1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 3.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Shader derivate function tests.
22 *
23 * \todo [2013-06-25 pyry] Missing features:
24 * - lines and points
25 * - projected coordinates
26 * - continous non-trivial functions (sin, exp)
27 * - non-continous functions (step)
28 *//*--------------------------------------------------------------------*/
29
30 #include "es3fShaderDerivateTests.hpp"
31 #include "gluShaderProgram.hpp"
32 #include "gluRenderContext.hpp"
33 #include "gluDrawUtil.hpp"
34 #include "gluPixelTransfer.hpp"
35 #include "gluShaderUtil.hpp"
36 #include "gluStrUtil.hpp"
37 #include "gluTextureUtil.hpp"
38 #include "gluTexture.hpp"
39 #include "tcuStringTemplate.hpp"
40 #include "tcuRenderTarget.hpp"
41 #include "tcuSurface.hpp"
42 #include "tcuTestLog.hpp"
43 #include "tcuVectorUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 #include "tcuRGBA.hpp"
46 #include "tcuFloat.hpp"
47 #include "tcuInterval.hpp"
48 #include "deRandom.hpp"
49 #include "deUniquePtr.hpp"
50 #include "deString.h"
51 #include "glwEnums.hpp"
52 #include "glwFunctions.hpp"
53 #include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms()
54
55 #include <sstream>
56
57 namespace deqp
58 {
59 namespace gles3
60 {
61 namespace Functional
62 {
63
64 using std::vector;
65 using std::string;
66 using std::map;
67 using tcu::TestLog;
68 using std::ostringstream;
69
70 enum
71 {
72 VIEWPORT_WIDTH = 167,
73 VIEWPORT_HEIGHT = 103,
74 FBO_WIDTH = 99,
75 FBO_HEIGHT = 133,
76 MAX_FAILED_MESSAGES = 10
77 };
78
79 enum DerivateFunc
80 {
81 DERIVATE_DFDX = 0,
82 DERIVATE_DFDY,
83 DERIVATE_FWIDTH,
84
85 DERIVATE_LAST
86 };
87
88 enum SurfaceType
89 {
90 SURFACETYPE_DEFAULT_FRAMEBUFFER = 0,
91 SURFACETYPE_UNORM_FBO,
92 SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec.
93
94 SURFACETYPE_LAST
95 };
96
97 // Utilities
98
99 namespace
100 {
101
102 class AutoFbo
103 {
104 public:
AutoFbo(const glw::Functions & gl)105 AutoFbo (const glw::Functions& gl)
106 : m_gl (gl)
107 , m_fbo (0)
108 {
109 }
110
~AutoFbo(void)111 ~AutoFbo (void)
112 {
113 if (m_fbo)
114 m_gl.deleteFramebuffers(1, &m_fbo);
115 }
116
gen(void)117 void gen (void)
118 {
119 DE_ASSERT(!m_fbo);
120 m_gl.genFramebuffers(1, &m_fbo);
121 }
122
operator *(void) const123 deUint32 operator* (void) const { return m_fbo; }
124
125 private:
126 const glw::Functions& m_gl;
127 deUint32 m_fbo;
128 };
129
130 class AutoRbo
131 {
132 public:
AutoRbo(const glw::Functions & gl)133 AutoRbo (const glw::Functions& gl)
134 : m_gl (gl)
135 , m_rbo (0)
136 {
137 }
138
~AutoRbo(void)139 ~AutoRbo (void)
140 {
141 if (m_rbo)
142 m_gl.deleteRenderbuffers(1, &m_rbo);
143 }
144
gen(void)145 void gen (void)
146 {
147 DE_ASSERT(!m_rbo);
148 m_gl.genRenderbuffers(1, &m_rbo);
149 }
150
operator *(void) const151 deUint32 operator* (void) const { return m_rbo; }
152
153 private:
154 const glw::Functions& m_gl;
155 deUint32 m_rbo;
156 };
157
158 } // anonymous
159
getDerivateFuncName(DerivateFunc func)160 static const char* getDerivateFuncName (DerivateFunc func)
161 {
162 switch (func)
163 {
164 case DERIVATE_DFDX: return "dFdx";
165 case DERIVATE_DFDY: return "dFdy";
166 case DERIVATE_FWIDTH: return "fwidth";
167 default:
168 DE_ASSERT(false);
169 return DE_NULL;
170 }
171 }
172
getDerivateFuncCaseName(DerivateFunc func)173 static const char* getDerivateFuncCaseName (DerivateFunc func)
174 {
175 switch (func)
176 {
177 case DERIVATE_DFDX: return "dfdx";
178 case DERIVATE_DFDY: return "dfdy";
179 case DERIVATE_FWIDTH: return "fwidth";
180 default:
181 DE_ASSERT(false);
182 return DE_NULL;
183 }
184 }
185
getDerivateMask(glu::DataType type)186 static inline tcu::BVec4 getDerivateMask (glu::DataType type)
187 {
188 switch (type)
189 {
190 case glu::TYPE_FLOAT: return tcu::BVec4(true, false, false, false);
191 case glu::TYPE_FLOAT_VEC2: return tcu::BVec4(true, true, false, false);
192 case glu::TYPE_FLOAT_VEC3: return tcu::BVec4(true, true, true, false);
193 case glu::TYPE_FLOAT_VEC4: return tcu::BVec4(true, true, true, true);
194 default:
195 DE_ASSERT(false);
196 return tcu::BVec4(true);
197 }
198 }
199
readDerivate(const tcu::ConstPixelBufferAccess & surface,const tcu::Vec4 & derivScale,const tcu::Vec4 & derivBias,int x,int y)200 static inline tcu::Vec4 readDerivate (const tcu::ConstPixelBufferAccess& surface, const tcu::Vec4& derivScale, const tcu::Vec4& derivBias, int x, int y)
201 {
202 return (surface.getPixel(x, y) - derivBias) / derivScale;
203 }
204
getCompExpBits(const tcu::Vec4 & v)205 static inline tcu::UVec4 getCompExpBits (const tcu::Vec4& v)
206 {
207 return tcu::UVec4(tcu::Float32(v[0]).exponentBits(),
208 tcu::Float32(v[1]).exponentBits(),
209 tcu::Float32(v[2]).exponentBits(),
210 tcu::Float32(v[3]).exponentBits());
211 }
212
computeFloatingPointError(const float value,const int numAccurateBits)213 float computeFloatingPointError (const float value, const int numAccurateBits)
214 {
215 const int numGarbageBits = 23-numAccurateBits;
216 const deUint32 mask = (1u<<numGarbageBits)-1u;
217 const int exp = tcu::Float32(value).exponent();
218
219 return tcu::Float32::construct(+1, exp, (1u<<23) | mask).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat();
220 }
221
getNumMantissaBits(const glu::Precision precision)222 static int getNumMantissaBits (const glu::Precision precision)
223 {
224 switch (precision)
225 {
226 case glu::PRECISION_HIGHP: return 23;
227 case glu::PRECISION_MEDIUMP: return 10;
228 case glu::PRECISION_LOWP: return 6;
229 default:
230 DE_ASSERT(false);
231 return 0;
232 }
233 }
234
getMinExponent(const glu::Precision precision)235 static int getMinExponent (const glu::Precision precision)
236 {
237 switch (precision)
238 {
239 case glu::PRECISION_HIGHP: return -126;
240 case glu::PRECISION_MEDIUMP: return -14;
241 case glu::PRECISION_LOWP: return -8;
242 default:
243 DE_ASSERT(false);
244 return 0;
245 }
246 }
247
getSingleULPForExponent(int exp,int numMantissaBits)248 static float getSingleULPForExponent (int exp, int numMantissaBits)
