetFunction()3663 llvm::Constant *CGObjCMac::GetPropertySetFunction() {
3664   return ObjCTypes.getSetPropertyFn();
3665 }
3666 
GetOptimizedPropertySetFunction(bool atomic,bool copy)3667 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
3668                                                            bool copy) {
3669   return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
3670 }
3671 
GetGetStructFunction()3672 llvm::Constant *CGObjCMac::GetGetStructFunction() {
3673   return ObjCTypes.getCopyStructFn();
3674 }
3675 
GetSetStructFunction()3676 llvm::Constant *CGObjCMac::GetSetStructFunction() {
3677   return ObjCTypes.getCopyStructFn();
3678 }
3679 
GetCppAtomicObjectGetFunction()3680 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() {
3681   return ObjCTypes.getCppAtomicObjectFunction();
3682 }
3683 
GetCppAtomicObjectSetFunction()3684 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() {
3685   return ObjCTypes.getCppAtomicObjectFunction();
3686 }
3687 
EnumerationMutationFunction()3688 llvm::Constant *CGObjCMac::EnumerationMutationFunction() {
3689   return ObjCTypes.getEnumerationMutationFn();
3690 }
3691 
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)3692 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
3693   return EmitTryOrSynchronizedStmt(CGF, S);
3694 }
3695 
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)3696 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
3697                                      const ObjCAtSynchronizedStmt &S) {
3698   return EmitTryOrSynchronizedStmt(CGF, S);
3699 }
3700 
3701 namespace {
3702   struct PerformFragileFinally final : EHScopeStack::Cleanup {
3703     const Stmt &S;
3704     Address SyncArgSlot;
3705     Address CallTryExitVar;
3706     Address ExceptionData;
3707     ObjCTypesHelper &ObjCTypes;
PerformFragileFinally__anon0ea151f90511::PerformFragileFinally3708     PerformFragileFinally(const Stmt *S,
3709                           Address SyncArgSlot,
3710                           Address CallTryExitVar,
3711                           Address ExceptionData,
3712                           ObjCTypesHelper *ObjCTypes)
3713       : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
3714         ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
3715 
Emit__anon0ea151f90511::PerformFragileFinally3716     void Emit(CodeGenFunction &CGF, Flags flags) override {
3717       // Check whether we need to call objc_exception_try_exit.
3718       // In optimized code, this branch will always be folded.
3719       llvm::BasicBlock *FinallyCallExit =
3720         CGF.createBasicBlock("finally.call_exit");
3721       llvm::BasicBlock *FinallyNoCallExit =
3722         CGF.createBasicBlock("finally.no_call_exit");
3723       CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
3724                                FinallyCallExit, FinallyNoCallExit);
3725 
3726       CGF.EmitBlock(FinallyCallExit);
3727       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
3728                                   ExceptionData.getPointer());
3729 
3730       CGF.EmitBlock(FinallyNoCallExit);
3731 
3732       if (isa<ObjCAtTryStmt>(S)) {
3733         if (const ObjCAtFinallyStmt* FinallyStmt =
3734               cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
3735           // Don't try to do the @finally if this is an EH cleanup.
3736           if (flags.isForEHCleanup()) return;
3737 
3738           // Save the current cleanup destination in case there's
3739           // control flow inside the finally statement.
3740           llvm::Value *CurCleanupDest =
3741             CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
3742 
3743           CGF.EmitStmt(FinallyStmt->getFinallyBody());
3744 
3745           if (CGF.HaveInsertPoint()) {
3746             CGF.Builder.CreateStore(CurCleanupDest,
3747                                     CGF.getNormalCleanupDestSlot());
3748           } else {
3749             // Currently, the end of the cleanup must always exist.
3750             CGF.EnsureInsertPoint();
3751           }
3752         }
3753       } else {
3754         // Emit objc_sync_exit(expr); as finally's sole statement for
3755         // @synchronized.
3756         llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
3757         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
3758       }
3759     }
3760   };
3761 
3762   class FragileHazards {
3763     CodeGenFunction &CGF;
3764     SmallVector<llvm::Value*, 20> Locals;
3765     llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
3766 
3767     llvm::InlineAsm *ReadHazard;
3768     llvm::InlineAsm *WriteHazard;
3769 
3770     llvm::FunctionType *GetAsmFnType();
3771 
3772     void collectLocals();
3773     void emitReadHazard(CGBuilderTy &Builder);
3774 
3775   public:
3776     FragileHazards(CodeGenFunction &CGF);
3777 
3778     void emitWriteHazard();
3779     void emitHazardsInNewBlocks();
3780   };
3781 } // end anonymous namespace
3782 
3783 /// Create the fragile-ABI read and write hazards based on the current
3784 /// state of the function, which is presumed to be immediately prior
3785 /// to a @try block.  These hazards are used to maintain correct
3786 /// semantics in the face of optimization and the fragile ABI's
3787 /// cavalier use of setjmp/longjmp.
FragileHazards(CodeGenFunction & CGF)3788 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
3789   collectLocals();
3790 
3791   if (Locals.empty()) return;
3792 
3793   // Collect all the blocks in the function.
3794   for (llvm::Function::iterator
3795          I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
3796     BlocksBeforeTry.insert(&*I);
3797 
3798   llvm::FunctionType *AsmFnTy = GetAsmFnType();
3799 
3800   // Create a read hazard for the allocas.  This inhibits dead-store
3801   // optimizations and forces the values to memory.  This hazard is
3802   // inserted before any 'throwing' calls in the protected scope to
3803   // reflect the possibility that the variables might be read from the
3804   // catch block if the call throws.
3805   {
3806     std::string Constraint;
3807     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
3808       if (I) Constraint += ',';
3809       Constraint += "*m";
3810     }
3811 
3812     ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
3813   }
3814 
3815   // Create a write hazard for the allocas.  This inhibits folding
3816   // loads across the hazard.  This hazard is inserted at the
3817   // beginning of the catch path to reflect the possibility that the
3818   // variables might have been written within the protected scope.
3819   {
3820     std::string Constraint;
3821     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
3822       if (I) Constraint += ',';
3823       Constraint += "=*m";
3824     }
3825 
3826     WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
3827   }
3828 }
3829 
3830 /// Emit a write hazard at the current location.
emitWriteHazard()3831 void FragileHazards::emitWriteHazard() {
3832   if (Locals.empty()) return;
3833 
3834   CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
3835 }
3836 
emitReadHazard(CGBuilderTy & Builder)3837 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
3838   assert(!Locals.empty());
3839   llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
3840   call->setDoesNotThrow();
3841   call->setCallingConv(CGF.getRuntimeCC());
3842 }
3843 
3844 /// Emit read hazards in all the protected blocks, i.e. all the blocks
3845 /// which have been inserted since the beginning of the try.
emitHazardsInNewBlocks()3846 void FragileHazards::emitHazardsInNewBlocks() {
3847   if (Locals.empty()) return;
3848 
3849   CGBuilderTy Builder(CGF, CGF.getLLVMContext());
3850 
3851   // Iterate through all blocks, skipping those prior to the try.
3852   for (llvm::Function::iterator
3853          FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
3854     llvm::BasicBlock &BB = *FI;
3855     if (BlocksBeforeTry.count(&BB)) continue;
3856 
3857     // Walk through all the calls in the block.
3858     for (llvm::BasicBlock::iterator
3859            BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
3860       llvm::Instruction &I = *BI;
3861 
3862       // Ignore instructions that aren't non-intrinsic calls.
3863       // These are the only calls that can possibly call longjmp.
3864       if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue;
3865       if (isa<llvm::IntrinsicInst>(I))
3866         continue;
3867 
3868       // Ignore call sites marked nounwind.  This may be questionable,
3869       // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
3870       llvm::CallSite CS(&I);
3871       if (CS.doesNotThrow()) continue;
3872 
3873       // Insert a read hazard before the call.  This will ensure that
3874       // any writes to the locals are performed before making the
3875       // call.  If the call throws, then this is sufficient to
3876       // guarantee correctness as long as it doesn't also write to any
3877       // locals.
3878       Builder.SetInsertPoint(&BB, BI);
3879       emitReadHazard(Builder);
3880     }
3881   }
3882 }
3883 
addIfPresent(llvm::DenseSet<llvm::Value * > & S,llvm::Value * V)3884 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) {
3885   if (V) S.insert(V);
3886 }
3887 
addIfPresent(llvm::DenseSet<llvm::Value * > & S,Address V)3888 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
3889   if (V.isValid()) S.insert(V.getPointer());
3890 }
3891 
collectLocals()3892 void FragileHazards::collectLocals() {
3893   // Compute a set of allocas to ignore.
3894   llvm::DenseSet<llvm::Value*> AllocasToIgnore;
3895   addIfPresent(AllocasToIgnore, CGF.ReturnValue);
3896   addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
3897 
3898   // Collect all the allocas currently in the function.  This is
3899   // probably way too aggressive.
3900   llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
3901   for (llvm::BasicBlock::iterator
3902          I = Entry.begin(), E = Entry.end(); I != E; ++I)
3903     if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
3904       Locals.push_back(&*I);
3905 }
3906 
GetAsmFnType()3907 llvm::FunctionType *FragileHazards::GetAsmFnType() {
3908   SmallVector<llvm::Type *, 16> tys(Locals.size());
3909   for (unsigned i = 0, e = Locals.size(); i != e; ++i)
3910     tys[i] = Locals[i]->getType();
3911   return llvm::FunctionType::get(CGF.VoidTy, tys, false);
3912 }
3913 
3914 /*
3915 
3916   Objective-C setjmp-longjmp (sjlj) Exception Handling
3917   --
3918 
3919   A catch buffer is a setjmp buffer plus:
3920     - a pointer to the exception that was caught
3921     - a pointer to the previous exception data buffer
3922     - two pointers of reserved storage
3923   Therefore catch buffers form a stack, with a pointer to the top
3924   of the stack kept in thread-local storage.
3925 
3926   objc_exception_try_enter pushes a catch buffer onto the EH stack.
3927   objc_exception_try_exit pops the given catch buffer, which is
3928     required to be the top of the EH stack.
3929   objc_exception_throw pops the top of the EH stack, writes the
3930     thrown exception into the appropriate field, and longjmps
3931     to the setjmp buffer.  It crashes the process (with a printf
3932     and an abort()) if there are no catch buffers on the stack.
3933   objc_exception_extract just reads the exception pointer out of the
3934     catch buffer.
3935 
3936   There's no reason an implementation couldn't use a light-weight
3937   setjmp here --- something like __builtin_setjmp, but API-compatible
3938   with the heavyweight setjmp.  This will be more important if we ever
3939   want to implement correct ObjC/C++ exception interactions for the
3940   fragile ABI.
3941 
3942   Note that for this use of setjmp/longjmp to be correct, we may need
3943   to mark some local variables volatile: if a non-volatile local
3944   variable is modified between the setjmp and the longjmp, it has
3945   indeterminate value.  For the purposes of LLVM IR, it may be
3946   sufficient to make loads and stores within the @try (to variables
3947   declared outside the @try) volatile.  This is necessary for
3948   optimized correctness, but is not currently being done; this is
3949   being tracked as rdar://problem/8160285
3950 
3951   The basic framework for a @try-catch-finally is as follows:
3952   {
3953   objc_exception_data d;
3954   id _rethrow = null;
3955   bool _call_try_exit = true;
3956 
3957   objc_exception_try_enter(&d);
3958   if (!setjmp(d.jmp_buf)) {
3959   ... try body ...
3960   } else {
3961   // exception path
3962   id _caught = objc_exception_extract(&d);
3963 
3964   // enter new try scope for handlers
3965   if (!setjmp(d.jmp_buf)) {
3966   ... match exception and execute catch blocks ...
3967 
3968   // fell off end, rethrow.
3969   _rethrow = _caught;
3970   ... jump-through-finally to finally_rethrow ...
3971   } else {
3972   // exception in catch block
3973   _rethrow = objc_exception_extract(&d);
3974   _call_try_exit = false;
3975   ... jump-through-finally to finally_rethrow ...
3976   }
3977   }
3978   ... jump-through-finally to finally_end ...
3979 
3980   finally:
3981   if (_call_try_exit)
3982   objc_exception_try_exit(&d);
3983 
3984   ... finally block ....
3985   ... dispatch to finally destination ...
3986 
3987   finally_rethrow:
3988   objc_exception_throw(_rethrow);
3989 
3990   finally_end:
3991   }
3992 
3993   This framework differs slightly from the one gcc uses, in that gcc
3994   uses _rethrow to determine if objc_exception_try_exit should be called
3995   and if the object should be rethrown. This breaks in the face of
3996   throwing nil and introduces unnecessary branches.
3997 
3998   We specialize this framework for a few particular circumstances:
3999 
4000   - If there are no catch blocks, then we avoid emitting the second
4001   exception handling context.
4002 
4003   - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4004   e)) we avoid emitting the code to rethrow an uncaught exception.
4005 
4006   - FIXME: If there is no @finally block we can do a few more
4007   simplifications.
4008 
4009   Rethrows and Jumps-Through-Finally
4010   --
4011 
4012   '@throw;' is supported by pushing the currently-caught exception
4013   onto ObjCEHStack while the @catch blocks are emitted.
4014 
4015   Branches through the @finally block are handled with an ordinary
4016   normal cleanup.  We do not register an EH cleanup; fragile-ABI ObjC
4017   exceptions are not compatible with C++ exceptions, and this is
4018   hardly the only place where this will go wrong.
4019 
4020   @synchronized(expr) { stmt; } is emitted as if it were:
4021     id synch_value = expr;
4022     objc_sync_enter(synch_value);
4023     @try { stmt; } @finally { objc_sync_exit(synch_value); }
4024 */
4025 
EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction & CGF,const Stmt & S)4026 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4027                                           const Stmt &S) {
4028   bool isTry = isa<ObjCAtTryStmt>(S);
4029 
4030   // A destination for the fall-through edges of the catch handlers to
4031   // jump to.
4032   CodeGenFunction::JumpDest FinallyEnd =
4033     CGF.getJumpDestInCurrentScope("finally.end");
4034 
4035   // A destination for the rethrow edge of the catch handlers to jump
4036   // to.
4037   CodeGenFunction::JumpDest FinallyRethrow =
4038     CGF.getJumpDestInCurrentScope("finally.rethrow");
4039 
4040   // For @synchronized, call objc_sync_enter(sync.expr). The
4041   // evaluation of the expression must occur before we enter the
4042   // @synchronized.  We can't avoid a temp here because we need the
4043   // value to be preserved.  If the backend ever does liveness
4044   // correctly after setjmp, this will be unnecessary.
4045   Address SyncArgSlot = Address::invalid();
4046   if (!isTry) {
4047     llvm::Value *SyncArg =
4048       CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
4049     SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4050     CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4051 
4052     SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4053                                        CGF.getPointerAlign(), "sync.arg");
4054     CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
4055   }
4056 
4057   // Allocate memory for the setjmp buffer.  This needs to be kept
4058   // live throughout the try and catch blocks.
4059   Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4060                                                CGF.getPointerAlign(),
4061                                                "exceptiondata.ptr");
4062 
4063   // Create the fragile hazards.  Note that this will not capture any
4064   // of the allocas required for exception processing, but will
4065   // capture the current basic block (which extends all the way to the
4066   // setjmp call) as "before the @try".
4067   FragileHazards Hazards(CGF);
4068 
4069   // Create a flag indicating whether the cleanup needs to call
4070   // objc_exception_try_exit.  This is true except when
4071   //   - no catches match and we're branching through the cleanup
4072   //     just to rethrow the exception, or
4073   //   - a catch matched and we're falling out of the catch handler.
4074   // The setjmp-safety rule here is that we should always store to this
4075   // variable in a place that dominates the branch through the cleanup
4076   // without passing through any setjmps.
4077   Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4078                                                 CharUnits::One(),
4079                                                 "_call_try_exit");
4080 
4081   // A slot containing the exception to rethrow.  Only needed when we
4082   // have both a @catch and a @finally.
4083   Address PropagatingExnVar = Address::invalid();
4084 
4085   // Push a normal cleanup to leave the try scope.
4086   CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4087                                                  SyncArgSlot,
4088                                                  CallTryExitVar,
4089                                                  ExceptionData,
4090                                                  &ObjCTypes);
4091 
4092   // Enter a try block:
4093   //  - Call objc_exception_try_enter to push ExceptionData on top of
4094   //    the EH stack.
4095   CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4096                               ExceptionData.getPointer());
4097 
4098   //  - Call setjmp on the exception data buffer.