249 {
250 if (numMantissaBits > 0)
251 {
252 DE_ASSERT(numMantissaBits <= 23);
253
254 const int ulpBitNdx = 23-numMantissaBits;
255 return tcu::Float32::construct(+1, exp, (1<<23) | (1 << ulpBitNdx)).asFloat() - tcu::Float32::construct(+1, exp, (1<<23)).asFloat();
256 }
257 else
258 {
259 DE_ASSERT(numMantissaBits == 0);
260 return tcu::Float32::construct(+1, exp, (1<<23)).asFloat();
261 }
262 }
263
getSingleULPForValue(float value,int numMantissaBits)264 static float getSingleULPForValue (float value, int numMantissaBits)
265 {
266 const int exp = tcu::Float32(value).exponent();
267 return getSingleULPForExponent(exp, numMantissaBits);
268 }
269
convertFloatFlushToZeroRtn(float value,int minExponent,int numAccurateBits)270 static float convertFloatFlushToZeroRtn (float value, int minExponent, int numAccurateBits)
271 {
272 if (value == 0.0f)
273 {
274 return 0.0f;
275 }
276 else
277 {
278 const tcu::Float32 inputFloat = tcu::Float32(value);
279 const int numTruncatedBits = 23-numAccurateBits;
280 const deUint32 truncMask = (1u<<numTruncatedBits)-1u;
281
282 if (value > 0.0f)
283 {
284 if (value > 0.0f && tcu::Float32(value).exponent() < minExponent)
285 {
286 // flush to zero if possible
287 return 0.0f;
288 }
289 else
290 {
291 // just mask away non-representable bits
292 return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat();
293 }
294 }
295 else
296 {
297 if (inputFloat.mantissa() & truncMask)
298 {
299 // decrement one ulp if truncated bits are non-zero (i.e. if value is not representable)
300 return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat() - getSingleULPForExponent(inputFloat.exponent(), numAccurateBits);
301 }
302 else
303 {
304 // value is representable, no need to do anything
305 return value;
306 }
307 }
308 }
309 }
310
convertFloatFlushToZeroRtp(float value,int minExponent,int numAccurateBits)311 static float convertFloatFlushToZeroRtp (float value, int minExponent, int numAccurateBits)
312 {
313 return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits);
314 }
315
addErrorUlp(float value,float numUlps,int numMantissaBits)316 static float addErrorUlp (float value, float numUlps, int numMantissaBits)
317 {
318 return value + numUlps * getSingleULPForValue(value, numMantissaBits);
319 }
320
321 enum
322 {
323 INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation
324 };
325
getDerivateThreshold(const glu::Precision precision,const tcu::Vec4 & valueMin,const tcu::Vec4 & valueMax,const tcu::Vec4 & expectedDerivate)326 static inline tcu::Vec4 getDerivateThreshold (const glu::Precision precision, const tcu::Vec4& valueMin, const tcu::Vec4& valueMax, const tcu::Vec4& expectedDerivate)
327 {
328 const int baseBits = getNumMantissaBits(precision);
329 const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate);
330 const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax));
331 const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp);
332 const tcu::IVec4 numAccurateBits = max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0));
333
334 return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
335 computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
336 computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
337 computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
338 }
339
340 namespace
341 {
342
343 struct LogVecComps
344 {
345 const tcu::Vec4& v;
346 int numComps;
347
LogVecCompsdeqp::gles3::Functional::__anonbccbfcc10411::LogVecComps348 LogVecComps (const tcu::Vec4& v_, int numComps_)
349 : v (v_)
350 , numComps (numComps_)
351 {
352 }
353 };
354
operator <<(std::ostream & str,const LogVecComps & v)355 std::ostream& operator<< (std::ostream& str, const LogVecComps& v)
356 {
357 DE_ASSERT(de::inRange(v.numComps, 1, 4));
358 if (v.numComps == 1) return str << v.v[0];
359 else if (v.numComps == 2) return str << v.v.toWidth<2>();
360 else if (v.numComps == 3) return str << v.v.toWidth<3>();
361 else return str << v.v;
362 }
363
364 } // anonymous
365
366 enum VerificationLogging
367 {
368 LOG_ALL = 0,
369 LOG_NOTHING
370 };
371
verifyConstantDerivate(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask,glu::DataType dataType,const tcu::Vec4 & reference,const tcu::Vec4 & threshold,const tcu::Vec4 & scale,const tcu::Vec4 & bias,VerificationLogging logPolicy=LOG_ALL)372 static bool verifyConstantDerivate (tcu::TestLog& log,
373 const tcu::ConstPixelBufferAccess& result,
374 const tcu::PixelBufferAccess& errorMask,
375 glu::DataType dataType,
376 const tcu::Vec4& reference,
377 const tcu::Vec4& threshold,
378 const tcu::Vec4& scale,
379 const tcu::Vec4& bias,
380 VerificationLogging logPolicy = LOG_ALL)
381 {
382 const int numComps = glu::getDataTypeFloatScalars(dataType);
383 const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType));
384 int numFailedPixels = 0;
385
386 if (logPolicy == LOG_ALL)
387 log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << TestLog::EndMessage;
388
389 for (int y = 0; y < result.getHeight(); y++)
390 {
391 for (int x = 0; x < result.getWidth(); x++)
392 {
393 const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y);
394 const bool isOk = tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask), tcu::BVec4(true));
395
396 if (!isOk)
397 {
398 if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
399 log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps)
400 << ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps)
401 << ", at x = " << x << ", y = " << y
402 << TestLog::EndMessage;
403 numFailedPixels += 1;
404 errorMask.setPixel(tcu::RGBA::red().toVec(), x, y);
405 }
406 }
407 }
408
409 if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
410 log << TestLog::Message << "..." << TestLog::EndMessage;
411
412 if (numFailedPixels > 0 && logPolicy == LOG_ALL)
413 log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
414
415 return numFailedPixels == 0;
416 }
417
418 struct Linear2DFunctionEvaluator
419 {
420 tcu::Matrix<float, 4, 3> matrix;
421
422 // .-----.