4099   llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4100   llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4101   llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4102       ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4103       "setjmp_buffer");
4104   llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4105       ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4106   SetJmpResult->setCanReturnTwice();
4107 
4108   // If setjmp returned 0, enter the protected block; otherwise,
4109   // branch to the handler.
4110   llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4111   llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4112   llvm::Value *DidCatch =
4113     CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4114   CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4115 
4116   // Emit the protected block.
4117   CGF.EmitBlock(TryBlock);
4118   CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4119   CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4120                      : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4121 
4122   CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4123 
4124   // Emit the exception handler block.
4125   CGF.EmitBlock(TryHandler);
4126 
4127   // Don't optimize loads of the in-scope locals across this point.
4128   Hazards.emitWriteHazard();
4129 
4130   // For a @synchronized (or a @try with no catches), just branch
4131   // through the cleanup to the rethrow block.
4132   if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4133     // Tell the cleanup not to re-pop the exit.
4134     CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4135     CGF.EmitBranchThroughCleanup(FinallyRethrow);
4136 
4137   // Otherwise, we have to match against the caught exceptions.
4138   } else {
4139     // Retrieve the exception object.  We may emit multiple blocks but
4140     // nothing can cross this so the value is already in SSA form.
4141     llvm::CallInst *Caught =
4142       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4143                                   ExceptionData.getPointer(), "caught");
4144 
4145     // Push the exception to rethrow onto the EH value stack for the
4146     // benefit of any @throws in the handlers.
4147     CGF.ObjCEHValueStack.push_back(Caught);
4148 
4149     const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4150 
4151     bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4152 
4153     llvm::BasicBlock *CatchBlock = nullptr;
4154     llvm::BasicBlock *CatchHandler = nullptr;
4155     if (HasFinally) {
4156       // Save the currently-propagating exception before
4157       // objc_exception_try_enter clears the exception slot.
4158       PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4159                                                CGF.getPointerAlign(),
4160                                                "propagating_exception");
4161       CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4162 
4163       // Enter a new exception try block (in case a @catch block
4164       // throws an exception).
4165       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4166                                   ExceptionData.getPointer());
4167 
4168       llvm::CallInst *SetJmpResult =
4169         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4170                                     SetJmpBuffer, "setjmp.result");
4171       SetJmpResult->setCanReturnTwice();
4172 
4173       llvm::Value *Threw =
4174         CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4175 
4176       CatchBlock = CGF.createBasicBlock("catch");
4177       CatchHandler = CGF.createBasicBlock("catch_for_catch");
4178       CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4179 
4180       CGF.EmitBlock(CatchBlock);
4181     }
4182 
4183     CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4184 
4185     // Handle catch list. As a special case we check if everything is
4186     // matched and avoid generating code for falling off the end if
4187     // so.
4188     bool AllMatched = false;
4189     for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) {
4190       const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I);
4191 
4192       const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4193       const ObjCObjectPointerType *OPT = nullptr;
4194 
4195       // catch(...) always matches.
4196       if (!CatchParam) {
4197         AllMatched = true;
4198       } else {
4199         OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4200 
4201         // catch(id e) always matches under this ABI, since only
4202         // ObjC exceptions end up here in the first place.
4203         // FIXME: For the time being we also match id<X>; this should
4204         // be rejected by Sema instead.
4205         if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4206           AllMatched = true;
4207       }
4208 
4209       // If this is a catch-all, we don't need to test anything.
4210       if (AllMatched) {
4211         CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4212 
4213         if (CatchParam) {
4214           CGF.EmitAutoVarDecl(*CatchParam);
4215           assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4216 
4217           // These types work out because ConvertType(id) == i8*.
4218           EmitInitOfCatchParam(CGF, Caught, CatchParam);
4219         }
4220 
4221         CGF.EmitStmt(CatchStmt->getCatchBody());
4222 
4223         // The scope of the catch variable ends right here.
4224         CatchVarCleanups.ForceCleanup();
4225 
4226         CGF.EmitBranchThroughCleanup(FinallyEnd);
4227         break;
4228       }
4229 
4230       assert(OPT && "Unexpected non-object pointer type in @catch");
4231       const ObjCObjectType *ObjTy = OPT->getObjectType();
4232 
4233       // FIXME: @catch (Class c) ?
4234       ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4235       assert(IDecl && "Catch parameter must have Objective-C type!");
4236 
4237       // Check if the @catch block matches the exception object.
4238       llvm::Value *Class = EmitClassRef(CGF, IDecl);
4239 
4240       llvm::Value *matchArgs[] = { Class, Caught };
4241       llvm::CallInst *Match =
4242         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4243                                     matchArgs, "match");
4244 
4245       llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4246       llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4247 
4248       CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4249                                MatchedBlock, NextCatchBlock);
4250 
4251       // Emit the @catch block.
4252       CGF.EmitBlock(MatchedBlock);
4253 
4254       // Collect any cleanups for the catch variable.  The scope lasts until
4255       // the end of the catch body.
4256       CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4257 
4258       CGF.EmitAutoVarDecl(*CatchParam);
4259       assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4260 
4261       // Initialize the catch variable.
4262       llvm::Value *Tmp =
4263         CGF.Builder.CreateBitCast(Caught,
4264                                   CGF.ConvertType(CatchParam->getType()));
4265       EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4266 
4267       CGF.EmitStmt(CatchStmt->getCatchBody());
4268 
4269       // We're done with the catch variable.
4270       CatchVarCleanups.ForceCleanup();
4271 
4272       CGF.EmitBranchThroughCleanup(FinallyEnd);
4273 
4274       CGF.EmitBlock(NextCatchBlock);
4275     }
4276 
4277     CGF.ObjCEHValueStack.pop_back();
4278 
4279     // If nothing wanted anything to do with the caught exception,
4280     // kill the extract call.
4281     if (Caught->use_empty())
4282       Caught->eraseFromParent();
4283 
4284     if (!AllMatched)
4285       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4286 
4287     if (HasFinally) {
4288       // Emit the exception handler for the @catch blocks.
4289       CGF.EmitBlock(CatchHandler);
4290 
4291       // In theory we might now need a write hazard, but actually it's
4292       // unnecessary because there's no local-accessing code between
4293       // the try's write hazard and here.
4294       //Hazards.emitWriteHazard();
4295 
4296       // Extract the new exception and save it to the
4297       // propagating-exception slot.
4298       assert(PropagatingExnVar.isValid());
4299       llvm::CallInst *NewCaught =
4300         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4301                                     ExceptionData.getPointer(), "caught");
4302       CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4303 
4304       // Don't pop the catch handler; the throw already did.
4305       CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4306       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4307     }
4308   }
4309 
4310   // Insert read hazards as required in the new blocks.
4311   Hazards.emitHazardsInNewBlocks();
4312 
4313   // Pop the cleanup.
4314   CGF.Builder.restoreIP(TryFallthroughIP);
4315   if (CGF.HaveInsertPoint())
4316     CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4317   CGF.PopCleanupBlock();
4318   CGF.EmitBlock(FinallyEnd.getBlock(), true);
4319 
4320   // Emit the rethrow block.
4321   CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4322   CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4323   if (CGF.HaveInsertPoint()) {
4324     // If we have a propagating-exception variable, check it.
4325     llvm::Value *PropagatingExn;
4326     if (PropagatingExnVar.isValid()) {
4327       PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4328 
4329     // Otherwise, just look in the buffer for the exception to throw.
4330     } else {
4331       llvm::CallInst *Caught =
4332         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4333                                     ExceptionData.getPointer());
4334       PropagatingExn = Caught;
4335     }
4336 
4337     CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4338                                 PropagatingExn);
4339     CGF.Builder.CreateUnreachable();
4340   }
4341 
4342   CGF.Builder.restoreIP(SavedIP);
4343 }
4344 
EmitThrowStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)4345 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4346                               const ObjCAtThrowStmt &S,
4347                               bool ClearInsertionPoint) {
4348   llvm::Value *ExceptionAsObject;
4349 
4350   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4351     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4352     ExceptionAsObject =
4353       CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4354   } else {
4355     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4356            "Unexpected rethrow outside @catch block.");
4357     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4358   }
4359 
4360   CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4361     ->setDoesNotReturn();
4362   CGF.Builder.CreateUnreachable();
4363 
4364   // Clear the insertion point to indicate we are in unreachable code.
4365   if (ClearInsertionPoint)
4366     CGF.Builder.ClearInsertionPoint();
4367 }
4368 
4369 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4370 /// object: objc_read_weak (id *src)
4371 ///
EmitObjCWeakRead(CodeGen::CodeGenFunction & CGF,Address AddrWeakObj)4372 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4373                                           Address AddrWeakObj) {
4374   llvm::Type* DestTy = AddrWeakObj.getElementType();
4375   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
4376                                           ObjCTypes.PtrObjectPtrTy);
4377   llvm::Value *read_weak =
4378     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4379                                 AddrWeakObj.getPointer(), "weakread");
4380   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4381   return read_weak;
4382 }
4383 
4384 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4385 /// objc_assign_weak (id src, id *dst)
4386 ///
EmitObjCWeakAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)4387 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4388                                    llvm::Value *src, Address dst) {
4389   llvm::Type * SrcTy = src->getType();
4390   if (!isa<llvm::PointerType>(SrcTy)) {
4391     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4392     assert(Size <= 8 && "does not support size > 8");
4393     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4394       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4395     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4396   }
4397   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4398   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4399   llvm::Value *args[] = { src, dst.getPointer() };
4400   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4401                               args, "weakassign");
4402 }
4403 
4404 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4405 /// objc_assign_global (id src, id *dst)
4406 ///
EmitObjCGlobalAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)4407 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4408                                      llvm::Value *src, Address dst,
4409                                      bool threadlocal) {
4410   llvm::Type * SrcTy = src->getType();
4411   if (!isa<llvm::PointerType>(SrcTy)) {
4412     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4413     assert(Size <= 8 && "does not support size > 8");
4414     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4415       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4416     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4417   }
4418   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4419   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4420   llvm::Value *args[] = { src, dst.getPointer() };
4421   if (!threadlocal)
4422     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4423                                 args, "globalassign");
4424   else
4425     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4426                                 args, "threadlocalassign");
4427 }
4428 
4429 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4430 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4431 ///
EmitObjCIvarAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)4432 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4433                                    llvm::Value *src, Address dst,
4434                                    llvm::Value *ivarOffset) {
4435   assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4436   llvm::Type * SrcTy = src->getType();
4437   if (!isa<llvm::PointerType>(SrcTy)) {
4438     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4439     assert(Size <= 8 && "does not support size > 8");
4440     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4441       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4442     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4443   }
4444   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4445   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4446   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
4447   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4448 }
4449 
4450 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4451 /// objc_assign_strongCast (id src, id *dst)
4452 ///
EmitObjCStrongCastAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)4453 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4454                                          llvm::Value *src, Address dst) {
4455   llvm::Type * SrcTy = src->getType();
4456   if (!isa<llvm::PointerType>(SrcTy)) {
4457     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4458     assert(Size <= 8 && "does not support size > 8");
4459     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4460       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4461     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4462   }
4463   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4464   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4465   llvm::Value *args[] = { src, dst.getPointer() };
4466   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
4467                               args, "strongassign");
4468 }
4469 
EmitGCMemmoveCollectable(CodeGen::CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * size)4470 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
4471                                          Address DestPtr,
4472                                          Address SrcPtr,
4473                                          llvm::Value *size) {
4474   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
4475   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
4476   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
4477   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
4478 }
4479 
4480 /// EmitObjCValueForIvar - Code Gen for ivar reference.
4481 ///
EmitObjCValueForIvar(CodeGen::CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)4482 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
4483                                        QualType ObjectTy,
4484                                        llvm::Value *BaseValue,
4485                                        const ObjCIvarDecl *Ivar,
4486                                        unsigned CVRQualifiers) {
4487   const ObjCInterfaceDecl *ID =
4488     ObjectTy->getAs<ObjCObjectType>()->getInterface();
4489   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4490                                   EmitIvarOffset(CGF, ID, Ivar));
4491 }
4492 
EmitIvarOffset(CodeGen::CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)4493 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
4494                                        const ObjCInterfaceDecl *Interface,
4495                                        const ObjCIvarDecl *Ivar) {
4496   uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
4497   return llvm::ConstantInt::get(
4498     CGM.getTypes().ConvertType(CGM.getContext().LongTy),
4499     Offset);
4500 }
4501 
4502 /* *** Private Interface *** */
4503 
4504 /// EmitImageInfo - Emit the image info marker used to encode some module
4505 /// level information.
4506 ///
4507 /// See: <rdr://4810609&4810587&4810587>
4508 /// struct IMAGE_INFO {
4509 ///   unsigned version;
4510 ///   unsigned flags;
4511 /// };
4512 enum ImageInfoFlags {
4513   eImageInfo_FixAndContinue      = (1 << 0), // This flag is no longer set by clang.
4514   eImageInfo_GarbageCollected    = (1 << 1),
4515   eImageInfo_GCOnly              = (1 << 2),
4516   eImageInfo_OptimizedByDyld     = (1 << 3), // This flag is set by the dyld shared cache.
4517 
4518   // A flag indicating that the module has no instances of a @synthesize of a
4519   // superclass variable. <rdar://problem/6803242>
4520   eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
4521   eImageInfo_ImageIsSimulated    = (1 << 5),
4522   eImageInfo_ClassProperties     = (1 << 6)
4523 };
4524 
EmitImageInfo()4525 void CGObjCCommonMac::EmitImageInfo() {
4526   unsigned version = 0; // Version is unused?
4527   const char *Section = (ObjCABI == 1) ?
4528     "__OBJC, __image_info,regular" :
4529     "__DATA, __objc_imageinfo, regular, no_dead_strip";
4530 
4531   // Generate module-level named metadata to convey this information to the
4532   // linker and code-gen.
4533   llvm::Module &Mod = CGM.getModule();
4534 
4535   // Add the ObjC ABI version to the module flags.
4536   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
4537   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
4538                     version);
4539   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
4540                     llvm::MDString::get(VMContext,Section));
4541 
4542   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
4543     // Non-GC overrides those files which specify GC.
4544     Mod.addModuleFlag(llvm::Module::Override,
4545                       "Objective-C Garbage Collection", (uint32_t)0);
4546   } else {
4547     // Add the ObjC garbage collection value.
4548     Mod.addModuleFlag(llvm::Module::Error,
4549                       "Objective-C Garbage Collection",
4550                       eImageInfo_GarbageCollected);
4551 
4552     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
4553       // Add the ObjC GC Only value.
4554       Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
4555                         eImageInfo_GCOnly);
4556 
4557       // Require that GC be specified and set to eImageInfo_GarbageCollected.
4558       llvm::Metadata *Ops[2] = {
4559           llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
4560           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
4561               llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))};
4562       Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
4563                         llvm::MDNode::get(VMContext, Ops));
4564     }
4565   }
4566 
4567   // Indicate whether we're compiling this to run on a simulator.
4568   const llvm::Triple &Triple = CGM.getTarget().getTriple();
4569   if ((Triple.isiOS() || Triple.isWatchOS()) &&
4570       (Triple.getArch() == llvm::Triple::x86 ||
4571        Triple.getArch() == llvm::Triple::x86_64))
4572     Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
4573                       eImageInfo_ImageIsSimulated);
4574 
4575   // Indicate whether we are generating class properties.
4576   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties",
4577                     eImageInfo_ClassProperties);
4578 }
4579 
4580 // struct objc_module {
4581 //   unsigned long version;
4582 //   unsigned long size;
4583 //   const char *name;
4584 //   Symtab symtab;
4585 // };
4586 
4587 // FIXME: Get from somewhere
4588 static const int ModuleVersion = 7;
4589 
EmitModuleInfo()4590 void CGObjCMac::EmitModuleInfo() {
4591   uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
4592 
4593   llvm::Constant *Values[] = {
4594     llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion),
4595     llvm::ConstantInt::get(ObjCTypes.LongTy, Size),
4596     // This used to be the filename, now it is unused. <rdr://4327263>
4597     GetClassName(StringRef("")),
4598     EmitModuleSymbols()
4599   };
4600   CreateMetadataVar("OBJC_MODULES",
4601                     llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values),
4602                     "__OBJC,__module_info,regular,no_dead_strip",
4603                     CGM.getPointerAlign(), true);
4604 }
4605 
EmitModuleSymbols()4606 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
4607   unsigned NumClasses = DefinedClasses.size();
4608   unsigned NumCategories = DefinedCategories.size();
4609 
4610   // Return null if no symbols were defined.