423 // | s_x |
424 // M x | s_y |
425 // | 1.0 |
426 // '-----'
427 tcu::Vec4 evaluateAt (float screenX, float screenY) const;
428 };
429
evaluateAt(float screenX,float screenY) const430 tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt (float screenX, float screenY) const
431 {
432 const tcu::Vec3 position(screenX, screenY, 1.0f);
433 return matrix * position;
434 }
435
reverifyConstantDerivateWithFlushRelaxations(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask,glu::DataType dataType,glu::Precision precision,const tcu::Vec4 & derivScale,const tcu::Vec4 & derivBias,const tcu::Vec4 & surfaceThreshold,DerivateFunc derivateFunc,const Linear2DFunctionEvaluator & function)436 static bool reverifyConstantDerivateWithFlushRelaxations (tcu::TestLog& log,
437 const tcu::ConstPixelBufferAccess& result,
438 const tcu::PixelBufferAccess& errorMask,
439 glu::DataType dataType,
440 glu::Precision precision,
441 const tcu::Vec4& derivScale,
442 const tcu::Vec4& derivBias,
443 const tcu::Vec4& surfaceThreshold,
444 DerivateFunc derivateFunc,
445 const Linear2DFunctionEvaluator& function)
446 {
447 DE_ASSERT(result.getWidth() == errorMask.getWidth());
448 DE_ASSERT(result.getHeight() == errorMask.getHeight());
449 DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY);
450
451 const tcu::IVec4 red (255, 0, 0, 255);
452 const tcu::IVec4 green (0, 255, 0, 255);
453 const float divisionErrorUlps = 2.5f;
454
455 const int numComponents = glu::getDataTypeFloatScalars(dataType);
456 const int numBits = getNumMantissaBits(precision);
457 const int minExponent = getMinExponent(precision);
458
459 const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS;
460 int numFailedPixels = 0;
461
462 tcu::clear(errorMask, green);
463
464 // search for failed pixels
465 for (int y = 0; y < result.getHeight(); ++y)
466 for (int x = 0; x < result.getWidth(); ++x)
467 {
468 // flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore))
469 // flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP )
470 // dx
471
472 const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y);
473
474 // sample at the front of the back pixel and the back of the front pixel to cover the whole area of
475 // legal sample positions. In general case this is NOT OK, but we know that the target funtion is
476 // (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the
477 // maximum difference possible in exponents which are used in error bound calculations.
478 // * non-linearity may happen around zero or with very high function values due to subnorms not
479 // behaving well.
480 const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX)
481 ? (function.evaluateAt((float)x + 2.0f, (float)y + 0.5f))
482 : (function.evaluateAt((float)x + 0.5f, (float)y + 2.0f));
483 const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX)
484 ? (function.evaluateAt((float)x - 1.0f, (float)y + 0.5f))
485 : (function.evaluateAt((float)x + 0.5f, (float)y - 1.0f));
486
487 bool anyComponentFailed = false;
488
489 // check components separately
490 for (int c = 0; c < numComponents; ++c)
491 {
492 // Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding)
493 const tcu::Interval forwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits), minExponent, numBits),
494 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits), minExponent, numBits));
495 const tcu::Interval backwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent, numBits),
496 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent, numBits));
497 const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(), tcu::Float32(forwardComponent.hi()).exponent()),
498 de::max(tcu::Float32(backwardComponent.lo()).exponent(), tcu::Float32(backwardComponent.hi()).exponent()));
499
500 // subtraction in numerator will likely cause a cancellation of the most
501 // significant bits. Apply error bounds.
502
503 const tcu::Interval numerator (forwardComponent - backwardComponent);
504 const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent();
505 const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent();
506 const int numeratorLoBitsLost = de::max(0, maxValueExp - numeratorLoExp); //!< must clamp to zero since if forward and backward components have different
507 const int numeratorHiBitsLost = de::max(0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands.
508 const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost);
509 const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost);
510
511 const tcu::Interval numeratorRange (convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits),
512 convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits));
513
514 const tcu::Interval divisionRange = numeratorRange / 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3)
515 const tcu::Interval divisionResultRange (convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits), minExponent, numBits),
516 convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits), minExponent, numBits));
517 const tcu::Interval finalResultRange (divisionResultRange.lo() - surfaceThreshold[c], divisionResultRange.hi() + surfaceThreshold[c]);
518
519 if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi())
520 {
521 // value ok
522 }
523 else
524 {
525 if (numFailedPixels < MAX_FAILED_MESSAGES)
526 log << tcu::TestLog::Message
527 << "Error in pixel at " << x << ", " << y << " with component " << c << " (channel " << ("rgba"[c]) << ")\n"
528 << "\tGot pixel value " << result.getPixelInt(x, y) << "\n"
529 << "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y')) << " ~= " << resultDerivative[c] << "\n"
530 << "\t\tdifference to a valid range: "
531 << ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+"))
532 << ((resultDerivative[c] < finalResultRange.lo()) ? (finalResultRange.lo() - resultDerivative[c]) : (resultDerivative[c] - finalResultRange.hi()))
533 << "\n"
534 << "\tDerivative value range:\n"
535 << "\t\tMin: " << finalResultRange.lo() << "\n"
536 << "\t\tMax: " << finalResultRange.hi() << "\n"
537 << tcu::TestLog::EndMessage;
538
539 ++numFailedPixels;
540 anyComponentFailed = true;
541 }
542 }
543
544 if (anyComponentFailed)
545 errorMask.setPixel(red, x, y);
546 }
547
548 if (numFailedPixels >= MAX_FAILED_MESSAGES)
549 log << TestLog::Message << "..." << TestLog::EndMessage;
550
551 if (numFailedPixels > 0)
552 log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
553
554 return numFailedPixels == 0;
555 }
556
557 // TriangleDerivateCase
558
559 class TriangleDerivateCase : public TestCase
560 {
561 public:
562 TriangleDerivateCase (Context& context, const char* name, const char* description);
563 ~TriangleDerivateCase (void);
564
565 IterateResult iterate (void);
566
567 protected:
setupRenderState(deUint32 program)568 virtual void setupRenderState (deUint32 program) { DE_UNREF(program); }
569 virtual bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) = DE_NULL;
570
571 tcu::IVec2 getViewportSize (void) const;
572 tcu::Vec4 getSurfaceThreshold (void) const;
573
574 glu::DataType m_dataType;
575 glu::Precision m_precision;
576
577 glu::DataType m_coordDataType;
578 glu::Precision m_coordPrecision;
579
580 std::string m_fragmentSrc;
581
582 tcu::Vec4 m_coordMin;
583 tcu::Vec4 m_coordMax;
584 tcu::Vec4 m_derivScale;
585 tcu::Vec4 m_derivBias;
586
587 SurfaceType m_surfaceType;
588 int m_numSamples;
589 deUint32 m_hint;
590 };
591
TriangleDerivateCase(Context & context,const char * name,const char * description)592 TriangleDerivateCase::TriangleDerivateCase (Context& context, const char* name, const char* description)
593 : TestCase (context, name, description)
594 , m_dataType (glu::TYPE_LAST)
595 , m_precision (glu::PRECISION_LAST)
596 , m_coordDataType (glu::TYPE_LAST)
597 , m_coordPrecision (glu::PRECISION_LAST)
598 , m_surfaceType (SURFACETYPE_DEFAULT_FRAMEBUFFER)
599 , m_numSamples (0)
600 , m_hint (GL_DONT_CARE)
601 {
602 DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0);
603 }
604
~TriangleDerivateCase(void)605 TriangleDerivateCase::~TriangleDerivateCase (void)
606 {
607 TriangleDerivateCase::deinit();
608 }
609