4611   if (!NumClasses && !NumCategories)
4612     return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
4613 
4614   llvm::Constant *Values[5];
4615   Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
4616   Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy);
4617   Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses);
4618   Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories);
4619 
4620   // The runtime expects exactly the list of defined classes followed
4621   // by the list of defined categories, in a single array.
4622   SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories);
4623   for (unsigned i=0; i<NumClasses; i++) {
4624     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
4625     assert(ID);
4626     if (ObjCImplementationDecl *IMP = ID->getImplementation())
4627       // We are implementing a weak imported interface. Give it external linkage
4628       if (ID->isWeakImported() && !IMP->isWeakImported())
4629         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
4630 
4631     Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i],
4632                                                 ObjCTypes.Int8PtrTy);
4633   }
4634   for (unsigned i=0; i<NumCategories; i++)
4635     Symbols[NumClasses + i] =
4636       llvm::ConstantExpr::getBitCast(DefinedCategories[i],
4637                                      ObjCTypes.Int8PtrTy);
4638 
4639   Values[4] =
4640     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
4641                                                   Symbols.size()),
4642                              Symbols);
4643 
4644   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
4645 
4646   llvm::GlobalVariable *GV = CreateMetadataVar(
4647       "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip",
4648       CGM.getPointerAlign(), true);
4649   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
4650 }
4651 
EmitClassRefFromId(CodeGenFunction & CGF,IdentifierInfo * II)4652 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
4653                                            IdentifierInfo *II) {
4654   LazySymbols.insert(II);
4655 
4656   llvm::GlobalVariable *&Entry = ClassReferences[II];
4657 
4658   if (!Entry) {
4659     llvm::Constant *Casted =
4660     llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
4661                                    ObjCTypes.ClassPtrTy);
4662     Entry = CreateMetadataVar(
4663         "OBJC_CLASS_REFERENCES_", Casted,
4664         "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
4665         CGM.getPointerAlign(), true);
4666   }
4667 
4668   return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign());
4669 }
4670 
EmitClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)4671 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
4672                                      const ObjCInterfaceDecl *ID) {
4673   // If the class has the objc_runtime_visible attribute, we need to
4674   // use the Objective-C runtime to get the class.
4675   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
4676     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
4677 
4678   return EmitClassRefFromId(CGF, ID->getIdentifier());
4679 }
4680 
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)4681 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
4682   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
4683   return EmitClassRefFromId(CGF, II);
4684 }
4685 
EmitSelector(CodeGenFunction & CGF,Selector Sel)4686 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
4687   return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel));
4688 }
4689 
EmitSelectorAddr(CodeGenFunction & CGF,Selector Sel)4690 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) {
4691   CharUnits Align = CGF.getPointerAlign();
4692 
4693   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
4694   if (!Entry) {
4695     llvm::Constant *Casted =
4696       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
4697                                      ObjCTypes.SelectorPtrTy);
4698     Entry = CreateMetadataVar(
4699         "OBJC_SELECTOR_REFERENCES_", Casted,
4700         "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
4701     Entry->setExternallyInitialized(true);
4702   }
4703 
4704   return Address(Entry, Align);
4705 }
4706 
GetClassName(StringRef RuntimeName)4707 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
4708     llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
4709     if (!Entry)
4710       Entry = CreateMetadataVar(
4711           "OBJC_CLASS_NAME_",
4712           llvm::ConstantDataArray::getString(VMContext, RuntimeName),
4713           ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals"
4714                           : "__TEXT,__cstring,cstring_literals"),
4715           CharUnits::One(), true);
4716     return getConstantGEP(VMContext, Entry, 0, 0);
4717 }
4718 
GetMethodDefinition(const ObjCMethodDecl * MD)4719 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
4720   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
4721       I = MethodDefinitions.find(MD);
4722   if (I != MethodDefinitions.end())
4723     return I->second;
4724 
4725   return nullptr;
4726 }
4727 
4728 /// GetIvarLayoutName - Returns a unique constant for the given
4729 /// ivar layout bitmap.
GetIvarLayoutName(IdentifierInfo * Ident,const ObjCCommonTypesHelper & ObjCTypes)4730 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
4731                                        const ObjCCommonTypesHelper &ObjCTypes) {
4732   return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
4733 }
4734 
visitRecord(const RecordType * RT,CharUnits offset)4735 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
4736                                     CharUnits offset) {
4737   const RecordDecl *RD = RT->getDecl();
4738 
4739   // If this is a union, remember that we had one, because it might mess
4740   // up the ordering of layout entries.
4741   if (RD->isUnion())
4742     IsDisordered = true;
4743 
4744   const ASTRecordLayout *recLayout = nullptr;
4745   visitAggregate(RD->field_begin(), RD->field_end(), offset,
4746                  [&](const FieldDecl *field) -> CharUnits {
4747     if (!recLayout)
4748       recLayout = &CGM.getContext().getASTRecordLayout(RD);
4749     auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
4750     return CGM.getContext().toCharUnitsFromBits(offsetInBits);
4751   });
4752 }
4753 
4754 template <class Iterator, class GetOffsetFn>
visitAggregate(Iterator begin,Iterator end,CharUnits aggregateOffset,const GetOffsetFn & getOffset)4755 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
4756                                        CharUnits aggregateOffset,
4757                                        const GetOffsetFn &getOffset) {
4758   for (; begin != end; ++begin) {
4759     auto field = *begin;
4760 
4761     // Skip over bitfields.
4762     if (field->isBitField()) {
4763       continue;
4764     }
4765 
4766     // Compute the offset of the field within the aggregate.
4767     CharUnits fieldOffset = aggregateOffset + getOffset(field);
4768 
4769     visitField(field, fieldOffset);
4770   }
4771 }
4772 
4773 /// Collect layout information for the given fields into IvarsInfo.
visitField(const FieldDecl * field,CharUnits fieldOffset)4774 void IvarLayoutBuilder::visitField(const FieldDecl *field,
4775                                    CharUnits fieldOffset) {
4776   QualType fieldType = field->getType();
4777 
4778   // Drill down into arrays.
4779   uint64_t numElts = 1;
4780   while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
4781     numElts *= arrayType->getSize().getZExtValue();
4782     fieldType = arrayType->getElementType();
4783   }
4784 
4785   assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
4786 
4787   // If we ended up with a zero-sized array, we've done what we can do within
4788   // the limits of this layout encoding.
4789   if (numElts == 0) return;
4790 
4791   // Recurse if the base element type is a record type.
4792   if (auto recType = fieldType->getAs<RecordType>()) {
4793     size_t oldEnd = IvarsInfo.size();
4794 
4795     visitRecord(recType, fieldOffset);
4796 
4797     // If we have an array, replicate the first entry's layout information.
4798     auto numEltEntries = IvarsInfo.size() - oldEnd;
4799     if (numElts != 1 && numEltEntries != 0) {
4800       CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
4801       for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
4802         // Copy the last numEltEntries onto the end of the array, adjusting
4803         // each for the element size.
4804         for (size_t i = 0; i != numEltEntries; ++i) {
4805           auto firstEntry = IvarsInfo[oldEnd + i];
4806           IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
4807                                        firstEntry.SizeInWords));
4808         }
4809       }
4810     }
4811 
4812     return;
4813   }
4814 
4815   // Classify the element type.
4816   Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
4817 
4818   // If it matches what we're looking for, add an entry.
4819   if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
4820       || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
4821     assert(CGM.getContext().getTypeSizeInChars(fieldType)
4822              == CGM.getPointerSize());
4823     IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
4824   }
4825 }
4826 
4827 /// buildBitmap - This routine does the horsework of taking the offsets of
4828 /// strong/weak references and creating a bitmap.  The bitmap is also
4829 /// returned in the given buffer, suitable for being passed to \c dump().
buildBitmap(CGObjCCommonMac & CGObjC,llvm::SmallVectorImpl<unsigned char> & buffer)4830 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
4831                                 llvm::SmallVectorImpl<unsigned char> &buffer) {
4832   // The bitmap is a series of skip/scan instructions, aligned to word
4833   // boundaries.  The skip is performed first.
4834   const unsigned char MaxNibble = 0xF;
4835   const unsigned char SkipMask = 0xF0, SkipShift = 4;
4836   const unsigned char ScanMask = 0x0F, ScanShift = 0;
4837 
4838   assert(!IvarsInfo.empty() && "generating bitmap for no data");
4839 
4840   // Sort the ivar info on byte position in case we encounterred a
4841   // union nested in the ivar list.
4842   if (IsDisordered) {
4843     // This isn't a stable sort, but our algorithm should handle it fine.
4844     llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
4845   } else {
4846     assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end()));
4847   }
4848   assert(IvarsInfo.back().Offset < InstanceEnd);
4849 
4850   assert(buffer.empty());
4851 
4852   // Skip the next N words.
4853   auto skip = [&](unsigned numWords) {
4854     assert(numWords > 0);
4855 
4856     // Try to merge into the previous byte.  Since scans happen second, we
4857     // can't do this if it includes a scan.
4858     if (!buffer.empty() && !(buffer.back() & ScanMask)) {
4859       unsigned lastSkip = buffer.back() >> SkipShift;
4860       if (lastSkip < MaxNibble) {
4861         unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
4862         numWords -= claimed;
4863         lastSkip += claimed;
4864         buffer.back() = (lastSkip << SkipShift);
4865       }
4866     }
4867 
4868     while (numWords >= MaxNibble) {
4869       buffer.push_back(MaxNibble << SkipShift);
4870       numWords -= MaxNibble;
4871     }
4872     if (numWords) {
4873       buffer.push_back(numWords << SkipShift);
4874     }
4875   };
4876 
4877   // Scan the next N words.
4878   auto scan = [&](unsigned numWords) {
4879     assert(numWords > 0);
4880 
4881     // Try to merge into the previous byte.  Since scans happen second, we can
4882     // do this even if it includes a skip.
4883     if (!buffer.empty()) {
4884       unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
4885       if (lastScan < MaxNibble) {
4886         unsigned claimed = std::min(MaxNibble - lastScan, numWords);
4887         numWords -= claimed;
4888         lastScan += claimed;
4889         buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
4890       }
4891     }
4892 
4893     while (numWords >= MaxNibble) {
4894       buffer.push_back(MaxNibble << ScanShift);
4895       numWords -= MaxNibble;
4896     }
4897     if (numWords) {
4898       buffer.push_back(numWords << ScanShift);
4899     }
4900   };
4901 
4902   // One past the end of the last scan.
4903   unsigned endOfLastScanInWords = 0;
4904   const CharUnits WordSize = CGM.getPointerSize();
4905 
4906   // Consider all the scan requests.
4907   for (auto &request : IvarsInfo) {
4908     CharUnits beginOfScan = request.Offset - InstanceBegin;
4909 
4910     // Ignore scan requests that don't start at an even multiple of the
4911     // word size.  We can't encode them.
4912     if ((beginOfScan % WordSize) != 0) continue;
4913 
4914     // Ignore scan requests that start before the instance start.
4915     // This assumes that scans never span that boundary.  The boundary
4916     // isn't the true start of the ivars, because in the fragile-ARC case
4917     // it's rounded up to word alignment, but the test above should leave
4918     // us ignoring that possibility.
4919     if (beginOfScan.isNegative()) {
4920       assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
4921       continue;
4922     }
4923 
4924     unsigned beginOfScanInWords = beginOfScan / WordSize;
4925     unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
4926 
4927     // If the scan starts some number of words after the last one ended,
4928     // skip forward.
4929     if (beginOfScanInWords > endOfLastScanInWords) {
4930       skip(beginOfScanInWords - endOfLastScanInWords);
4931 
4932     // Otherwise, start scanning where the last left off.
4933     } else {
4934       beginOfScanInWords = endOfLastScanInWords;
4935 
4936       // If that leaves us with nothing to scan, ignore this request.
4937       if (beginOfScanInWords >= endOfScanInWords) continue;
4938     }
4939 
4940     // Scan to the end of the request.
4941     assert(beginOfScanInWords < endOfScanInWords);
4942     scan(endOfScanInWords - beginOfScanInWords);
4943     endOfLastScanInWords = endOfScanInWords;
4944   }
4945 
4946   if (buffer.empty())
4947     return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
4948 
4949   // For GC layouts, emit a skip to the end of the allocation so that we
4950   // have precise information about the entire thing.  This isn't useful
4951   // or necessary for the ARC-style layout strings.
4952   if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
4953     unsigned lastOffsetInWords =
4954       (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
4955     if (lastOffsetInWords > endOfLastScanInWords) {
4956       skip(lastOffsetInWords - endOfLastScanInWords);
4957     }
4958   }
4959 
4960   // Null terminate the string.
4961   buffer.push_back(0);
4962 
4963   bool isNonFragileABI = CGObjC.isNonFragileABI();
4964 
4965   llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar(
4966       "OBJC_CLASS_NAME_",
4967       llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer),
4968       (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals"
4969                        : "__TEXT,__cstring,cstring_literals"),
4970       CharUnits::One(), true);
4971   return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
4972 }
4973 
4974 /// BuildIvarLayout - Builds ivar layout bitmap for the class
4975 /// implementation for the __strong or __weak case.
4976 /// The layout map displays which words in ivar list must be skipped
4977 /// and which must be scanned by GC (see below). String is built of bytes.
4978 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
4979 /// of words to skip and right nibble is count of words to scan. So, each
4980 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
4981 /// represented by a 0x00 byte which also ends the string.
4982 /// 1. when ForStrongLayout is true, following ivars are scanned:
4983 /// - id, Class
4984 /// - object *
4985 /// - __strong anything
4986 ///
4987 /// 2. When ForStrongLayout is false, following ivars are scanned:
4988 /// - __weak anything
4989 ///
4990 llvm::Constant *
BuildIvarLayout(const ObjCImplementationDecl * OMD,CharUnits beginOffset,CharUnits endOffset,bool ForStrongLayout,bool HasMRCWeakIvars)4991 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
4992                                  CharUnits beginOffset, CharUnits endOffset,
4993                                  bool ForStrongLayout, bool HasMRCWeakIvars) {
4994   // If this is MRC, and we're either building a strong layout or there
4995   // are no weak ivars, bail out early.
4996   llvm::Type *PtrTy = CGM.Int8PtrTy;
4997   if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
4998       !CGM.getLangOpts().ObjCAutoRefCount &&
4999       (ForStrongLayout || !HasMRCWeakIvars))
5000     return llvm::Constant::getNullValue(PtrTy);
5001 
5002   const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5003   SmallVector<const ObjCIvarDecl*, 32> ivars;
5004 
5005   // GC layout strings include the complete object layout, possibly
5006   // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5007   // up.
5008   //
5009   // ARC layout strings only include the class's ivars.  In non-fragile
5010   // runtimes, that means starting at InstanceStart, rounded up to word
5011   // alignment.  In fragile runtimes, there's no InstanceStart, so it means
5012   // starting at the offset of the first ivar, rounded up to word alignment.
5013   //
5014   // MRC weak layout strings follow the ARC style.
5015   CharUnits baseOffset;
5016   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5017     for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5018          IVD; IVD = IVD->getNextIvar())
5019       ivars.push_back(IVD);
5020 
5021     if (isNonFragileABI()) {
5022       baseOffset = beginOffset; // InstanceStart
5023     } else if (!ivars.empty()) {
5024       baseOffset =
5025         CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
5026     } else {
5027       baseOffset = CharUnits::Zero();
5028     }
5029 
5030     baseOffset = baseOffset.alignTo(CGM.getPointerAlign());
5031   }
5032   else {
5033     CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
5034 
5035     baseOffset = CharUnits::Zero();
5036   }
5037 
5038   if (ivars.empty())
5039     return llvm::Constant::getNullValue(PtrTy);
5040 
5041   IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5042 
5043   builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
5044                          [&](const ObjCIvarDecl *ivar) -> CharUnits {
5045       return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
5046   });
5047 
5048   if (!builder.hasBitmapData())
5049     return llvm::Constant::getNullValue(PtrTy);
5050 
5051   llvm::SmallVector<unsigned char, 4> buffer;
5052   llvm::Constant *C = builder.buildBitmap(*this, buffer);
5053 
5054    if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5055     printf("\n%s ivar layout for class '%s': ",
5056            ForStrongLayout ? "strong" : "weak",
5057            OMD->getClassInterface()->getName().str().c_str());
5058     builder.dump(buffer);
5059   }
5060   return C;
5061 }
5062 
GetMethodVarName(Selector Sel)5063 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5064   llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5065 
5066   // FIXME: Avoid std::string in "Sel.getAsString()"
5067   if (!Entry)
5068     Entry = CreateMetadataVar(
5069         "OBJC_METH_VAR_NAME_",
5070         llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()),
5071         ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals"
5072                         : "__TEXT,__cstring,cstring_literals"),
5073         CharUnits::One(), true);
5074 
5075   return getConstantGEP(VMContext, Entry, 0, 0);
5076 }
5077 
5078 // FIXME: Merge into a single cstring creation function.