genVertexSource(glu::DataType coordType,glu::Precision precision)610 static std::string genVertexSource (glu::DataType coordType, glu::Precision precision)
611 {
612 DE_ASSERT(glu::isDataTypeFloatOrVec(coordType));
613
614 const char* vertexTmpl =
615 "#version 300 es\n"
616 "in highp vec4 a_position;\n"
617 "in ${PRECISION} ${DATATYPE} a_coord;\n"
618 "out ${PRECISION} ${DATATYPE} v_coord;\n"
619 "void main (void)\n"
620 "{\n"
621 " gl_Position = a_position;\n"
622 " v_coord = a_coord;\n"
623 "}\n";
624
625 map<string, string> vertexParams;
626
627 vertexParams["PRECISION"] = glu::getPrecisionName(precision);
628 vertexParams["DATATYPE"] = glu::getDataTypeName(coordType);
629
630 return tcu::StringTemplate(vertexTmpl).specialize(vertexParams);
631 }
632
getViewportSize(void) const633 inline tcu::IVec2 TriangleDerivateCase::getViewportSize (void) const
634 {
635 if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER)
636 {
637 const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH);
638 const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT);
639 return tcu::IVec2(width, height);
640 }
641 else
642 return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT);
643 }
644
iterate(void)645 TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate (void)
646 {
647 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
648 const glu::ShaderProgram program (m_context.getRenderContext(), glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc));
649 de::Random rnd (deStringHash(getName()) ^ 0xbbc24);
650 const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER;
651 const deUint32 fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8;
652 const tcu::IVec2 viewportSize = getViewportSize();
653 const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x());
654 const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y());
655 AutoFbo fbo (gl);
656 AutoRbo rbo (gl);
657 tcu::TextureLevel result;
658
659 m_testCtx.getLog() << program;
660
661 if (!program.isOk())
662 TCU_FAIL("Compile failed");
663
664 if (useFbo)
665 {
666 m_testCtx.getLog() << TestLog::Message
667 << "Rendering to FBO, format = " << glu::getTextureFormatStr(fboFormat)
668 << ", samples = " << m_numSamples
669 << TestLog::EndMessage;
670
671 fbo.gen();
672 rbo.gen();
673
674 gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo);
675 gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y());
676 gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo);
677 gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo);
678 TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
679 }
680 else
681 {
682 const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
683
684 m_testCtx.getLog()
685 << TestLog::Message
686 << "Rendering to default framebuffer\n"
687 << "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits
688 << TestLog::EndMessage;
689 }
690
691 m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n"
692 << "v_coord.x = in.x * x\n"
693 << "v_coord.y = in.y * y\n"
694 << "v_coord.z = in.z * (x+y)/2\n"
695 << "v_coord.w = in.w * (1 - (x+y)/2)\n"
696 << TestLog::EndMessage
697 << TestLog::Message << "u_scale: " << m_derivScale << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)" << TestLog::EndMessage
698 << TestLog::Message << "Viewport: " << viewportSize.x() << "x" << viewportSize.y() << TestLog::EndMessage
699 << TestLog::Message << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage;
700
701 // Draw
702 {
703 const float positions[] =
704 {
705 -1.0f, -1.0f, 0.0f, 1.0f,
706 -1.0f, 1.0f, 0.0f, 1.0f,
707 1.0f, -1.0f, 0.0f, 1.0f,
708 1.0f, 1.0f, 0.0f, 1.0f
709 };
710 const float coords[] =
711 {
712 m_coordMin.x(), m_coordMin.y(), m_coordMin.z(), m_coordMax.w(),
713 m_coordMin.x(), m_coordMax.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f,
714 m_coordMax.x(), m_coordMin.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f,
715 m_coordMax.x(), m_coordMax.y(), m_coordMax.z(), m_coordMin.w()
716 };
717 const glu::VertexArrayBinding vertexArrays[] =
718 {
719 glu::va::Float("a_position", 4, 4, 0, &positions[0]),
720 glu::va::Float("a_coord", 4, 4, 0, &coords[0])
721 };
722 const deUint16 indices[] = { 0, 2, 1, 2, 3, 1 };
723
724 gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
725 gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
726 gl.disable(GL_DITHER);
727
728 gl.useProgram(program.getProgram());
729
730 {
731 const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale");
732 const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias");
733
734 switch (m_dataType)
735 {
736 case glu::TYPE_FLOAT:
737 gl.uniform1f(scaleLoc, m_derivScale.x());
738 gl.uniform1f(biasLoc, m_derivBias.x());
739 break;
740
741 case glu::TYPE_FLOAT_VEC2:
742 gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr());
743 gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr());
744 break;
745
746 case glu::TYPE_FLOAT_VEC3:
747 gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr());
748 gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr());
749 break;
750
751 case glu::TYPE_FLOAT_VEC4:
752 gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr());
753 gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr());
754 break;
755
756 default:
757 DE_ASSERT(false);
758 }
759 }
760
761 gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram());
762 setupRenderState(program.getProgram());
763
764 gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint);
765 GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state");
766
767 gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y());
768 glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0],
769 glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
770 GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
771 }
772
773 // Read back results
774 {
775 const bool isMSAA = useFbo && m_numSamples > 0;
776 AutoFbo resFbo (gl);
777 AutoRbo resRbo (gl);
778
779 // Resolve if necessary
780 if (isMSAA)
781 {
782 resFbo.gen();
783 resRbo.gen();
784
785 gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo);
786 gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y());
787 gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo);
788 gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo);
789 TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
790
791 gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(), GL_COLOR_BUFFER_BIT, GL_NEAREST);
792 GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit");
793
794 gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo);
795 }
796
797 switch (m_surfaceType)
798 {
799 case SURFACETYPE_DEFAULT_FRAMEBUFFER:
800 case SURFACETYPE_UNORM_FBO:
801 result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), viewportSize.x(), viewportSize.y());
802 glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result);
803 break;
804
805 case SURFACETYPE_FLOAT_FBO:
806 {
807 const tcu::TextureFormat dataFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
808 const tcu::TextureFormat transferFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32);
809
810 result.setStorage(dataFormat, viewportSize.x(), viewportSize.y());
811 glu::readPixels(m_context.getRenderContext(), viewportX, viewportY,
812 tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(), result.getDepth(), result.getAccess().getDataPtr()));
813 break;
814 }
815
816 default:
817 DE_ASSERT(false);
818 }
819
820 GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
821 }
822
823 // Verify
824 {
825 tcu::Surface errorMask(result.getWidth(), result.getHeight());
826 tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toVec());
827
828 const bool isOk = verify(result.getAccess(), errorMask.getAccess());
829
830 m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images")
831 << TestLog::Image("Rendered", "Rendered image", result);
832
833 if (!isOk)
834 m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask);
835
836 m_testCtx.getLog() << TestLog::EndImageSet;
837
838 m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
839 isOk ? "Pass" : "Image comparison failed");
840 }
841
842 return STOP;
843 }
844
getSurfaceThreshold(void) const845 tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold (void) const
846 {
847 switch (m_surfaceType)