GetMethodVarName(IdentifierInfo * ID)5079 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5080   return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5081 }
5082 
GetMethodVarType(const FieldDecl * Field)5083 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5084   std::string TypeStr;
5085   CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5086 
5087   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5088 
5089   if (!Entry)
5090     Entry = CreateMetadataVar(
5091         "OBJC_METH_VAR_TYPE_",
5092         llvm::ConstantDataArray::getString(VMContext, TypeStr),
5093         ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
5094                         : "__TEXT,__cstring,cstring_literals"),
5095         CharUnits::One(), true);
5096 
5097   return getConstantGEP(VMContext, Entry, 0, 0);
5098 }
5099 
GetMethodVarType(const ObjCMethodDecl * D,bool Extended)5100 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5101                                                   bool Extended) {
5102   std::string TypeStr;
5103   if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended))
5104     return nullptr;
5105 
5106   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5107 
5108   if (!Entry)
5109     Entry = CreateMetadataVar(
5110         "OBJC_METH_VAR_TYPE_",
5111         llvm::ConstantDataArray::getString(VMContext, TypeStr),
5112         ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
5113                         : "__TEXT,__cstring,cstring_literals"),
5114         CharUnits::One(), true);
5115 
5116   return getConstantGEP(VMContext, Entry, 0, 0);
5117 }
5118 
5119 // FIXME: Merge into a single cstring creation function.
GetPropertyName(IdentifierInfo * Ident)5120 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5121   llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5122 
5123   if (!Entry)
5124     Entry = CreateMetadataVar(
5125         "OBJC_PROP_NAME_ATTR_",
5126         llvm::ConstantDataArray::getString(VMContext, Ident->getName()),
5127         "__TEXT,__cstring,cstring_literals", CharUnits::One(), true);
5128 
5129   return getConstantGEP(VMContext, Entry, 0, 0);
5130 }
5131 
5132 // FIXME: Merge into a single cstring creation function.
5133 // FIXME: This Decl should be more precise.
5134 llvm::Constant *
GetPropertyTypeString(const ObjCPropertyDecl * PD,const Decl * Container)5135 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5136                                        const Decl *Container) {
5137   std::string TypeStr;
5138   CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
5139   return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5140 }
5141 
GetNameForMethod(const ObjCMethodDecl * D,const ObjCContainerDecl * CD,SmallVectorImpl<char> & Name)5142 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
5143                                        const ObjCContainerDecl *CD,
5144                                        SmallVectorImpl<char> &Name) {
5145   llvm::raw_svector_ostream OS(Name);
5146   assert (CD && "Missing container decl in GetNameForMethod");
5147   OS << '\01' << (D->isInstanceMethod() ? '-' : '+')
5148      << '[' << CD->getName();
5149   if (const ObjCCategoryImplDecl *CID =
5150       dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext()))
5151     OS << '(' << *CID << ')';
5152   OS << ' ' << D->getSelector().getAsString() << ']';
5153 }
5154 
FinishModule()5155 void CGObjCMac::FinishModule() {
5156   EmitModuleInfo();
5157 
5158   // Emit the dummy bodies for any protocols which were referenced but
5159   // never defined.
5160   for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator
5161          I = Protocols.begin(), e = Protocols.end(); I != e; ++I) {
5162     if (I->second->hasInitializer())
5163       continue;
5164 
5165     llvm::Constant *Values[5];
5166     Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
5167     Values[1] = GetClassName(I->first->getName());
5168     Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
5169     Values[3] = Values[4] =
5170       llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
5171     I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
5172                                                         Values));
5173     CGM.addCompilerUsedGlobal(I->second);
5174   }
5175 
5176   // Add assembler directives to add lazy undefined symbol references
5177   // for classes which are referenced but not defined. This is
5178   // important for correct linker interaction.
5179   //
5180   // FIXME: It would be nice if we had an LLVM construct for this.
5181   if (!LazySymbols.empty() || !DefinedSymbols.empty()) {
5182     SmallString<256> Asm;
5183     Asm += CGM.getModule().getModuleInlineAsm();
5184     if (!Asm.empty() && Asm.back() != '\n')
5185       Asm += '\n';
5186 
5187     llvm::raw_svector_ostream OS(Asm);
5188     for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(),
5189            e = DefinedSymbols.end(); I != e; ++I)
5190       OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n"
5191          << "\t.globl .objc_class_name_" << (*I)->getName() << "\n";
5192     for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(),
5193          e = LazySymbols.end(); I != e; ++I) {
5194       OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n";
5195     }
5196 
5197     for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) {
5198       OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n"
5199          << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n";
5200     }
5201 
5202     CGM.getModule().setModuleInlineAsm(OS.str());
5203   }
5204 }
5205 
CGObjCNonFragileABIMac(CodeGen::CodeGenModule & cgm)5206 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5207     : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr),
5208       ObjCEmptyVtableVar(nullptr) {
5209   ObjCABI = 2;
5210 }
5211 
5212 /* *** */
5213 
ObjCCommonTypesHelper(CodeGen::CodeGenModule & cgm)5214 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5215   : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5216 {
5217   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5218   ASTContext &Ctx = CGM.getContext();
5219 
5220   ShortTy = Types.ConvertType(Ctx.ShortTy);
5221   IntTy = Types.ConvertType(Ctx.IntTy);
5222   LongTy = Types.ConvertType(Ctx.LongTy);
5223   LongLongTy = Types.ConvertType(Ctx.LongLongTy);
5224   Int8PtrTy = CGM.Int8PtrTy;
5225   Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5226 
5227   // arm64 targets use "int" ivar offset variables. All others,
5228   // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5229   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5230     IvarOffsetVarTy = IntTy;
5231   else
5232     IvarOffsetVarTy = LongTy;
5233 
5234   ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType());
5235   PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy);
5236   SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType());
5237 
5238   // I'm not sure I like this. The implicit coordination is a bit
5239   // gross. We should solve this in a reasonable fashion because this
5240   // is a pretty common task (match some runtime data structure with
5241   // an LLVM data structure).
5242 
5243   // FIXME: This is leaked.
5244   // FIXME: Merge with rewriter code?
5245 
5246   // struct _objc_super {
5247   //   id self;
5248   //   Class cls;
5249   // }
5250   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5251                                       Ctx.getTranslationUnitDecl(),
5252                                       SourceLocation(), SourceLocation(),
5253                                       &Ctx.Idents.get("_objc_super"));
5254   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5255                                 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5256                                 false, ICIS_NoInit));
5257   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5258                                 nullptr, Ctx.getObjCClassType(), nullptr,
5259                                 nullptr, false, ICIS_NoInit));
5260   RD->completeDefinition();
5261 
5262   SuperCTy = Ctx.getTagDeclType(RD);
5263   SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5264 
5265   SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5266   SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5267 
5268   // struct _prop_t {
5269   //   char *name;
5270   //   char *attributes;
5271   // }
5272   PropertyTy = llvm::StructType::create("struct._prop_t",
5273                                         Int8PtrTy, Int8PtrTy, nullptr);
5274 
5275   // struct _prop_list_t {
5276   //   uint32_t entsize;      // sizeof(struct _prop_t)
5277   //   uint32_t count_of_properties;
5278   //   struct _prop_t prop_list[count_of_properties];
5279   // }
5280   PropertyListTy =
5281     llvm::StructType::create("struct._prop_list_t", IntTy, IntTy,
5282                              llvm::ArrayType::get(PropertyTy, 0), nullptr);
5283   // struct _prop_list_t *
5284   PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5285 
5286   // struct _objc_method {
5287   //   SEL _cmd;
5288   //   char *method_type;
5289   //   char *_imp;
5290   // }
5291   MethodTy = llvm::StructType::create("struct._objc_method",
5292                                       SelectorPtrTy, Int8PtrTy, Int8PtrTy,
5293                                       nullptr);
5294 
5295   // struct _objc_cache *
5296   CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5297   CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5298 }
5299 
ObjCTypesHelper(CodeGen::CodeGenModule & cgm)5300 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5301   : ObjCCommonTypesHelper(cgm) {
5302   // struct _objc_method_description {
5303   //   SEL name;
5304   //   char *types;
5305   // }
5306   MethodDescriptionTy =
5307     llvm::StructType::create("struct._objc_method_description",
5308                              SelectorPtrTy, Int8PtrTy, nullptr);
5309 
5310   // struct _objc_method_description_list {
5311   //   int count;
5312   //   struct _objc_method_description[1];
5313   // }
5314   MethodDescriptionListTy = llvm::StructType::create(
5315       "struct._objc_method_description_list", IntTy,
5316       llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr);
5317 
5318   // struct _objc_method_description_list *
5319   MethodDescriptionListPtrTy =
5320     llvm::PointerType::getUnqual(MethodDescriptionListTy);
5321 
5322   // Protocol description structures
5323 
5324   // struct _objc_protocol_extension {
5325   //   uint32_t size;  // sizeof(struct _objc_protocol_extension)
5326   //   struct _objc_method_description_list *optional_instance_methods;
5327   //   struct _objc_method_description_list *optional_class_methods;
5328   //   struct _objc_property_list *instance_properties;
5329   //   const char ** extendedMethodTypes;
5330   //   struct _objc_property_list *class_properties;
5331   // }
5332   ProtocolExtensionTy =
5333     llvm::StructType::create("struct._objc_protocol_extension",
5334                              IntTy, MethodDescriptionListPtrTy,
5335                              MethodDescriptionListPtrTy, PropertyListPtrTy,
5336                              Int8PtrPtrTy, PropertyListPtrTy, nullptr);
5337 
5338   // struct _objc_protocol_extension *
5339   ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5340 
5341   // Handle recursive construction of Protocol and ProtocolList types
5342 
5343   ProtocolTy =
5344     llvm::StructType::create(VMContext, "struct._objc_protocol");
5345 
5346   ProtocolListTy =
5347     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5348   ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy),
5349                           LongTy,
5350                           llvm::ArrayType::get(ProtocolTy, 0),
5351                           nullptr);
5352 
5353   // struct _objc_protocol {
5354   //   struct _objc_protocol_extension *isa;
5355   //   char *protocol_name;
5356   //   struct _objc_protocol **_objc_protocol_list;
5357   //   struct _objc_method_description_list *instance_methods;
5358   //   struct _objc_method_description_list *class_methods;
5359   // }
5360   ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5361                       llvm::PointerType::getUnqual(ProtocolListTy),
5362                       MethodDescriptionListPtrTy,
5363                       MethodDescriptionListPtrTy,
5364                       nullptr);
5365 
5366   // struct _objc_protocol_list *
5367   ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5368 
5369   ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5370 
5371   // Class description structures
5372 
5373   // struct _objc_ivar {
5374   //   char *ivar_name;
5375   //   char *ivar_type;
5376   //   int  ivar_offset;
5377   // }
5378   IvarTy = llvm::StructType::create("struct._objc_ivar",
5379                                     Int8PtrTy, Int8PtrTy, IntTy, nullptr);
5380 
5381   // struct _objc_ivar_list *
5382   IvarListTy =
5383     llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5384   IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5385 
5386   // struct _objc_method_list *
5387   MethodListTy =
5388     llvm::StructType::create(VMContext, "struct._objc_method_list");
5389   MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5390 
5391   // struct _objc_class_extension *
5392   ClassExtensionTy =
5393     llvm::StructType::create("struct._objc_class_extension",
5394                              IntTy, Int8PtrTy, PropertyListPtrTy, nullptr);
5395   ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5396 
5397   ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5398 
5399   // struct _objc_class {
5400   //   Class isa;
5401   //   Class super_class;
5402   //   char *name;
5403   //   long version;
5404   //   long info;
5405   //   long instance_size;
5406   //   struct _objc_ivar_list *ivars;
5407   //   struct _objc_method_list *methods;
5408   //   struct _objc_cache *cache;
5409   //   struct _objc_protocol_list *protocols;
5410   //   char *ivar_layout;
5411   //   struct _objc_class_ext *ext;
5412   // };
5413   ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5414                    llvm::PointerType::getUnqual(ClassTy),
5415                    Int8PtrTy,
5416                    LongTy,
5417                    LongTy,
5418                    LongTy,
5419                    IvarListPtrTy,
5420                    MethodListPtrTy,
5421                    CachePtrTy,
5422                    ProtocolListPtrTy,
5423                    Int8PtrTy,
5424                    ClassExtensionPtrTy,
5425                    nullptr);
5426 
5427   ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5428 
5429   // struct _objc_category {
5430   //   char *category_name;
5431   //   char *class_name;
5432   //   struct _objc_method_list *instance_method;
5433   //   struct _objc_method_list *class_method;
5434   //   struct _objc_protocol_list *protocols;
5435   //   uint32_t size;  // sizeof(struct _objc_category)
5436   //   struct _objc_property_list *instance_properties;// category's @property
5437   //   struct _objc_property_list *class_properties;
5438   // }
5439   CategoryTy =
5440     llvm::StructType::create("struct._objc_category",
5441                              Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5442                              MethodListPtrTy, ProtocolListPtrTy,
5443                              IntTy, PropertyListPtrTy, PropertyListPtrTy,
5444                              nullptr);
5445 
5446   // Global metadata structures
5447 
5448   // struct _objc_symtab {
5449   //   long sel_ref_cnt;
5450   //   SEL *refs;
5451   //   short cls_def_cnt;
5452   //   short cat_def_cnt;
5453   //   char *defs[cls_def_cnt + cat_def_cnt];
5454   // }
5455   SymtabTy =
5456     llvm::StructType::create("struct._objc_symtab",
5457                              LongTy, SelectorPtrTy, ShortTy, ShortTy,
5458                              llvm::ArrayType::get(Int8PtrTy, 0), nullptr);
5459   SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5460 
5461   // struct _objc_module {
5462   //   long version;
5463   //   long size;   // sizeof(struct _objc_module)
5464   //   char *name;
5465   //   struct _objc_symtab* symtab;
5466   //  }
5467   ModuleTy =
5468     llvm::StructType::create("struct._objc_module",
5469                              LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr);
5470 
5471 
5472   // FIXME: This is the size of the setjmp buffer and should be target
5473   // specific. 18 is what's used on 32-bit X86.