848 {
849 case SURFACETYPE_DEFAULT_FRAMEBUFFER:
850 {
851 const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
852 const tcu::IVec4 channelBits (pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits, pixelFormat.alphaBits);
853 const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits);
854 const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f;
855
856 return normThreshold;
857 }
858
859 case SURFACETYPE_UNORM_FBO: return tcu::IVec4(1).asFloat() / 255.0f;
860 case SURFACETYPE_FLOAT_FBO: return tcu::Vec4(0.0f);
861 default:
862 DE_ASSERT(false);
863 return tcu::Vec4(0.0f);
864 }
865 }
866
867 // ConstantDerivateCase
868
869 class ConstantDerivateCase : public TriangleDerivateCase
870 {
871 public:
872 ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type);
~ConstantDerivateCase(void)873 ~ConstantDerivateCase (void) {}
874
875 void init (void);
876
877 protected:
878 bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
879
880 private:
881 DerivateFunc m_func;
882 };
883
ConstantDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type)884 ConstantDerivateCase::ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type)
885 : TriangleDerivateCase (context, name, description)
886 , m_func (func)
887 {
888 m_dataType = type;
889 m_precision = glu::PRECISION_HIGHP;
890 m_coordDataType = m_dataType;
891 m_coordPrecision = m_precision;
892 }
893
init(void)894 void ConstantDerivateCase::init (void)
895 {
896 const char* fragmentTmpl =
897 "#version 300 es\n"
898 "layout(location = 0) out mediump vec4 o_color;\n"
899 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
900 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
901 "void main (void)\n"
902 "{\n"
903 " ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n"
904 " o_color = ${CAST_TO_OUTPUT};\n"
905 "}\n";
906 map<string, string> fragmentParams;
907 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
908 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
909 fragmentParams["FUNC"] = getDerivateFuncName(m_func);
910 fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" :
911 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" :
912 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" :
913 /* TYPE_FLOAT */ "7.7";
914 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
915 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
916 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
917 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
918
919 m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
920
921 m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f);
922 m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f);
923 }
924
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)925 bool ConstantDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
926 {
927 const tcu::Vec4 reference (0.0f); // Derivate of constant argument should always be 0
928 const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale);
929
930 return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
931 reference, threshold, m_derivScale, m_derivBias);
932 }
933
934 // LinearDerivateCase
935
936 class LinearDerivateCase : public TriangleDerivateCase
937 {
938 public:
939 LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl);
~LinearDerivateCase(void)940 ~LinearDerivateCase (void) {}
941
942 void init (void);
943
944 protected:
945 bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
946
947 private:
948 DerivateFunc m_func;
949 std::string m_fragmentTmpl;
950 };
951
LinearDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type,glu::Precision precision,deUint32 hint,SurfaceType surfaceType,int numSamples,const char * fragmentSrcTmpl)952 LinearDerivateCase::LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl)
953 : TriangleDerivateCase (context, name, description)
954 , m_func (func)
955 , m_fragmentTmpl (fragmentSrcTmpl)
956 {
957 m_dataType = type;
958 m_precision = precision;
959 m_coordDataType = m_dataType;
960 m_coordPrecision = m_precision;
961 m_hint = hint;
962 m_surfaceType = surfaceType;
963 m_numSamples = numSamples;
964 }
965
init(void)966 void LinearDerivateCase::init (void)
967 {
968 const tcu::IVec2 viewportSize = getViewportSize();
969 const float w = float(viewportSize.x());
970 const float h = float(viewportSize.y());
971 const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
972 map<string, string> fragmentParams;
973
974 fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
975 fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
976 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
977 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
978 fragmentParams["FUNC"] = getDerivateFuncName(m_func);
979
980 if (packToInt)
981 {
982 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
983 m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
984 m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
985 /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
986 }
987 else
988 {
989 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
990 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
991 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
992 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
993 }
994
995 m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams);
996
997 switch (m_precision)
998 {
999 case glu::PRECISION_HIGHP:
1000 m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
1001 m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
1002 break;
1003
1004 case glu::PRECISION_MEDIUMP:
1005 m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
1006 m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
1007 break;
1008
1009 case glu::PRECISION_LOWP:
1010 m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
1011 m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
1012 break;
1013
1014 default:
1015 DE_ASSERT(false);
1016 }
1017
1018 if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
1019 {
1020 // No scale or bias used for accuracy.
1021 m_derivScale = tcu::Vec4(1.0f);
1022 m_derivBias = tcu::Vec4(0.0f);
1023 }
1024 else
1025 {
1026 // Compute scale - bias that normalizes to 0..1 range.
1027 const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f);
1028 const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f);
1029
1030 switch (m_func)
1031 {
1032 case DERIVATE_DFDX:
1033 m_derivScale = 0.5f / dx;
1034 break;
1035
1036 case DERIVATE_DFDY:
1037 m_derivScale = 0.5f / dy;
1038 break;
1039
1040 case DERIVATE_FWIDTH:
1041 m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
1042 break;
1043
1044 default:
1045 DE_ASSERT(false);
1046 }
1047
1048 m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
1049 }
1050 }
1051
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1052 bool LinearDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
1053 {
1054 const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f);
1055 const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f);
1056 const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
1057
1058 if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
1059 {
1060 const bool isX = m_func == DERIVATE_DFDX;
1061 const float div = isX ? float(result.getWidth()) : float(result.getHeight());
1062 const tcu::Vec4 scale = isX ? xScale : yScale;
1063 const tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div) * scale;
1064 const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin*scale, m_coordMax*scale, reference);
1065 const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
1066 const int numComps = glu::getDataTypeFloatScalars(m_dataType);
1067
1068 m_testCtx.getLog()
1069 << tcu::TestLog::Message
1070 << "Verifying result image.\n"
1071 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps)
1072 << tcu::TestLog::EndMessage;
1073
1074 // short circuit if result is strictly within the normal value error bounds.
1075 // This improves performance significantly.
1076 if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
1077 reference, threshold, m_derivScale, m_derivBias,
1078 LOG_NOTHING))
1079 {
1080 m_testCtx.getLog()
1081 << tcu::TestLog::Message
1082 << "No incorrect derivatives found, result valid."