5474   uint64_t SetJmpBufferSize = 18;
5475 
5476   // Exceptions
5477   llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5478 
5479   ExceptionDataTy =
5480     llvm::StructType::create("struct._objc_exception_data",
5481                              llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize),
5482                              StackPtrTy, nullptr);
5483 }
5484 
ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule & cgm)5485 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5486   : ObjCCommonTypesHelper(cgm) {
5487   // struct _method_list_t {
5488   //   uint32_t entsize;  // sizeof(struct _objc_method)
5489   //   uint32_t method_count;
5490   //   struct _objc_method method_list[method_count];
5491   // }
5492   MethodListnfABITy =
5493     llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5494                              llvm::ArrayType::get(MethodTy, 0), nullptr);
5495   // struct method_list_t *
5496   MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5497 
5498   // struct _protocol_t {
5499   //   id isa;  // NULL
5500   //   const char * const protocol_name;
5501   //   const struct _protocol_list_t * protocol_list; // super protocols
5502   //   const struct method_list_t * const instance_methods;
5503   //   const struct method_list_t * const class_methods;
5504   //   const struct method_list_t *optionalInstanceMethods;
5505   //   const struct method_list_t *optionalClassMethods;
5506   //   const struct _prop_list_t * properties;
5507   //   const uint32_t size;  // sizeof(struct _protocol_t)
5508   //   const uint32_t flags;  // = 0
5509   //   const char ** extendedMethodTypes;
5510   //   const char *demangledName;
5511   //   const struct _prop_list_t * class_properties;
5512   // }
5513 
5514   // Holder for struct _protocol_list_t *
5515   ProtocolListnfABITy =
5516     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5517 
5518   ProtocolnfABITy =
5519     llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy,
5520                              llvm::PointerType::getUnqual(ProtocolListnfABITy),
5521                              MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5522                              MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5523                              PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy,
5524                              Int8PtrTy, PropertyListPtrTy,
5525                              nullptr);
5526 
5527   // struct _protocol_t*
5528   ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
5529 
5530   // struct _protocol_list_t {
5531   //   long protocol_count;   // Note, this is 32/64 bit
5532   //   struct _protocol_t *[protocol_count];
5533   // }
5534   ProtocolListnfABITy->setBody(LongTy,
5535                                llvm::ArrayType::get(ProtocolnfABIPtrTy, 0),
5536                                nullptr);
5537 
5538   // struct _objc_protocol_list*
5539   ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
5540 
5541   // struct _ivar_t {
5542   //   unsigned [long] int *offset;  // pointer to ivar offset location
5543   //   char *name;
5544   //   char *type;
5545   //   uint32_t alignment;
5546   //   uint32_t size;
5547   // }
5548   IvarnfABITy = llvm::StructType::create(
5549       "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
5550       Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr);
5551 
5552   // struct _ivar_list_t {
5553   //   uint32 entsize;  // sizeof(struct _ivar_t)
5554   //   uint32 count;
5555   //   struct _iver_t list[count];
5556   // }
5557   IvarListnfABITy =
5558     llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
5559                              llvm::ArrayType::get(IvarnfABITy, 0), nullptr);
5560 
5561   IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
5562 
5563   // struct _class_ro_t {
5564   //   uint32_t const flags;
5565   //   uint32_t const instanceStart;
5566   //   uint32_t const instanceSize;
5567   //   uint32_t const reserved;  // only when building for 64bit targets
5568   //   const uint8_t * const ivarLayout;
5569   //   const char *const name;
5570   //   const struct _method_list_t * const baseMethods;
5571   //   const struct _objc_protocol_list *const baseProtocols;
5572   //   const struct _ivar_list_t *const ivars;
5573   //   const uint8_t * const weakIvarLayout;
5574   //   const struct _prop_list_t * const properties;
5575   // }
5576 
5577   // FIXME. Add 'reserved' field in 64bit abi mode!
5578   ClassRonfABITy = llvm::StructType::create("struct._class_ro_t",
5579                                             IntTy, IntTy, IntTy, Int8PtrTy,
5580                                             Int8PtrTy, MethodListnfABIPtrTy,
5581                                             ProtocolListnfABIPtrTy,
5582                                             IvarListnfABIPtrTy,
5583                                             Int8PtrTy, PropertyListPtrTy,
5584                                             nullptr);
5585 
5586   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
5587   llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
5588   ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
5589                  ->getPointerTo();
5590 
5591   // struct _class_t {
5592   //   struct _class_t *isa;
5593   //   struct _class_t * const superclass;
5594   //   void *cache;
5595   //   IMP *vtable;
5596   //   struct class_ro_t *ro;
5597   // }
5598 
5599   ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
5600   ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
5601                         llvm::PointerType::getUnqual(ClassnfABITy),
5602                         CachePtrTy,
5603                         llvm::PointerType::getUnqual(ImpnfABITy),
5604                         llvm::PointerType::getUnqual(ClassRonfABITy),
5605                         nullptr);
5606 
5607   // LLVM for struct _class_t *
5608   ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
5609 
5610   // struct _category_t {
5611   //   const char * const name;
5612   //   struct _class_t *const cls;
5613   //   const struct _method_list_t * const instance_methods;
5614   //   const struct _method_list_t * const class_methods;
5615   //   const struct _protocol_list_t * const protocols;
5616   //   const struct _prop_list_t * const properties;
5617   //   const struct _prop_list_t * const class_properties;
5618   //   const uint32_t size;
5619   // }
5620   CategorynfABITy = llvm::StructType::create("struct._category_t",
5621                                              Int8PtrTy, ClassnfABIPtrTy,
5622                                              MethodListnfABIPtrTy,
5623                                              MethodListnfABIPtrTy,
5624                                              ProtocolListnfABIPtrTy,
5625                                              PropertyListPtrTy,
5626                                              PropertyListPtrTy,
5627                                              IntTy,
5628                                              nullptr);
5629 
5630   // New types for nonfragile abi messaging.
5631   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5632   ASTContext &Ctx = CGM.getContext();
5633 
5634   // MessageRefTy - LLVM for:
5635   // struct _message_ref_t {
5636   //   IMP messenger;
5637   //   SEL name;
5638   // };
5639 
5640   // First the clang type for struct _message_ref_t
5641   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5642                                       Ctx.getTranslationUnitDecl(),
5643                                       SourceLocation(), SourceLocation(),
5644                                       &Ctx.Idents.get("_message_ref_t"));
5645   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5646                                 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
5647                                 ICIS_NoInit));
5648   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5649                                 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
5650                                 false, ICIS_NoInit));
5651   RD->completeDefinition();
5652 
5653   MessageRefCTy = Ctx.getTagDeclType(RD);
5654   MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
5655   MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
5656 
5657   // MessageRefPtrTy - LLVM for struct _message_ref_t*
5658   MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
5659 
5660   // SuperMessageRefTy - LLVM for:
5661   // struct _super_message_ref_t {
5662   //   SUPER_IMP messenger;
5663   //   SEL name;
5664   // };
5665   SuperMessageRefTy =
5666     llvm::StructType::create("struct._super_message_ref_t",
5667                              ImpnfABITy, SelectorPtrTy, nullptr);
5668 
5669   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
5670   SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
5671 
5672 
5673   // struct objc_typeinfo {
5674   //   const void** vtable; // objc_ehtype_vtable + 2
5675   //   const char*  name;    // c++ typeinfo string
5676   //   Class        cls;
5677   // };
5678   EHTypeTy =
5679     llvm::StructType::create("struct._objc_typeinfo",
5680                              llvm::PointerType::getUnqual(Int8PtrTy),
5681                              Int8PtrTy, ClassnfABIPtrTy, nullptr);
5682   EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
5683 }
5684 
ModuleInitFunction()5685 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
5686   FinishNonFragileABIModule();
5687 
5688   return nullptr;
5689 }
5690 
AddModuleClassList(ArrayRef<llvm::GlobalValue * > Container,StringRef SymbolName,StringRef SectionName)5691 void CGObjCNonFragileABIMac::AddModuleClassList(
5692     ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
5693     StringRef SectionName) {
5694   unsigned NumClasses = Container.size();
5695 
5696   if (!NumClasses)
5697     return;
5698 
5699   SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
5700   for (unsigned i=0; i<NumClasses; i++)
5701     Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
5702                                                 ObjCTypes.Int8PtrTy);
5703   llvm::Constant *Init =
5704     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
5705                                                   Symbols.size()),
5706                              Symbols);
5707 
5708   llvm::GlobalVariable *GV =
5709     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
5710                              llvm::GlobalValue::PrivateLinkage,
5711                              Init,
5712                              SymbolName);
5713   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
5714   GV->setSection(SectionName);
5715   CGM.addCompilerUsedGlobal(GV);
5716 }
5717 
FinishNonFragileABIModule()5718 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
5719   // nonfragile abi has no module definition.
5720 
5721   // Build list of all implemented class addresses in array
5722   // L_OBJC_LABEL_CLASS_$.
5723 
5724   for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
5725     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5726     assert(ID);
5727     if (ObjCImplementationDecl *IMP = ID->getImplementation())
5728       // We are implementing a weak imported interface. Give it external linkage
5729       if (ID->isWeakImported() && !IMP->isWeakImported()) {
5730         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5731         DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5732       }
5733   }
5734 
5735   AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
5736                      "__DATA, __objc_classlist, regular, no_dead_strip");
5737 
5738   AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
5739                      "__DATA, __objc_nlclslist, regular, no_dead_strip");
5740 
5741   // Build list of all implemented category addresses in array
5742   // L_OBJC_LABEL_CATEGORY_$.
5743   AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
5744                      "__DATA, __objc_catlist, regular, no_dead_strip");
5745   AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
5746                      "__DATA, __objc_nlcatlist, regular, no_dead_strip");
5747 
5748   EmitImageInfo();
5749 }
5750 
5751 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
5752 /// VTableDispatchMethods; false otherwise. What this means is that
5753 /// except for the 19 selectors in the list, we generate 32bit-style
5754 /// message dispatch call for all the rest.
isVTableDispatchedSelector(Selector Sel)5755 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
5756   // At various points we've experimented with using vtable-based
5757   // dispatch for all methods.
5758   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
5759   case CodeGenOptions::Legacy:
5760     return false;
5761   case CodeGenOptions::NonLegacy:
5762     return true;
5763   case CodeGenOptions::Mixed:
5764     break;
5765   }
5766 
5767   // If so, see whether this selector is in the white-list of things which must
5768   // use the new dispatch convention. We lazily build a dense set for this.
5769   if (VTableDispatchMethods.empty()) {
5770     VTableDispatchMethods.insert(GetNullarySelector("alloc"));
5771     VTableDispatchMethods.insert(GetNullarySelector("class"));
5772     VTableDispatchMethods.insert(GetNullarySelector("self"));
5773     VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
5774     VTableDispatchMethods.insert(GetNullarySelector("length"));
5775     VTableDispatchMethods.insert(GetNullarySelector("count"));
5776 
5777     // These are vtable-based if GC is disabled.
5778     // Optimistically use vtable dispatch for hybrid compiles.
5779     if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
5780       VTableDispatchMethods.insert(GetNullarySelector("retain"));
5781       VTableDispatchMethods.insert(GetNullarySelector("release"));
5782       VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
5783     }
5784 
5785     VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
5786     VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
5787     VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
5788     VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
5789     VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
5790     VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
5791     VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
5792 
5793     // These are vtable-based if GC is enabled.
5794     // Optimistically use vtable dispatch for hybrid compiles.
5795     if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5796       VTableDispatchMethods.insert(GetNullarySelector("hash"));
5797       VTableDispatchMethods.insert(GetUnarySelector("addObject"));
5798 
5799       // "countByEnumeratingWithState:objects:count"
5800       IdentifierInfo *KeyIdents[] = {
5801         &CGM.getContext().Idents.get("countByEnumeratingWithState"),
5802         &CGM.getContext().Idents.get("objects"),
5803         &CGM.getContext().Idents.get("count")
5804       };
5805       VTableDispatchMethods.insert(
5806         CGM.getContext().Selectors.getSelector(3, KeyIdents));
5807     }
5808   }
5809 
5810   return VTableDispatchMethods.count(Sel);
5811 }
5812 
5813 /// BuildClassRoTInitializer - generate meta-data for:
5814 /// struct _class_ro_t {
5815 ///   uint32_t const flags;
5816 ///   uint32_t const instanceStart;
5817 ///   uint32_t const instanceSize;
5818 ///   uint32_t const reserved;  // only when building for 64bit targets
5819 ///   const uint8_t * const ivarLayout;
5820 ///   const char *const name;
5821 ///   const struct _method_list_t * const baseMethods;
5822 ///   const struct _protocol_list_t *const baseProtocols;
5823 ///   const struct _ivar_list_t *const ivars;
5824 ///   const uint8_t * const weakIvarLayout;
5825 ///   const struct _prop_list_t * const properties;
5826 /// }
5827 ///
BuildClassRoTInitializer(unsigned flags,unsigned InstanceStart,unsigned InstanceSize,const ObjCImplementationDecl * ID)5828 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
5829   unsigned flags,
5830   unsigned InstanceStart,
5831   unsigned InstanceSize,
5832   const ObjCImplementationDecl *ID) {
5833   std::string ClassName = ID->getObjCRuntimeNameAsString();
5834   llvm::Constant *Values[10]; // 11 for 64bit targets!
5835 
5836   CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
5837   CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
5838 
5839   bool hasMRCWeak = false;
5840   if (CGM.getLangOpts().ObjCAutoRefCount)
5841     flags |= NonFragileABI_Class_CompiledByARC;
5842   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
5843     flags |= NonFragileABI_Class_HasMRCWeakIvars;
5844 
5845   Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags);
5846   Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart);
5847   Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize);
5848   // FIXME. For 64bit targets add 0 here.
5849   Values[ 3] = (flags & NonFragileABI_Class_Meta)
5850     ? GetIvarLayoutName(nullptr, ObjCTypes)
5851     : BuildStrongIvarLayout(ID, beginInstance, endInstance);
5852   Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString());
5853   // const struct _method_list_t * const baseMethods;
5854   std::vector<llvm::Constant*> Methods;
5855   std::string MethodListName("\01l_OBJC_$_");
5856   if (flags & NonFragileABI_Class_Meta) {
5857     MethodListName += "CLASS_METHODS_";
5858     MethodListName += ID->getObjCRuntimeNameAsString();
5859     for (const auto *I : ID->class_methods())
5860       // Class methods should always be defined.
5861       Methods.push_back(GetMethodConstant(I));
5862   } else {
5863     MethodListName += "INSTANCE_METHODS_";
5864     MethodListName += ID->getObjCRuntimeNameAsString();
5865     for (const auto *I : ID->instance_methods())
5866       // Instance methods should always be defined.
5867       Methods.push_back(GetMethodConstant(I));
5868 
5869     for (const auto *PID : ID->property_impls()) {
5870       if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
5871         ObjCPropertyDecl *PD = PID->getPropertyDecl();
5872 
5873         if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
5874           if (llvm::Constant *C = GetMethodConstant(MD))
5875             Methods.push_back(C);
5876         if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
5877           if (llvm::Constant *C = GetMethodConstant(MD))
5878             Methods.push_back(C);
5879       }
5880     }
5881   }
5882   Values[ 5] = EmitMethodList(MethodListName,
5883                               "__DATA, __objc_const", Methods);
5884 
5885   const ObjCInterfaceDecl *OID = ID->getClassInterface();
5886   assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
5887   Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
5888                                 + OID->getObjCRuntimeNameAsString(),
5889                                 OID->all_referenced_protocol_begin(),
5890                                 OID->all_referenced_protocol_end());
5891 
5892   if (flags & NonFragileABI_Class_Meta) {
5893     Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
5894     Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes);
5895     Values[ 9] = EmitPropertyList(
5896         "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
5897         ID, ID->getClassInterface(), ObjCTypes, true);
5898   } else {
5899     Values[ 7] = EmitIvarList(ID);
5900     Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance,
5901                                      hasMRCWeak);
5902     Values[ 9] = EmitPropertyList(
5903         "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
5904         ID, ID->getClassInterface(), ObjCTypes, false);
5905   }
5906   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy,
5907                                                    Values);
5908   llvm::GlobalVariable *CLASS_RO_GV =
5909     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false,
5910                              llvm::GlobalValue::PrivateLinkage,
5911                              Init,
5912                              (flags & NonFragileABI_Class_Meta) ?
5913                              std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName :
5914                              std::string("\01l_OBJC_CLASS_RO_$_")+ClassName);
5915   CLASS_RO_GV->setAlignment(
5916     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy));
5917   CLASS_RO_GV->setSection("__DATA, __objc_const");
5918   return CLASS_RO_GV;
5919 
5920 }
5921 
5922 /// BuildClassMetaData - This routine defines that to-level meta-data
5923 /// for the given ClassName for:
5924 /// struct _class_t {
5925 ///   struct _class_t *isa;
5926 ///   struct _class_t * const superclass;
5927 ///   void *cache;
5928 ///   IMP *vtable;
5929 ///   struct class_ro_t *ro;
5930 /// }
5931 ///
BuildClassMetaData(const std::string & ClassName,llvm::Constant * IsAGV,llvm::Constant * SuperClassGV,llvm::Constant * ClassRoGV,bool HiddenVisibility,bool Weak)5932 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData(
5933     const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV,
5934     llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) {
5935   llvm::Constant *Values[] = {
5936     IsAGV,
5937     SuperClassGV,
5938     ObjCEmptyCacheVar,  // &ObjCEmptyCacheVar
5939     ObjCEmptyVtableVar, // &ObjCEmptyVtableVar
5940     ClassRoGV           // &CLASS_RO_GV
5941   };
5942   if (!Values[1])
5943     Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy);
5944   if (!Values[3])
5945     Values[3] = llvm::Constant::getNullValue(
5946                   llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy));
5947   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy,
5948                                                    Values);
5949   llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak);
5950   GV->setInitializer(Init);
5951   GV->setSection("__DATA, __objc_data");
5952   GV->setAlignment(
5953     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy));
5954   if (HiddenVisibility)
5955     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
5956   return GV;
5957 }
5958 
5959 bool
ImplementationIsNonLazy(const ObjCImplDecl * OD) const5960 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
5961   return OD->getClassMethod(GetNullarySelector("load")) != nullptr;
5962 }
5963 
GetClassSizeInfo(const ObjCImplementationDecl * OID,uint32_t & InstanceStart,uint32_t & InstanceSize)5964 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
5965                                               uint32_t &InstanceStart,
5966                                               uint32_t &InstanceSize) {
5967   const ASTRecordLayout &RL =
5968     CGM.getContext().getASTObjCImplementationLayout(OID);
5969 
5970   // InstanceSize is really instance end.