1083 << tcu::TestLog::EndMessage;
1084
1085 return true;
1086 }
1087
1088 // some pixels exceed error bounds calculated for normal values. Verify that these
1089 // potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
1090
1091 m_testCtx.getLog()
1092 << tcu::TestLog::Message
1093 << "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n"
1094 << "\tVerifying each result derivative is within its range of legal result values."
1095 << tcu::TestLog::EndMessage;
1096
1097 {
1098 const tcu::IVec2 viewportSize = getViewportSize();
1099 const float w = float(viewportSize.x());
1100 const float h = float(viewportSize.y());
1101 const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin);
1102 Linear2DFunctionEvaluator function;
1103
1104 function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_coordMin.x()));
1105 function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_coordMin.y()));
1106 function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) / 2.0f);
1107 function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f);
1108
1109 return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask,
1110 m_dataType, m_precision, m_derivScale,
1111 m_derivBias, surfaceThreshold, m_func,
1112 function);
1113 }
1114 }
1115 else
1116 {
1117 DE_ASSERT(m_func == DERIVATE_FWIDTH);
1118 const float w = float(result.getWidth());
1119 const float h = float(result.getHeight());
1120
1121 const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale;
1122 const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale;
1123 const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
1124 const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin*xScale, m_coordMax*xScale, dx);
1125 const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin*yScale, m_coordMax*yScale, dy);
1126 const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
1127
1128 return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
1129 reference, threshold, m_derivScale, m_derivBias);
1130 }
1131 }
1132
1133 // TextureDerivateCase
1134
1135 class TextureDerivateCase : public TriangleDerivateCase
1136 {
1137 public:
1138 TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples);
1139 ~TextureDerivateCase (void);
1140
1141 void init (void);
1142 void deinit (void);
1143
1144 protected:
1145 void setupRenderState (deUint32 program);
1146 bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
1147
1148 private:
1149 DerivateFunc m_func;
1150
1151 tcu::Vec4 m_texValueMin;
1152 tcu::Vec4 m_texValueMax;
1153 glu::Texture2D* m_texture;
1154 };
1155
TextureDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type,glu::Precision precision,deUint32 hint,SurfaceType surfaceType,int numSamples)1156 TextureDerivateCase::TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples)
1157 : TriangleDerivateCase (context, name, description)
1158 , m_func (func)
1159 , m_texture (DE_NULL)
1160 {
1161 m_dataType = type;
1162 m_precision = precision;
1163 m_coordDataType = glu::TYPE_FLOAT_VEC2;
1164 m_coordPrecision = glu::PRECISION_HIGHP;
1165 m_hint = hint;
1166 m_surfaceType = surfaceType;
1167 m_numSamples = numSamples;
1168 }
1169
~TextureDerivateCase(void)1170 TextureDerivateCase::~TextureDerivateCase (void)
1171 {
1172 delete m_texture;
1173 }
1174
init(void)1175 void TextureDerivateCase::init (void)
1176 {
1177 // Generate shader
1178 {
1179 const char* fragmentTmpl =
1180 "#version 300 es\n"
1181 "in highp vec2 v_coord;\n"
1182 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1183 "uniform ${PRECISION} sampler2D u_sampler;\n"
1184 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1185 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1186 "void main (void)\n"
1187 "{\n"
1188 " ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n"
1189 " ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n"
1190 " o_color = ${CAST_TO_OUTPUT};\n"
1191 "}\n";
1192
1193 const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
1194 map<string, string> fragmentParams;
1195
1196 fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
1197 fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
1198 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
1199 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
1200 fragmentParams["FUNC"] = getDerivateFuncName(m_func);
1201 fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" :
1202 m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" :
1203 m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" :
1204 /* TYPE_FLOAT */ ".x";
1205
1206 if (packToInt)
1207 {
1208 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
1209 m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
1210 m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
1211 /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
1212 }
1213 else
1214 {
1215 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
1216 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
1217 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
1218 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
1219 }
1220
1221 m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
1222 }
1223
1224 // Texture size matches viewport and nearest sampling is used. Thus texture sampling
1225 // is equal to just interpolating the texture value range.
1226
1227 // Determine value range for texture.
1228
1229 switch (m_precision)
1230 {
1231 case glu::PRECISION_HIGHP:
1232 m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
1233 m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
1234 break;
1235
1236 case glu::PRECISION_MEDIUMP:
1237 m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
1238 m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
1239 break;
1240
1241 case glu::PRECISION_LOWP:
1242 m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
1243 m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
1244 break;
1245
1246 default:
1247 DE_ASSERT(false);
1248 }
1249
1250 // Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F.
1251 {
1252 const tcu::IVec2 viewportSize = getViewportSize();
1253 DE_ASSERT(!m_texture);
1254 m_texture = new glu::Texture2D(m_context.getRenderContext(), m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(), viewportSize.y());
1255 m_texture->getRefTexture().allocLevel(0);
1256 }
1257
1258 // Texture coordinates
1259 m_coordMin = tcu::Vec4(0.0f);
1260 m_coordMax = tcu::Vec4(1.0f);
1261
1262 // Fill with gradients.
1263 {
1264 const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0);
1265 for (int y = 0; y < level0.getHeight(); y++)
1266 {
1267 for (int x = 0; x < level0.getWidth(); x++)
1268 {
1269 const float xf = (float(x)+0.5f) / float(level0.getWidth());
1270 const float yf = (float(y)+0.5f) / float(level0.getHeight());
1271 const tcu::Vec4 s = tcu::Vec4(xf, yf, (xf+yf)/2.0f, 1.0f - (xf+yf)/2.0f);
1272
1273 level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin)*s, x, y);
1274 }
1275 }
1276 }
1277
1278 m_texture->upload();
1279
1280 if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
1281 {
1282 // No scale or bias used for accuracy.
1283 m_derivScale = tcu::Vec4(1.0f);
1284 m_derivBias = tcu::Vec4(0.0f);
1285 }
1286 else
1287 {
1288 // Compute scale - bias that normalizes to 0..1 range.