5971   InstanceSize = RL.getDataSize().getQuantity();
5972 
5973   // If there are no fields, the start is the same as the end.
5974   if (!RL.getFieldCount())
5975     InstanceStart = InstanceSize;
5976   else
5977     InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
5978 }
5979 
GenerateClass(const ObjCImplementationDecl * ID)5980 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
5981   std::string ClassName = ID->getObjCRuntimeNameAsString();
5982   if (!ObjCEmptyCacheVar) {
5983     ObjCEmptyCacheVar = new llvm::GlobalVariable(
5984         CGM.getModule(), ObjCTypes.CacheTy, false,
5985         llvm::GlobalValue::ExternalLinkage, nullptr, "_objc_empty_cache");
5986 
5987     // Only OS X with deployment version <10.9 use the empty vtable symbol
5988     const llvm::Triple &Triple = CGM.getTarget().getTriple();
5989     if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9))
5990       ObjCEmptyVtableVar = new llvm::GlobalVariable(
5991           CGM.getModule(), ObjCTypes.ImpnfABITy, false,
5992           llvm::GlobalValue::ExternalLinkage, nullptr, "_objc_empty_vtable");
5993   }
5994   assert(ID->getClassInterface() &&
5995          "CGObjCNonFragileABIMac::GenerateClass - class is 0");
5996   // FIXME: Is this correct (that meta class size is never computed)?
5997   uint32_t InstanceStart =
5998     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
5999   uint32_t InstanceSize = InstanceStart;
6000   uint32_t flags = NonFragileABI_Class_Meta;
6001   llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix());
6002   llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix());
6003   llvm::SmallString<64> TClassName;
6004 
6005   llvm::GlobalVariable *SuperClassGV, *IsAGV;
6006 
6007   // Build the flags for the metaclass.
6008   bool classIsHidden =
6009     ID->getClassInterface()->getVisibility() == HiddenVisibility;
6010   if (classIsHidden)
6011     flags |= NonFragileABI_Class_Hidden;
6012 
6013   // FIXME: why is this flag set on the metaclass?
6014   // ObjC metaclasses have no fields and don't really get constructed.
6015   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6016     flags |= NonFragileABI_Class_HasCXXStructors;
6017     if (!ID->hasNonZeroConstructors())
6018       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6019   }
6020 
6021   if (!ID->getClassInterface()->getSuperClass()) {
6022     // class is root
6023     flags |= NonFragileABI_Class_Root;
6024     TClassName = ObjCClassName;
6025     TClassName += ClassName;
6026     SuperClassGV = GetClassGlobal(TClassName.str(),
6027                                   ID->getClassInterface()->isWeakImported());
6028     TClassName = ObjCMetaClassName;
6029     TClassName += ClassName;
6030     IsAGV = GetClassGlobal(TClassName.str(),
6031                            ID->getClassInterface()->isWeakImported());
6032   } else {
6033     // Has a root. Current class is not a root.
6034     const ObjCInterfaceDecl *Root = ID->getClassInterface();
6035     while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6036       Root = Super;
6037     TClassName = ObjCMetaClassName ;
6038     TClassName += Root->getObjCRuntimeNameAsString();
6039     IsAGV = GetClassGlobal(TClassName.str(),
6040                            Root->isWeakImported());
6041 
6042     // work on super class metadata symbol.
6043     TClassName = ObjCMetaClassName;
6044     TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
6045     SuperClassGV = GetClassGlobal(
6046                                   TClassName.str(),
6047                                   ID->getClassInterface()->getSuperClass()->isWeakImported());
6048   }
6049   llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags,
6050                                                                InstanceStart,
6051                                                                InstanceSize,ID);
6052   TClassName = ObjCMetaClassName;
6053   TClassName += ClassName;
6054   llvm::GlobalVariable *MetaTClass = BuildClassMetaData(
6055       TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden,
6056       ID->getClassInterface()->isWeakImported());
6057   DefinedMetaClasses.push_back(MetaTClass);
6058 
6059   // Metadata for the class
6060   flags = 0;
6061   if (classIsHidden)
6062     flags |= NonFragileABI_Class_Hidden;
6063 
6064   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6065     flags |= NonFragileABI_Class_HasCXXStructors;
6066 
6067     // Set a flag to enable a runtime optimization when a class has
6068     // fields that require destruction but which don't require
6069     // anything except zero-initialization during construction.  This
6070     // is most notably true of __strong and __weak types, but you can
6071     // also imagine there being C++ types with non-trivial default
6072     // constructors that merely set all fields to null.
6073     if (!ID->hasNonZeroConstructors())
6074       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6075   }
6076 
6077   if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface()))
6078     flags |= NonFragileABI_Class_Exception;
6079 
6080   if (!ID->getClassInterface()->getSuperClass()) {
6081     flags |= NonFragileABI_Class_Root;
6082     SuperClassGV = nullptr;
6083   } else {
6084     // Has a root. Current class is not a root.
6085     TClassName = ObjCClassName;
6086     TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
6087     SuperClassGV = GetClassGlobal(
6088                                   TClassName.str(),
6089                                   ID->getClassInterface()->getSuperClass()->isWeakImported());
6090   }
6091   GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6092   CLASS_RO_GV = BuildClassRoTInitializer(flags,
6093                                          InstanceStart,
6094                                          InstanceSize,
6095                                          ID);
6096 
6097   TClassName = ObjCClassName;
6098   TClassName += ClassName;
6099   llvm::GlobalVariable *ClassMD =
6100     BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV,
6101                        classIsHidden,
6102                        ID->getClassInterface()->isWeakImported());
6103   DefinedClasses.push_back(ClassMD);
6104   ImplementedClasses.push_back(ID->getClassInterface());
6105 
6106   // Determine if this class is also "non-lazy".
6107   if (ImplementationIsNonLazy(ID))
6108     DefinedNonLazyClasses.push_back(ClassMD);
6109 
6110   // Force the definition of the EHType if necessary.
6111   if (flags & NonFragileABI_Class_Exception)
6112     GetInterfaceEHType(ID->getClassInterface(), true);
6113   // Make sure method definition entries are all clear for next implementation.
6114   MethodDefinitions.clear();
6115 }
6116 
6117 /// GenerateProtocolRef - This routine is called to generate code for
6118 /// a protocol reference expression; as in:
6119 /// @code
6120 ///   @protocol(Proto1);
6121 /// @endcode
6122 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6123 /// which will hold address of the protocol meta-data.
6124 ///
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)6125 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6126                                                          const ObjCProtocolDecl *PD) {
6127 
6128   // This routine is called for @protocol only. So, we must build definition
6129   // of protocol's meta-data (not a reference to it!)
6130   //
6131   llvm::Constant *Init =
6132     llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6133                                    ObjCTypes.getExternalProtocolPtrTy());
6134 
6135   std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
6136   ProtocolName += PD->getObjCRuntimeNameAsString();
6137 
6138   CharUnits Align = CGF.getPointerAlign();
6139 
6140   llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6141   if (PTGV)
6142     return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6143   PTGV = new llvm::GlobalVariable(
6144     CGM.getModule(),
6145     Init->getType(), false,
6146     llvm::GlobalValue::WeakAnyLinkage,
6147     Init,
6148     ProtocolName);
6149   PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip");
6150   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6151   PTGV->setAlignment(Align.getQuantity());
6152   CGM.addCompilerUsedGlobal(PTGV);
6153   return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6154 }
6155 
6156 /// GenerateCategory - Build metadata for a category implementation.
6157 /// struct _category_t {
6158 ///   const char * const name;
6159 ///   struct _class_t *const cls;
6160 ///   const struct _method_list_t * const instance_methods;
6161 ///   const struct _method_list_t * const class_methods;
6162 ///   const struct _protocol_list_t * const protocols;
6163 ///   const struct _prop_list_t * const properties;
6164 ///   const struct _prop_list_t * const class_properties;
6165 ///   const uint32_t size;
6166 /// }
6167 ///
GenerateCategory(const ObjCCategoryImplDecl * OCD)6168 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6169   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6170   const char *Prefix = "\01l_OBJC_$_CATEGORY_";
6171 
6172   llvm::SmallString<64> ExtCatName(Prefix);
6173   ExtCatName += Interface->getObjCRuntimeNameAsString();
6174   ExtCatName += "_$_";
6175   ExtCatName += OCD->getNameAsString();
6176 
6177   llvm::SmallString<64> ExtClassName(getClassSymbolPrefix());
6178   ExtClassName += Interface->getObjCRuntimeNameAsString();
6179 
6180   llvm::Constant *Values[8];
6181   Values[0] = GetClassName(OCD->getIdentifier()->getName());
6182   // meta-class entry symbol
6183   llvm::GlobalVariable *ClassGV =
6184       GetClassGlobal(ExtClassName.str(), Interface->isWeakImported());
6185 
6186   Values[1] = ClassGV;
6187   std::vector<llvm::Constant*> Methods;
6188   llvm::SmallString<64> MethodListName(Prefix);
6189 
6190   MethodListName += "INSTANCE_METHODS_";
6191   MethodListName += Interface->getObjCRuntimeNameAsString();
6192   MethodListName += "_$_";
6193   MethodListName += OCD->getName();
6194 
6195   for (const auto *I : OCD->instance_methods())
6196     // Instance methods should always be defined.
6197     Methods.push_back(GetMethodConstant(I));
6198 
6199   Values[2] = EmitMethodList(MethodListName.str(),
6200                              "__DATA, __objc_const",
6201                              Methods);
6202 
6203   MethodListName = Prefix;
6204   MethodListName += "CLASS_METHODS_";
6205   MethodListName += Interface->getObjCRuntimeNameAsString();
6206   MethodListName += "_$_";
6207   MethodListName += OCD->getNameAsString();
6208 
6209   Methods.clear();
6210   for (const auto *I : OCD->class_methods())
6211     // Class methods should always be defined.
6212     Methods.push_back(GetMethodConstant(I));
6213 
6214   Values[3] = EmitMethodList(MethodListName.str(),
6215                              "__DATA, __objc_const",
6216                              Methods);
6217   const ObjCCategoryDecl *Category =
6218     Interface->FindCategoryDeclaration(OCD->getIdentifier());
6219   if (Category) {
6220     SmallString<256> ExtName;
6221     llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_"
6222                                        << OCD->getName();
6223     Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
6224                                    + Interface->getObjCRuntimeNameAsString() + "_$_"
6225                                    + Category->getName(),
6226                                    Category->protocol_begin(),
6227                                    Category->protocol_end());
6228     Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
6229                                  OCD, Category, ObjCTypes, false);
6230     Values[6] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
6231                                  OCD, Category, ObjCTypes, true);
6232   } else {
6233     Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6234     Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
6235     Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
6236   }
6237 
6238   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6239   Values[7] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6240 
6241   llvm::Constant *Init =
6242     llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy,
6243                               Values);
6244   llvm::GlobalVariable *GCATV
6245     = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy,
6246                                false,
6247                                llvm::GlobalValue::PrivateLinkage,
6248                                Init,
6249                                ExtCatName.str());
6250   GCATV->setAlignment(
6251     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy));
6252   GCATV->setSection("__DATA, __objc_const");
6253   CGM.addCompilerUsedGlobal(GCATV);
6254   DefinedCategories.push_back(GCATV);
6255 
6256   // Determine if this category is also "non-lazy".
6257   if (ImplementationIsNonLazy(OCD))
6258     DefinedNonLazyCategories.push_back(GCATV);
6259   // method definition entries must be clear for next implementation.
6260   MethodDefinitions.clear();
6261 }
6262 
6263 /// GetMethodConstant - Return a struct objc_method constant for the
6264 /// given method if it has been defined. The result is null if the
6265 /// method has not been defined. The return value has type MethodPtrTy.
GetMethodConstant(const ObjCMethodDecl * MD)6266 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant(
6267   const ObjCMethodDecl *MD) {
6268   llvm::Function *Fn = GetMethodDefinition(MD);
6269   if (!Fn)
6270     return nullptr;
6271 
6272   llvm::Constant *Method[] = {
6273     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
6274                                    ObjCTypes.SelectorPtrTy),
6275     GetMethodVarType(MD),
6276     llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
6277   };
6278   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
6279 }
6280 
6281 /// EmitMethodList - Build meta-data for method declarations
6282 /// struct _method_list_t {
6283 ///   uint32_t entsize;  // sizeof(struct _objc_method)
6284 ///   uint32_t method_count;
6285 ///   struct _objc_method method_list[method_count];
6286 /// }
6287 ///
6288 llvm::Constant *
EmitMethodList(Twine Name,StringRef Section,ArrayRef<llvm::Constant * > Methods)6289 CGObjCNonFragileABIMac::EmitMethodList(Twine Name, StringRef Section,
6290                                        ArrayRef<llvm::Constant *> Methods) {
6291   // Return null for empty list.
6292   if (Methods.empty())
6293     return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6294 
6295   llvm::Constant *Values[3];
6296   // sizeof(struct _objc_method)
6297   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6298   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6299   // method_count
6300   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
6301   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
6302                                              Methods.size());
6303   Values[2] = llvm::ConstantArray::get(AT, Methods);
6304   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6305 
6306   llvm::GlobalVariable *GV =
6307     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6308                              llvm::GlobalValue::PrivateLinkage, Init, Name);
6309   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6310   GV->setSection(Section);
6311   CGM.addCompilerUsedGlobal(GV);
6312   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6313 }
6314 
6315 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6316 /// the given ivar.
6317 llvm::GlobalVariable *
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)6318 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6319                                                const ObjCIvarDecl *Ivar) {
6320 
6321   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6322   llvm::SmallString<64> Name("OBJC_IVAR_$_");
6323   Name += Container->getObjCRuntimeNameAsString();
6324   Name += ".";
6325   Name += Ivar->getName();
6326   llvm::GlobalVariable *IvarOffsetGV =
6327     CGM.getModule().getGlobalVariable(Name);
6328   if (!IvarOffsetGV)
6329     IvarOffsetGV = new llvm::GlobalVariable(
6330       CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false,
6331       llvm::GlobalValue::ExternalLinkage, nullptr, Name.str());
6332   return IvarOffsetGV;
6333 }
6334 
6335 llvm::Constant *
EmitIvarOffsetVar(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar,unsigned long int Offset)6336 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6337                                           const ObjCIvarDecl *Ivar,
6338                                           unsigned long int Offset) {
6339   llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6340   IvarOffsetGV->setInitializer(
6341       llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6342   IvarOffsetGV->setAlignment(
6343       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy));
6344 
6345   // FIXME: This matches gcc, but shouldn't the visibility be set on the use as
6346   // well (i.e., in ObjCIvarOffsetVariable).
6347   if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6348       Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6349       ID->getVisibility() == HiddenVisibility)
6350     IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6351   else
6352     IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6353   IvarOffsetGV->setSection("__DATA, __objc_ivar");
6354   return IvarOffsetGV;
6355 }
6356 
6357 /// EmitIvarList - Emit the ivar list for the given
6358 /// implementation. The return value has type
6359 /// IvarListnfABIPtrTy.
6360 ///  struct _ivar_t {
6361 ///   unsigned [long] int *offset;  // pointer to ivar offset location
6362 ///   char *name;
6363 ///   char *type;
6364 ///   uint32_t alignment;
6365 ///   uint32_t size;
6366 /// }
6367 /// struct _ivar_list_t {
6368 ///   uint32 entsize;  // sizeof(struct _ivar_t)
6369 ///   uint32 count;
6370 ///   struct _iver_t list[count];
6371 /// }
6372 ///
6373 
EmitIvarList(const ObjCImplementationDecl * ID)6374 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6375   const ObjCImplementationDecl *ID) {
6376 
6377   std::vector<llvm::Constant*> Ivars;
6378 
6379   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6380   assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6381 
6382   // FIXME. Consolidate this with similar code in GenerateClass.
6383 
6384   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6385        IVD; IVD = IVD->getNextIvar()) {
6386     // Ignore unnamed bit-fields.
6387     if (!IVD->getDeclName())
6388       continue;
6389     llvm::Constant *Ivar[5];
6390     Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6391                                 ComputeIvarBaseOffset(CGM, ID, IVD));
6392     Ivar[1] = GetMethodVarName(IVD->getIdentifier());
6393     Ivar[2] = GetMethodVarType(IVD);
6394     llvm::Type *FieldTy =
6395       CGM.getTypes().ConvertTypeForMem(IVD->getType());
6396     unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6397     unsigned Align = CGM.getContext().getPreferredTypeAlign(
6398       IVD->getType().getTypePtr()) >> 3;
6399     Align = llvm::Log2_32(Align);
6400     Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align);
6401     // NOTE. Size of a bitfield does not match gcc's, because of the
6402     // way bitfields are treated special in each. But I am told that
6403     // 'size' for bitfield ivars is ignored by the runtime so it does
6404     // not matter.  If it matters, there is enough info to get the
6405     // bitfield right!
6406     Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6407     Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar));
6408   }
6409   // Return null for empty list.
6410   if (Ivars.empty())
6411     return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6412 
6413   llvm::Constant *Values[3];
6414   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy);
6415   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6416   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
6417   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy,
6418                                              Ivars.size());
6419   Values[2] = llvm::ConstantArray::get(AT, Ivars);
6420   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6421   const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
6422   llvm::GlobalVariable *GV =
6423     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6424                              llvm::GlobalValue::PrivateLinkage,
6425                              Init,
6426                              Prefix + OID->getObjCRuntimeNameAsString());
6427   GV->setAlignment(
6428     CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6429   GV->setSection("__DATA, __objc_const");
6430 
6431   CGM.addCompilerUsedGlobal(GV);
6432   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6433 }
6434 
GetOrEmitProtocolRef(const ObjCProtocolDecl * PD)6435 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6436   const ObjCProtocolDecl *PD) {
6437   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6438 
6439   if (!Entry)
6440     // We use the initializer as a marker of whether this is a forward
6441     // reference or not. At module finalization we add the empty
6442     // contents for protocols which were referenced but never defined.
6443     Entry =
6444         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6445                                  false, llvm::GlobalValue::ExternalLinkage,
6446                                  nullptr,
6447                                  "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6448 
6449   return Entry;
6450 }
6451 
6452 /// GetOrEmitProtocol - Generate the protocol meta-data:
6453 /// @code
6454 /// struct _protocol_t {
6455 ///   id isa;  // NULL
6456 ///   const char * const protocol_name;
6457 ///   const struct _protocol_list_t * protocol_list; // super protocols
6458 ///   const struct method_list_t * const instance_methods;
6459 ///   const struct method_list_t * const class_methods;
6460 ///   const struct method_list_t *optionalInstanceMethods;
6461 ///   const struct method_list_t *optionalClassMethods;
6462 ///   const struct _prop_list_t * properties;
6463 ///   const uint32_t size;  // sizeof(struct _protocol_t)
6464 ///   const uint32_t flags;  // = 0
6465 ///   const char ** extendedMethodTypes;
6466 ///   const char *demangledName;
6467 ///   const struct _prop_list_t * class_properties;
6468 /// }
6469 /// @endcode
6470 ///
6471 
GetOrEmitProtocol(const ObjCProtocolDecl * PD)6472 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
6473   const ObjCProtocolDecl *PD) {
6474   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
6475 
6476   // Early exit if a defining object has already been generated.
6477   if (Entry && Entry->hasInitializer())
6478     return Entry;
6479 
6480   // Use the protocol definition, if there is one.
6481   if (const ObjCProtocolDecl *Def = PD->getDefinition())
6482     PD = Def;
6483 
6484   // Construct method lists.
6485   std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
6486   std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
6487   std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
6488   for (const auto *MD : PD->instance_methods()) {
6489     llvm::Constant *C = GetMethodDescriptionConstant(MD);
6490     if (!C)
6491       return GetOrEmitProtocolRef(PD);
6492 
6493     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
6494       OptInstanceMethods.push_back(C);
6495       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
6496     } else {
6497       InstanceMethods.push_back(C);
6498       MethodTypesExt.push_back(GetMethodVarType(MD, true));
6499     }
6500   }
6501 
6502   for (const auto *MD : PD->class_methods()) {
6503     llvm::Constant *C = GetMethodDescriptionConstant(MD);
6504     if (!C)
6505       return GetOrEmitProtocolRef(PD);
6506 
6507     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
6508       OptClassMethods.push_back(C);
6509       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
6510     } else {
6511       ClassMethods.push_back(C);
6512       MethodTypesExt.push_back(GetMethodVarType(MD, true));
6513     }
6514   }
6515 
6516   MethodTypesExt.insert(MethodTypesExt.end(),
6517                         OptMethodTypesExt.begin(), OptMethodTypesExt.end());
6518 
6519   llvm::Constant *Values[13];
6520   // isa is NULL
6521   Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy);
6522   Values[1] = GetClassName(PD->getObjCRuntimeNameAsString());
6523   Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(),
6524                                PD->protocol_begin(),
6525                                PD->protocol_end());
6526 
6527   Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"
6528                              + PD->getObjCRuntimeNameAsString(),
6529                              "__DATA, __objc_const",
6530                              InstanceMethods);
6531   Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"
6532                              + PD->getObjCRuntimeNameAsString(),
6533                              "__DATA, __objc_const",
6534                              ClassMethods);
6535   Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"
6536                              + PD->getObjCRuntimeNameAsString(),
6537                              "__DATA, __objc_const",
6538                              OptInstanceMethods);
6539   Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"
6540                              + PD->getObjCRuntimeNameAsString(),
6541                              "__DATA, __objc_const",
6542                              OptClassMethods);
6543   Values[7] = EmitPropertyList(
6544       "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6545       nullptr, PD, ObjCTypes, false);
6546   uint32_t Size =
6547     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
6548   Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6549   Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy);
6550   Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_"
6551                                        + PD->getObjCRuntimeNameAsString(),
6552                                        MethodTypesExt, ObjCTypes);
6553   // const char *demangledName;
6554   Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
6555 
6556   Values[12] = EmitPropertyList(
6557       "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6558       nullptr, PD, ObjCTypes, true);
6559 
6560   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy,
6561                                                    Values);
6562 
6563   if (Entry) {
6564     // Already created, fix the linkage and update the initializer.
6565     Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6566     Entry->setInitializer(Init);
6567   } else {
6568     Entry =
6569       new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6570                                false, llvm::GlobalValue::WeakAnyLinkage, Init,
6571                                "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6572     Entry->setAlignment(
6573       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy));
6574 
6575     Protocols[PD->getIdentifier()] = Entry;
6576   }
6577   Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
6578   CGM.addCompilerUsedGlobal(Entry);
6579 
6580   // Use this protocol meta-data to build protocol list table in section
6581   // __DATA, __objc_protolist
6582   llvm::GlobalVariable *PTGV =
6583     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
6584                              false, llvm::GlobalValue::WeakAnyLinkage, Entry,
6585                              "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6586   PTGV->setAlignment(
6587     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
6588   PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip");
6589   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6590   CGM.addCompilerUsedGlobal(PTGV);
6591   return Entry;
6592 }
6593 
6594 /// EmitProtocolList - Generate protocol list meta-data:
6595 /// @code
6596 /// struct _protocol_list_t {
6597 ///   long protocol_count;   // Note, this is 32/64 bit
6598 ///   struct _protocol_t[protocol_count];
6599 /// }
6600 /// @endcode
6601 ///
6602 llvm::Constant *
EmitProtocolList(Twine Name,ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)6603 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
6604                                       ObjCProtocolDecl::protocol_iterator begin,
6605                                       ObjCProtocolDecl::protocol_iterator end) {
6606   SmallVector<llvm::Constant *, 16> ProtocolRefs;
6607 
6608   // Just return null for empty protocol lists
6609   if (begin == end)
6610     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6611 
6612   // FIXME: We shouldn't need to do this lookup here, should we?
6613   SmallString<256> TmpName;
6614   Name.toVector(TmpName);
6615   llvm::GlobalVariable *GV =
6616     CGM.getModule().getGlobalVariable(TmpName.str(), true);
6617   if (GV)
6618     return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
6619 
6620   for (; begin != end; ++begin)
6621     ProtocolRefs.push_back(GetProtocolRef(*begin));  // Implemented???
6622 
6623   // This list is null terminated.
6624   ProtocolRefs.push_back(llvm::Constant::getNullValue(
6625                            ObjCTypes.ProtocolnfABIPtrTy));
6626 
6627   llvm::Constant *Values[2];
6628   Values[0] =
6629     llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1);
6630   Values[1] =
6631     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy,
6632                                                   ProtocolRefs.size()),
6633                              ProtocolRefs);
6634 
6635   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6636   GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6637                                 llvm::GlobalValue::PrivateLinkage,
6638                                 Init, Name);
6639   GV->setSection("__DATA, __objc_const");
6640   GV->setAlignment(
6641     CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6642   CGM.addCompilerUsedGlobal(GV);
6643   return llvm::ConstantExpr::getBitCast(GV,
6644                                         ObjCTypes.ProtocolListnfABIPtrTy);
6645 }
6646 
6647 /// GetMethodDescriptionConstant - This routine build following meta-data:
6648 /// struct _objc_method {
6649 ///   SEL _cmd;
6650 ///   char *method_type;
6651 ///   char *_imp;
6652 /// }
6653 
6654 llvm::Constant *
GetMethodDescriptionConstant(const ObjCMethodDecl * MD)6655 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
6656   llvm::Constant *Desc[3];
6657   Desc[0] =
6658     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
6659                                    ObjCTypes.SelectorPtrTy);
6660   Desc[1] = GetMethodVarType(MD);
6661   if (!Desc[1])
6662     return nullptr;
6663 
6664   // Protocol methods have no implementation. So, this entry is always NULL.
6665   Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
6666   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc);
6667 }
6668 
6669 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
6670 /// This code gen. amounts to generating code for:
6671 /// @code
6672 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
6673 /// @encode
6674 ///
EmitObjCValueForIvar(CodeGen::CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)6675 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
6676                                                CodeGen::CodeGenFunction &CGF,
6677                                                QualType ObjectTy,
6678                                                llvm::Value *BaseValue,
6679                                                const ObjCIvarDecl *Ivar,
6680                                                unsigned CVRQualifiers) {
6681   ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface();
6682   llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
6683   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
6684                                   Offset);
6685 }
6686 
EmitIvarOffset(CodeGen::CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)6687 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset(
6688   CodeGen::CodeGenFunction &CGF,
6689   const ObjCInterfaceDecl *Interface,
6690   const ObjCIvarDecl *Ivar) {
6691   llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar);
6692   IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue,
6693                                                   CGF.getSizeAlign(), "ivar");
6694   if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
6695     cast<llvm::LoadInst>(IvarOffsetValue)
6696         ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
6697                       llvm::MDNode::get(VMContext, None));
6698 
6699   // This could be 32bit int or 64bit integer depending on the architecture.
6700   // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
6701   //  as this is what caller always expectes.
6702   if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
6703     IvarOffsetValue = CGF.Builder.CreateIntCast(
6704         IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
6705   return IvarOffsetValue;
6706 }
6707 
appendSelectorForMessageRefTable(std::string & buffer,Selector selector)6708 static void appendSelectorForMessageRefTable(std::string &buffer,
6709                                              Selector selector) {
6710   if (selector.isUnarySelector()) {
6711     buffer += selector.getNameForSlot(0);
6712     return;
6713   }
6714 
6715   for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
6716     buffer += selector.getNameForSlot(i);
6717     buffer += '_';
6718   }
6719 }
6720 
6721 /// Emit a "vtable" message send.  We emit a weak hidden-visibility
6722 /// struct, initially containing the selector pointer and a pointer to
6723 /// a "fixup" variant of the appropriate objc_msgSend.  To call, we
6724 /// load and call the function pointer, passing the address of the
6725 /// struct as the second parameter.  The runtime determines whether
6726 /// the selector is currently emitted using vtable dispatch; if so, it
6727 /// substitutes a stub function which simply tail-calls through the
6728 /// appropriate vtable slot, and if not, it substitues a stub function
6729 /// which tail-calls objc_msgSend.  Both stubs adjust the selector
6730 /// argument to correctly point to the selector.
6731 RValue
EmitVTableMessageSend(CodeGenFunction & CGF,ReturnValueSlot returnSlot,QualType resultType,Selector selector,llvm::Value * arg0,QualType arg0Type,bool isSuper,const CallArgList & formalArgs,const ObjCMethodDecl * method)6732 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
6733                                               ReturnValueSlot returnSlot,
6734                                               QualType resultType,
6735                                               Selector selector,
6736                                               llvm::Value *arg0,
6737                                               QualType arg0Type,
6738                                               bool isSuper,
6739                                               const CallArgList &formalArgs,
6740                                               const ObjCMethodDecl *method) {
6741   // Compute the actual arguments.
6742   CallArgList args;
6743 
6744   // First argument: the receiver / super-call structure.
6745   if (!isSuper)
6746     arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
6747   args.add(RValue::get(arg0), arg0Type);
6748 
6749   // Second argument: a pointer to the message ref structure.  Leave
6750   // the actual argument value blank for now.
6751   args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
6752 
6753   args.insert(args.end(), formalArgs.begin(), formalArgs.end());
6754 
6755   MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
6756 
6757   NullReturnState nullReturn;
6758 
6759   // Find the function to call and the mangled name for the message
6760   // ref structure.  Using a different mangled name wouldn't actually
6761   // be a problem; it would just be a waste.
6762   //
6763   // The runtime currently never uses vtable dispatch for anything
6764   // except normal, non-super message-sends.
6765   // FIXME: don't use this for that.
6766   llvm::Constant *fn = nullptr;
6767   std::string messageRefName("\01l_");
6768   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
6769     if (isSuper) {
6770       fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
6771       messageRefName += "objc_msgSendSuper2_stret_fixup";
6772     } else {
6773       nullReturn.init(CGF, arg0);
6774       fn = ObjCTypes.getMessageSendStretFixupFn();
6775       messageRefName += "objc_msgSend_stret_fixup";
6776     }
6777   } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
6778     fn = ObjCTypes.getMessageSendFpretFixupFn();
6779     messageRefName += "objc_msgSend_fpret_fixup";
6780   } else {
6781     if (isSuper) {
6782       fn = ObjCTypes.getMessageSendSuper2FixupFn();
6783       messageRefName += "objc_msgSendSuper2_fixup";
6784     } else {
6785       fn = ObjCTypes.getMessageSendFixupFn();
6786       messageRefName += "objc_msgSend_fixup";
6787     }
6788   }
6789   assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
6790   messageRefName += '_';
6791 
6792   // Append the selector name, except use underscores anywhere we
6793   // would have used colons.
6794   appendSelectorForMessageRefTable(messageRefName, selector);
6795 
6796   llvm::GlobalVariable *messageRef
6797     = CGM.getModule().getGlobalVariable(messageRefName);
6798   if (!messageRef) {
6799     // Build the message ref structure.
6800     llvm::Constant *values[] = { fn, GetMethodVarName(selector) };
6801     llvm::Constant *init = llvm::ConstantStruct::getAnon(values);
6802     messageRef = new llvm::GlobalVariable(CGM.getModule(),
6803                                           init->getType(),
6804                                           /*constant*/ false,
6805                                           llvm::GlobalValue::WeakAnyLinkage,
6806                                           init,
6807                                           messageRefName);
6808     messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
6809     messageRef->setAlignment(16);
6810     messageRef->setSection("__DATA, __objc_msgrefs, coalesced");
6811   }
6812 
6813   bool requiresnullCheck = false;
6814   if (CGM.getLangOpts().ObjCAutoRefCount && method)
6815     for (const auto *ParamDecl : method->parameters()) {
6816       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
6817         if (!nullReturn.NullBB)
6818           nullReturn.init(CGF, arg0);
6819         requiresnullCheck = true;
6820         break;
6821       }
6822     }
6823 
6824   Address mref =
6825     Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
6826             CGF.getPointerAlign());
6827 
6828   // Update the message ref argument.
6829   args[1].RV = RValue::get(mref.getPointer());
6830 
6831   // Load the function to call from the message ref table.
6832   Address calleeAddr =
6833       CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero());
6834   llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
6835 
6836   callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType);
6837 
6838   RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
6839   return nullReturn.complete(CGF, result, resultType, formalArgs,
6840                              requiresnullCheck ? method : nullptr);
6841 }
6842 
6843 /// Generate code for a message send expression in the nonfragile abi.