1289 const tcu::IVec2 viewportSize = getViewportSize();
1290 const float w = float(viewportSize.x());
1291 const float h = float(viewportSize.y());
1292 const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f);
1293 const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f);
1294
1295 switch (m_func)
1296 {
1297 case DERIVATE_DFDX:
1298 m_derivScale = 0.5f / dx;
1299 break;
1300
1301 case DERIVATE_DFDY:
1302 m_derivScale = 0.5f / dy;
1303 break;
1304
1305 case DERIVATE_FWIDTH:
1306 m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
1307 break;
1308
1309 default:
1310 DE_ASSERT(false);
1311 }
1312
1313 m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
1314 }
1315 }
1316
deinit(void)1317 void TextureDerivateCase::deinit (void)
1318 {
1319 delete m_texture;
1320 m_texture = DE_NULL;
1321 }
1322
setupRenderState(deUint32 program)1323 void TextureDerivateCase::setupRenderState (deUint32 program)
1324 {
1325 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1326 const int texUnit = 1;
1327
1328 gl.activeTexture (GL_TEXTURE0+texUnit);
1329 gl.bindTexture (GL_TEXTURE_2D, m_texture->getGLTexture());
1330 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
1331 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
1332 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1333 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1334
1335 gl.uniform1i (gl.getUniformLocation(program, "u_sampler"), texUnit);
1336 }
1337
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1338 bool TextureDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
1339 {
1340 // \note Edges are ignored in comparison
1341 if (result.getWidth() < 2 || result.getHeight() < 2)
1342 throw tcu::NotSupportedError("Too small viewport");
1343
1344 tcu::ConstPixelBufferAccess compareArea = tcu::getSubregion(result, 1, 1, result.getWidth()-2, result.getHeight()-2);
1345 tcu::PixelBufferAccess maskArea = tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth()-2, errorMask.getHeight()-2);
1346 const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f);
1347 const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f);
1348 const float w = float(result.getWidth());
1349 const float h = float(result.getHeight());
1350
1351 const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
1352
1353 if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
1354 {
1355 const bool isX = m_func == DERIVATE_DFDX;
1356 const float div = isX ? w : h;
1357 const tcu::Vec4 scale = isX ? xScale : yScale;
1358 const tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div) * scale;
1359 const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin*scale, m_texValueMax*scale, reference);
1360 const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
1361 const int numComps = glu::getDataTypeFloatScalars(m_dataType);
1362
1363 m_testCtx.getLog()
1364 << tcu::TestLog::Message
1365 << "Verifying result image.\n"
1366 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps)
1367 << tcu::TestLog::EndMessage;
1368
1369 // short circuit if result is strictly within the normal value error bounds.
1370 // This improves performance significantly.
1371 if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
1372 reference, threshold, m_derivScale, m_derivBias,
1373 LOG_NOTHING))
1374 {
1375 m_testCtx.getLog()
1376 << tcu::TestLog::Message
1377 << "No incorrect derivatives found, result valid."
1378 << tcu::TestLog::EndMessage;
1379
1380 return true;
1381 }
1382
1383 // some pixels exceed error bounds calculated for normal values. Verify that these
1384 // potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
1385
1386 m_testCtx.getLog()
1387 << tcu::TestLog::Message
1388 << "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n"
1389 << "\tVerifying each result derivative is within its range of legal result values."
1390 << tcu::TestLog::EndMessage;
1391
1392 {
1393 const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin);
1394 Linear2DFunctionEvaluator function;
1395
1396 function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_texValueMin.x()));
1397 function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_texValueMin.y()));
1398 function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f);
1399 function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f);
1400
1401 return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea,
1402 m_dataType, m_precision, m_derivScale,
1403 m_derivBias, surfaceThreshold, m_func,
1404 function);
1405 }
1406 }
1407 else
1408 {
1409 DE_ASSERT(m_func == DERIVATE_FWIDTH);
1410 const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale;
1411 const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale;
1412 const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
1413 const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_texValueMin*xScale, m_texValueMax*xScale, dx);
1414 const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_texValueMin*yScale, m_texValueMax*yScale, dy);
1415 const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
1416
1417 return verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
1418 reference, threshold, m_derivScale, m_derivBias);
1419 }
1420 }
1421
ShaderDerivateTests(Context & context)1422 ShaderDerivateTests::ShaderDerivateTests (Context& context)
1423 : TestCaseGroup(context, "derivate", "Derivate Function Tests")
1424 {
1425 }
1426
~ShaderDerivateTests(void)1427 ShaderDerivateTests::~ShaderDerivateTests (void)
1428 {
1429 }
1430
1431 struct FunctionSpec
1432 {
1433 std::string name;
1434 DerivateFunc function;
1435 glu::DataType dataType;
1436 glu::Precision precision;
1437
FunctionSpecdeqp::gles3::Functional::FunctionSpec1438 FunctionSpec (const std::string& name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_)
1439 : name (name_)
1440 , function (function_)
1441 , dataType (dataType_)
1442 , precision (precision_)
1443 {
1444 }
1445 };
1446
init(void)1447 void ShaderDerivateTests::init (void)
1448 {
1449 static const struct
1450 {
1451 const char* name;
1452 const char* description;
1453 const char* source;
1454 } s_linearDerivateCases[] =
1455 {
1456 {
1457 "linear",
1458 "Basic derivate of linearly interpolated argument",
1459
1460 "#version 300 es\n"
1461 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1462 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1463 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1464 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1465 "void main (void)\n"
1466 "{\n"
1467 " ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1468 " o_color = ${CAST_TO_OUTPUT};\n"
1469 "}\n"
1470 },
1471 {
1472 "in_function",
1473 "Derivate of linear function argument",
1474
1475 "#version 300 es\n"
1476 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1477 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1478 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1479 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1480 "\n"
1481 "${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n"
1482 "{\n"
1483 " return ${FUNC}(v_coord) * u_scale + u_bias;\n"
1484 "}\n"
1485 "\n"
1486 "void main (void)\n"
1487 "{\n"
1488 " ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n"
1489 " o_color = ${CAST_TO_OUTPUT};\n"
1490 "}\n"
1491 },
1492 {
1493 "static_if",
1494 "Derivate of linearly interpolated value in static if",
1495
1496 "#version 300 es\n"
1497 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1498 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1499 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1500 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1501 "void main (void)\n"
1502 "{\n"
1503 " ${PRECISION} ${DATATYPE} res;\n"
1504 " if (false)\n"
1505 " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
1506 " else\n"
1507 " res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1508 " o_color = ${CAST_TO_OUTPUT};\n"
1509 "}\n"
1510 },
1511 {
1512 "static_loop",
1513 "Derivate of linearly interpolated value in static loop",
1514
1515 "#version 300 es\n"
1516 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1517 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1518 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1519 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1520 "void main (void)\n"
1521 "{\n"
1522 " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
1523 " for (int i = 0; i < 2; i++)\n"
1524 " res += ${FUNC}(v_coord * float(i));\n"
1525 " res = res * u_scale + u_bias;\n"
1526 " o_color = ${CAST_TO_OUTPUT};\n"
1527 "}\n"
1528 },
1529 {
1530 "static_switch",
1531 "Derivate of linearly interpolated value in static switch",
1532
1533 "#version 300 es\n"
1534 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1535 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1536 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1537 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1538 "void main (void)\n"
1539 "{\n"
1540 " ${PRECISION} ${DATATYPE} res;\n"
1541 " switch (1)\n"