6844 CodeGen::RValue
GenerateMessageSend(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)6845 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
6846                                             ReturnValueSlot Return,
6847                                             QualType ResultType,
6848                                             Selector Sel,
6849                                             llvm::Value *Receiver,
6850                                             const CallArgList &CallArgs,
6851                                             const ObjCInterfaceDecl *Class,
6852                                             const ObjCMethodDecl *Method) {
6853   return isVTableDispatchedSelector(Sel)
6854     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
6855                             Receiver, CGF.getContext().getObjCIdType(),
6856                             false, CallArgs, Method)
6857     : EmitMessageSend(CGF, Return, ResultType,
6858                       EmitSelector(CGF, Sel),
6859                       Receiver, CGF.getContext().getObjCIdType(),
6860                       false, CallArgs, Method, Class, ObjCTypes);
6861 }
6862 
6863 llvm::GlobalVariable *
GetClassGlobal(StringRef Name,bool Weak)6864 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, bool Weak) {
6865   llvm::GlobalValue::LinkageTypes L =
6866       Weak ? llvm::GlobalValue::ExternalWeakLinkage
6867            : llvm::GlobalValue::ExternalLinkage;
6868 
6869   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
6870 
6871   if (!GV)
6872     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy,
6873                                   false, L, nullptr, Name);
6874 
6875   assert(GV->getLinkage() == L);
6876   return GV;
6877 }
6878 
EmitClassRefFromId(CodeGenFunction & CGF,IdentifierInfo * II,bool Weak,const ObjCInterfaceDecl * ID)6879 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
6880                                                         IdentifierInfo *II,
6881                                                         bool Weak,
6882                                                         const ObjCInterfaceDecl *ID) {
6883   CharUnits Align = CGF.getPointerAlign();
6884   llvm::GlobalVariable *&Entry = ClassReferences[II];
6885 
6886   if (!Entry) {
6887     StringRef Name = ID ? ID->getObjCRuntimeNameAsString() : II->getName();
6888     std::string ClassName = (getClassSymbolPrefix() + Name).str();
6889     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak);
6890     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6891                                      false, llvm::GlobalValue::PrivateLinkage,
6892                                      ClassGV, "OBJC_CLASSLIST_REFERENCES_$_");
6893     Entry->setAlignment(Align.getQuantity());
6894     Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip");
6895     CGM.addCompilerUsedGlobal(Entry);
6896   }
6897   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6898 }
6899 
EmitClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)6900 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
6901                                                   const ObjCInterfaceDecl *ID) {
6902   // If the class has the objc_runtime_visible attribute, we need to
6903   // use the Objective-C runtime to get the class.
6904   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
6905     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
6906 
6907   return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID);
6908 }
6909 
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)6910 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
6911                                                     CodeGenFunction &CGF) {
6912   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
6913   return EmitClassRefFromId(CGF, II, false, nullptr);
6914 }
6915 
6916 llvm::Value *
EmitSuperClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)6917 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
6918                                           const ObjCInterfaceDecl *ID) {
6919   CharUnits Align = CGF.getPointerAlign();
6920   llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
6921 
6922   if (!Entry) {
6923     llvm::SmallString<64> ClassName(getClassSymbolPrefix());
6924     ClassName += ID->getObjCRuntimeNameAsString();
6925     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(),
6926                                                    ID->isWeakImported());
6927     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6928                                      false, llvm::GlobalValue::PrivateLinkage,
6929                                      ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
6930     Entry->setAlignment(Align.getQuantity());
6931     Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
6932     CGM.addCompilerUsedGlobal(Entry);
6933   }
6934   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6935 }
6936 
6937 /// EmitMetaClassRef - Return a Value * of the address of _class_t
6938 /// meta-data
6939 ///
EmitMetaClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID,bool Weak)6940 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
6941                                                       const ObjCInterfaceDecl *ID,
6942                                                       bool Weak) {
6943   CharUnits Align = CGF.getPointerAlign();
6944   llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
6945   if (!Entry) {
6946     llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix());
6947     MetaClassName += ID->getObjCRuntimeNameAsString();
6948     llvm::GlobalVariable *MetaClassGV =
6949       GetClassGlobal(MetaClassName.str(), Weak);
6950 
6951     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6952                                      false, llvm::GlobalValue::PrivateLinkage,
6953                                      MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
6954     Entry->setAlignment(Align.getQuantity());
6955 
6956     Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
6957     CGM.addCompilerUsedGlobal(Entry);
6958   }
6959 
6960   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6961 }
6962 
6963 /// GetClass - Return a reference to the class for the given interface
6964 /// decl.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)6965 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
6966                                               const ObjCInterfaceDecl *ID) {
6967   if (ID->isWeakImported()) {
6968     llvm::SmallString<64> ClassName(getClassSymbolPrefix());
6969     ClassName += ID->getObjCRuntimeNameAsString();
6970     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true);
6971     (void)ClassGV;
6972     assert(ClassGV->hasExternalWeakLinkage());
6973   }
6974 
6975   return EmitClassRef(CGF, ID);
6976 }
6977 
6978 /// Generates a message send where the super is the receiver.  This is
6979 /// a message send to self with special delivery semantics indicating
6980 /// which class's method should be called.
6981 CodeGen::RValue
GenerateMessageSendSuper(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CodeGen::CallArgList & CallArgs,const ObjCMethodDecl * Method)6982 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
6983                                                  ReturnValueSlot Return,
6984                                                  QualType ResultType,
6985                                                  Selector Sel,
6986                                                  const ObjCInterfaceDecl *Class,
6987                                                  bool isCategoryImpl,
6988                                                  llvm::Value *Receiver,
6989                                                  bool IsClassMessage,
6990                                                  const CodeGen::CallArgList &CallArgs,
6991                                                  const ObjCMethodDecl *Method) {
6992   // ...
6993   // Create and init a super structure; this is a (receiver, class)
6994   // pair we will pass to objc_msgSendSuper.
6995   Address ObjCSuper =
6996     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
6997                          "objc_super");
6998 
6999   llvm::Value *ReceiverAsObject =
7000     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7001   CGF.Builder.CreateStore(
7002       ReceiverAsObject,
7003       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
7004 
7005   // If this is a class message the metaclass is passed as the target.
7006   llvm::Value *Target;
7007   if (IsClassMessage)
7008       Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
7009   else
7010     Target = EmitSuperClassRef(CGF, Class);
7011 
7012   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7013   // ObjCTypes types.
7014   llvm::Type *ClassTy =
7015     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
7016   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
7017   CGF.Builder.CreateStore(
7018       Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
7019 
7020   return (isVTableDispatchedSelector(Sel))
7021     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7022                             ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7023                             true, CallArgs, Method)
7024     : EmitMessageSend(CGF, Return, ResultType,
7025                       EmitSelector(CGF, Sel),
7026                       ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7027                       true, CallArgs, Method, Class, ObjCTypes);
7028 }
7029 
EmitSelector(CodeGenFunction & CGF,Selector Sel)7030 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7031                                                   Selector Sel) {
7032   Address Addr = EmitSelectorAddr(CGF, Sel);
7033 
7034   llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7035   LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7036                   llvm::MDNode::get(VMContext, None));
7037   return LI;
7038 }
7039 
EmitSelectorAddr(CodeGenFunction & CGF,Selector Sel)7040 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF,
7041                                                  Selector Sel) {
7042   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7043 
7044   CharUnits Align = CGF.getPointerAlign();
7045   if (!Entry) {
7046     llvm::Constant *Casted =
7047       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
7048                                      ObjCTypes.SelectorPtrTy);
7049     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy,
7050                                      false, llvm::GlobalValue::PrivateLinkage,
7051                                      Casted, "OBJC_SELECTOR_REFERENCES_");
7052     Entry->setExternallyInitialized(true);
7053     Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip");
7054     Entry->setAlignment(Align.getQuantity());
7055     CGM.addCompilerUsedGlobal(Entry);
7056   }
7057 
7058   return Address(Entry, Align);
7059 }
7060 
7061 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7062 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7063 ///
EmitObjCIvarAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)7064 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7065                                                 llvm::Value *src,
7066                                                 Address dst,
7067                                                 llvm::Value *ivarOffset) {
7068   llvm::Type * SrcTy = src->getType();
7069   if (!isa<llvm::PointerType>(SrcTy)) {
7070     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7071     assert(Size <= 8 && "does not support size > 8");
7072     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7073            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7074     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7075   }
7076   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7077   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7078   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
7079   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7080 }
7081 
7082 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7083 /// objc_assign_strongCast (id src, id *dst)
7084 ///
EmitObjCStrongCastAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)7085 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7086   CodeGen::CodeGenFunction &CGF,
7087   llvm::Value *src, Address dst) {
7088   llvm::Type * SrcTy = src->getType();
7089   if (!isa<llvm::PointerType>(SrcTy)) {
7090     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7091     assert(Size <= 8 && "does not support size > 8");
7092     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7093            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7094     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7095   }
7096   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7097   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7098   llvm::Value *args[] = { src, dst.getPointer() };
7099   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7100                               args, "weakassign");
7101 }
7102 
EmitGCMemmoveCollectable(CodeGen::CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * Size)7103 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7104   CodeGen::CodeGenFunction &CGF,
7105   Address DestPtr,
7106   Address SrcPtr,
7107   llvm::Value *Size) {
7108   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
7109   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
7110   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7111   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7112 }
7113 
7114 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7115 /// object: objc_read_weak (id *src)
7116 ///
EmitObjCWeakRead(CodeGen::CodeGenFunction & CGF,Address AddrWeakObj)7117 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7118   CodeGen::CodeGenFunction &CGF,
7119   Address AddrWeakObj) {
7120   llvm::Type *DestTy = AddrWeakObj.getElementType();
7121   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
7122   llvm::Value *read_weak =
7123     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7124                                 AddrWeakObj.getPointer(), "weakread");
7125   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7126   return read_weak;
7127 }
7128 
7129 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7130 /// objc_assign_weak (id src, id *dst)
7131 ///
EmitObjCWeakAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)7132 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7133                                                 llvm::Value *src, Address dst) {
7134   llvm::Type * SrcTy = src->getType();
7135   if (!isa<llvm::PointerType>(SrcTy)) {
7136     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7137     assert(Size <= 8 && "does not support size > 8");
7138     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7139            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7140     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7141   }
7142   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7143   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7144   llvm::Value *args[] = { src, dst.getPointer() };
7145   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7146                               args, "weakassign");
7147 }
7148 
7149 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7150 /// objc_assign_global (id src, id *dst)
7151 ///
EmitObjCGlobalAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)7152 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7153                                           llvm::Value *src, Address dst,
7154                                           bool threadlocal) {
7155   llvm::Type * SrcTy = src->getType();
7156   if (!isa<llvm::PointerType>(SrcTy)) {
7157     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7158     assert(Size <= 8 && "does not support size > 8");
7159     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7160            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7161     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7162   }
7163   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7164   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7165   llvm::Value *args[] = { src, dst.getPointer() };
7166   if (!threadlocal)
7167     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7168                                 args, "globalassign");
7169   else
7170     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7171                                 args, "threadlocalassign");
7172 }
7173 
7174 void
EmitSynchronizedStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)7175 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7176                                              const ObjCAtSynchronizedStmt &S) {
7177   EmitAtSynchronizedStmt(CGF, S,
7178       cast<llvm::Function>(ObjCTypes.getSyncEnterFn()),
7179       cast<llvm::Function>(ObjCTypes.getSyncExitFn()));
7180 }
7181 
7182 llvm::Constant *
GetEHType(QualType T)7183 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7184   // There's a particular fixed type info for 'id'.
7185   if (T->isObjCIdType() ||
7186       T->isObjCQualifiedIdType()) {
7187     llvm::Constant *IDEHType =
7188       CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7189     if (!IDEHType)
7190       IDEHType =
7191         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7192                                  false,
7193                                  llvm::GlobalValue::ExternalLinkage,
7194                                  nullptr, "OBJC_EHTYPE_id");
7195     return IDEHType;
7196   }
7197 
7198   // All other types should be Objective-C interface pointer types.
7199   const ObjCObjectPointerType *PT =
7200     T->getAs<ObjCObjectPointerType>();
7201   assert(PT && "Invalid @catch type.");
7202   const ObjCInterfaceType *IT = PT->getInterfaceType();
7203   assert(IT && "Invalid @catch type.");
7204   return GetInterfaceEHType(IT->getDecl(), false);
7205 }
7206 
EmitTryStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtTryStmt & S)7207 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7208                                          const ObjCAtTryStmt &S) {
7209   EmitTryCatchStmt(CGF, S,
7210       cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()),
7211       cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()),
7212       cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn()));
7213 }
7214 
7215 /// EmitThrowStmt - Generate code for a throw statement.
EmitThrowStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)7216 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7217                                            const ObjCAtThrowStmt &S,
7218                                            bool ClearInsertionPoint) {
7219   if (const Expr *ThrowExpr = S.getThrowExpr()) {
7220     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7221     Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7222     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception)
7223       .setDoesNotReturn();
7224   } else {
7225     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn())
7226       .setDoesNotReturn();
7227   }
7228 
7229   CGF.Builder.CreateUnreachable();
7230   if (ClearInsertionPoint)
7231     CGF.Builder.ClearInsertionPoint();
7232 }
7233 
7234 llvm::Constant *
GetInterfaceEHType(const ObjCInterfaceDecl * ID,bool ForDefinition)7235 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7236                                            bool ForDefinition) {
7237   llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7238 
7239   // If we don't need a definition, return the entry if found or check
7240   // if we use an external reference.
7241   if (!ForDefinition) {
7242     if (Entry)
7243       return Entry;
7244 
7245     // If this type (or a super class) has the __objc_exception__
7246     // attribute, emit an external reference.
7247     if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7248       return Entry =
7249           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7250                                    llvm::GlobalValue::ExternalLinkage,
7251                                    nullptr,
7252                                    ("OBJC_EHTYPE_$_" +
7253                                     ID->getObjCRuntimeNameAsString()));
7254   }
7255 
7256   // Otherwise we need to either make a new entry or fill in the
7257   // initializer.
7258   assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7259   llvm::SmallString<64> ClassName(getClassSymbolPrefix());
7260   ClassName += ID->getObjCRuntimeNameAsString();
7261   std::string VTableName = "objc_ehtype_vtable";
7262   llvm::GlobalVariable *VTableGV =
7263     CGM.getModule().getGlobalVariable(VTableName);
7264   if (!VTableGV)
7265     VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy,
7266                                         false,
7267                                         llvm::GlobalValue::ExternalLinkage,
7268                                         nullptr, VTableName);
7269 
7270   llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7271 
7272   llvm::Constant *Values[] = {
7273       llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV,
7274                                            VTableIdx),
7275       GetClassName(ID->getObjCRuntimeNameAsString()),
7276       GetClassGlobal(ClassName.str())};
7277   llvm::Constant *Init =
7278     llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values);
7279 
7280   llvm::GlobalValue::LinkageTypes L = ForDefinition
7281                                           ? llvm::GlobalValue::ExternalLinkage
7282                                           : llvm::GlobalValue::WeakAnyLinkage;
7283   if (Entry) {
7284     Entry->setInitializer(Init);
7285   } else {
7286     llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_");
7287     EHTYPEName += ID->getObjCRuntimeNameAsString();
7288     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7289                                      L,
7290                                      Init,
7291                                      EHTYPEName.str());
7292   }
7293   assert(Entry->getLinkage() == L);
7294 
7295   if (ID->getVisibility() == HiddenVisibility)
7296     Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7297   Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment(
7298       ObjCTypes.EHTypeTy));
7299 
7300   if (ForDefinition)
7301     Entry->setSection("__DATA,__objc_const");
7302 
7303   return Entry;
7304 }
7305 
7306 /* *** */
7307 
7308 CodeGen::CGObjCRuntime *
CreateMacObjCRuntime(CodeGen::CodeGenModule & CGM)7309 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7310   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7311   case ObjCRuntime::FragileMacOSX:
7312   return new CGObjCMac(CGM);
7313 
7314   case ObjCRuntime::MacOSX:
7315   case ObjCRuntime::iOS:
7316   case ObjCRuntime::WatchOS:
7317     return new CGObjCNonFragileABIMac(CGM);
7318 
7319   case ObjCRuntime::GNUstep:
7320   case ObjCRuntime::GCC:
7321   case ObjCRuntime::ObjFW:
7322     llvm_unreachable("these runtimes are not Mac runtimes");
7323   }
7324   llvm_unreachable("bad runtime");
7325 }
7326