1542 " {\n"
1543 " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
1544 " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
1545 " }\n"
1546 " o_color = ${CAST_TO_OUTPUT};\n"
1547 "}\n"
1548 },
1549 {
1550 "uniform_if",
1551 "Derivate of linearly interpolated value in uniform if",
1552
1553 "#version 300 es\n"
1554 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1555 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1556 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1557 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1558 "uniform bool ub_true;\n"
1559 "void main (void)\n"
1560 "{\n"
1561 " ${PRECISION} ${DATATYPE} res;\n"
1562 " if (ub_true)"
1563 " res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1564 " else\n"
1565 " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
1566 " o_color = ${CAST_TO_OUTPUT};\n"
1567 "}\n"
1568 },
1569 {
1570 "uniform_loop",
1571 "Derivate of linearly interpolated value in uniform loop",
1572
1573 "#version 300 es\n"
1574 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1575 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1576 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1577 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1578 "uniform int ui_two;\n"
1579 "void main (void)\n"
1580 "{\n"
1581 " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
1582 " for (int i = 0; i < ui_two; i++)\n"
1583 " res += ${FUNC}(v_coord * float(i));\n"
1584 " res = res * u_scale + u_bias;\n"
1585 " o_color = ${CAST_TO_OUTPUT};\n"
1586 "}\n"
1587 },
1588 {
1589 "uniform_switch",
1590 "Derivate of linearly interpolated value in uniform switch",
1591
1592 "#version 300 es\n"
1593 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1594 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1595 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1596 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1597 "uniform int ui_one;\n"
1598 "void main (void)\n"
1599 "{\n"
1600 " ${PRECISION} ${DATATYPE} res;\n"
1601 " switch (ui_one)\n"
1602 " {\n"
1603 " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
1604 " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
1605 " }\n"
1606 " o_color = ${CAST_TO_OUTPUT};\n"
1607 "}\n"
1608 },
1609 };
1610
1611 static const struct
1612 {
1613 const char* name;
1614 SurfaceType surfaceType;
1615 int numSamples;
1616 } s_fboConfigs[] =
1617 {
1618 { "fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 },
1619 { "fbo_msaa2", SURFACETYPE_UNORM_FBO, 2 },
1620 { "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 },
1621 { "fbo_float", SURFACETYPE_FLOAT_FBO, 0 },
1622 };
1623
1624 static const struct
1625 {
1626 const char* name;
1627 deUint32 hint;
1628 } s_hints[] =
1629 {
1630 { "fastest", GL_FASTEST },
1631 { "nicest", GL_NICEST },
1632 };
1633
1634 static const struct
1635 {
1636 const char* name;
1637 SurfaceType surfaceType;
1638 int numSamples;
1639 } s_hintFboConfigs[] =
1640 {
1641 { "default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 },
1642 { "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 },
1643 { "fbo_float", SURFACETYPE_FLOAT_FBO, 0 }
1644 };
1645
1646 static const struct
1647 {
1648 const char* name;
1649 SurfaceType surfaceType;
1650 int numSamples;
1651 deUint32 hint;
1652 } s_textureConfigs[] =
1653 {
1654 { "basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE },
1655 { "msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE },
1656 { "float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST },
1657 { "float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST },
1658 };
1659
1660 // .dfdx, .dfdy, .fwidth
1661 for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++)
1662 {
1663 const DerivateFunc function = DerivateFunc(funcNdx);
1664 tcu::TestCaseGroup* const functionGroup = new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function));
1665 addChild(functionGroup);
1666
1667 // .constant - no precision variants, checks that derivate of constant arguments is 0
1668 {
1669 tcu::TestCaseGroup* const constantGroup = new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument");
1670 functionGroup->addChild(constantGroup);
1671
1672 for (int vecSize = 1; vecSize <= 4; vecSize++)
1673 {
1674 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1675 constantGroup->addChild(new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType));
1676 }
1677 }
1678
1679 // Cases based on LinearDerivateCase
1680 for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++)
1681 {
1682 tcu::TestCaseGroup* const linearCaseGroup = new tcu::TestCaseGroup(m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description);
1683 const char* source = s_linearDerivateCases[caseNdx].source;
1684 functionGroup->addChild(linearCaseGroup);
1685
1686 for (int vecSize = 1; vecSize <= 4; vecSize++)
1687 {
1688 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1689 {
1690 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1691 const glu::Precision precision = glu::Precision(precNdx);
1692 const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER;
1693 const int numSamples = 0;
1694 const deUint32 hint = GL_DONT_CARE;
1695 ostringstream caseName;
1696
1697 if (caseNdx != 0 && precision == glu::PRECISION_LOWP)
1698 continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB.
1699
1700 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1701
1702 linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
1703 }
1704 }
1705 }
1706
1707 // Fbo cases
1708 for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++)
1709 {
1710 tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO");
1711 const char* source = s_linearDerivateCases[0].source; // use source from .linear group
1712 const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType;
1713 const int numSamples = s_fboConfigs[caseNdx].numSamples;
1714 functionGroup->addChild(fboGroup);
1715
1716 for (int vecSize = 1; vecSize <= 4; vecSize++)
1717 {
1718 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1719 {
1720 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1721 const glu::Precision precision = glu::Precision(precNdx);
1722 const deUint32 hint = GL_DONT_CARE;
1723 ostringstream caseName;
1724
1725 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1726 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1727
1728 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1729
1730 fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
1731 }
1732 }
1733 }
1734
1735 // .fastest, .nicest
1736 for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++)
1737 {
1738 tcu::TestCaseGroup* const hintGroup = new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints");
1739 const char* source = s_linearDerivateCases[0].source; // use source from .linear group
1740 const deUint32 hint = s_hints[hintCaseNdx].hint;
1741 functionGroup->addChild(hintGroup);
1742
1743 for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++)
1744 {
1745 tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, "");
1746 const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType;
1747 const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples;
1748 hintGroup->addChild(fboGroup);
1749
1750 for (int vecSize = 1; vecSize <= 4; vecSize++)
1751 {
1752 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1753 {
1754 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1755 const glu::Precision precision = glu::Precision(precNdx);
1756 ostringstream caseName;
1757
1758 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1759 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1760
1761 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1762
1763 fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
1764 }
1765 }
1766 }
1767 }
1768
1769 // .texture
1770 {
1771 tcu::TestCaseGroup* const textureGroup = new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result");
1772 functionGroup->addChild(textureGroup);
1773
1774 for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++)
1775 {
1776 tcu::TestCaseGroup* const caseGroup = new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, "");
1777 const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType;
1778 const int numSamples = s_textureConfigs[texCaseNdx].numSamples;
1779 const deUint32 hint = s_textureConfigs[texCaseNdx].hint;
1780 textureGroup->addChild(caseGroup);
1781
1782 for (int vecSize = 1; vecSize <= 4; vecSize++)
1783 {
1784 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1785 {
1786 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1787 const glu::Precision precision = glu::Precision(precNdx);
1788 ostringstream caseName;
1789
1790 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1791 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1792
1793 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1794
1795 caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples));
1796 }
1797 }
1798 }
1799 }
1800 }
1801 }
1802
1803 } // Functional
1804 } // gles3
1805 } // deqp
1806