1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SELFADJOINTMATRIX_H
11 #define EIGEN_SELFADJOINTMATRIX_H
12 
13 namespace Eigen {
14 
15 /** \class SelfAdjointView
16   * \ingroup Core_Module
17   *
18   *
19   * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
20   *
21   * \param MatrixType the type of the dense matrix storing the coefficients
22   * \param TriangularPart can be either \c #Lower or \c #Upper
23   *
24   * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
25   * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
26   * and most of the time this is the only way that it is used.
27   *
28   * \sa class TriangularBase, MatrixBase::selfadjointView()
29   */
30 
31 namespace internal {
32 template<typename MatrixType, unsigned int UpLo>
33 struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
34 {
35   typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
36   typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
37   typedef MatrixType ExpressionType;
38   typedef typename MatrixType::PlainObject FullMatrixType;
39   enum {
40     Mode = UpLo | SelfAdjoint,
41     FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
42     Flags =  MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit)
43            & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved
44   };
45 };
46 }
47 
48 
49 template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
50   : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
51 {
52   public:
53 
54     typedef _MatrixType MatrixType;
55     typedef TriangularBase<SelfAdjointView> Base;
56     typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
57     typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
58     typedef MatrixTypeNestedCleaned NestedExpression;
59 
60     /** \brief The type of coefficients in this matrix */
61     typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
62     typedef typename MatrixType::StorageIndex StorageIndex;
63     typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
64 
65     enum {
66       Mode = internal::traits<SelfAdjointView>::Mode,
67       Flags = internal::traits<SelfAdjointView>::Flags,
68       TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0)
69     };
70     typedef typename MatrixType::PlainObject PlainObject;
71 
72     EIGEN_DEVICE_FUNC
73     explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
74     {}
75 
76     EIGEN_DEVICE_FUNC
77     inline Index rows() const { return m_matrix.rows(); }
78     EIGEN_DEVICE_FUNC
79     inline Index cols() const { return m_matrix.cols(); }
80     EIGEN_DEVICE_FUNC
81     inline Index outerStride() const { return m_matrix.outerStride(); }
82     EIGEN_DEVICE_FUNC
83     inline Index innerStride() const { return m_matrix.innerStride(); }
84 
85     /** \sa MatrixBase::coeff()
86       * \warning the coordinates must fit into the referenced triangular part
87       */
88     EIGEN_DEVICE_FUNC
89     inline Scalar coeff(Index row, Index col) const
90     {
91       Base::check_coordinates_internal(row, col);
92       return m_matrix.coeff(row, col);
93     }
94 
95     /** \sa MatrixBase::coeffRef()
96       * \warning the coordinates must fit into the referenced triangular part
97       */
98     EIGEN_DEVICE_FUNC
99     inline Scalar& coeffRef(Index row, Index col)
100     {
101       EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView);
102       Base::check_coordinates_internal(row, col);
103       return m_matrix.coeffRef(row, col);
104     }
105 
106     /** \internal */
107     EIGEN_DEVICE_FUNC
108     const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
109 
110     EIGEN_DEVICE_FUNC
111     const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
112     EIGEN_DEVICE_FUNC
113     MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; }
114 
115     /** Efficient triangular matrix times vector/matrix product */
116     template<typename OtherDerived>
117     EIGEN_DEVICE_FUNC
118     const Product<SelfAdjointView,OtherDerived>
119     operator*(const MatrixBase<OtherDerived>& rhs) const
120     {
121       return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived());
122     }
123 
124     /** Efficient vector/matrix times triangular matrix product */
125     template<typename OtherDerived> friend
126     EIGEN_DEVICE_FUNC
127     const Product<OtherDerived,SelfAdjointView>
128     operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
129     {
130       return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs);
131     }
132 
133     friend EIGEN_DEVICE_FUNC
134     const SelfAdjointView<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,MatrixType,product),UpLo>
135     operator*(const Scalar& s, const SelfAdjointView& mat)
136     {
137       return (s*mat.nestedExpression()).template selfadjointView<UpLo>();
138     }
139 
140     /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
141       * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
142       * \returns a reference to \c *this
143       *
144       * The vectors \a u and \c v \b must be column vectors, however they can be
145       * a adjoint expression without any overhead. Only the meaningful triangular
146       * part of the matrix is updated, the rest is left unchanged.
147       *
148       * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
149       */
150     template<typename DerivedU, typename DerivedV>
151     EIGEN_DEVICE_FUNC
152     SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1));
153 
154     /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
155       * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
156       *
157       * \returns a reference to \c *this
158       *
159       * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
160       * call this function with u.adjoint().
161       *
162       * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
163       */
164     template<typename DerivedU>
165     EIGEN_DEVICE_FUNC
166     SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
167 
168     /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part
169       *
170       * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
171       * \c #Lower, \c #StrictlyLower, \c #UnitLower.
172       *
173       * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression,
174       * otherwise, the nested expression is first transposed, thus returning a \c TriangularView<Transpose<MatrixType>> object.
175       *
176       * \sa MatrixBase::triangularView(), class TriangularView
177       */
178     template<unsigned int TriMode>
179     EIGEN_DEVICE_FUNC
180     typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
181                                    TriangularView<MatrixType,TriMode>,
182                                    TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type
183     triangularView() const
184     {
185       typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType>::type tmp1(m_matrix);
186       typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType>::type tmp2(tmp1);
187       return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
188                                    TriangularView<MatrixType,TriMode>,
189                                    TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type(tmp2);
190     }
191 
192     typedef SelfAdjointView<const MatrixConjugateReturnType,Mode> ConjugateReturnType;
193     /** \sa MatrixBase::conjugate() const */
194     EIGEN_DEVICE_FUNC
195     inline const ConjugateReturnType conjugate() const
196     { return ConjugateReturnType(m_matrix.conjugate()); }
197 
198     typedef SelfAdjointView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType;
199     /** \sa MatrixBase::adjoint() const */
200     EIGEN_DEVICE_FUNC
201     inline const AdjointReturnType adjoint() const
202     { return AdjointReturnType(m_matrix.adjoint()); }
203 
204     typedef SelfAdjointView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
205      /** \sa MatrixBase::transpose() */
206     EIGEN_DEVICE_FUNC
207     inline TransposeReturnType transpose()
208     {
209       EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
210       typename MatrixType::TransposeReturnType tmp(m_matrix);
211       return TransposeReturnType(tmp);
212     }
213 
214     typedef SelfAdjointView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType;
215     /** \sa MatrixBase::transpose() const */
216     EIGEN_DEVICE_FUNC
217     inline const ConstTransposeReturnType transpose() const
218     {
219       return ConstTransposeReturnType(m_matrix.transpose());
220     }
221 
222     /** \returns a const expression of the main diagonal of the matrix \c *this
223       *
224       * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator.
225       *
226       * \sa MatrixBase::diagonal(), class Diagonal */
227     EIGEN_DEVICE_FUNC
228     typename MatrixType::ConstDiagonalReturnType diagonal() const
229     {
230       return typename MatrixType::ConstDiagonalReturnType(m_matrix);
231     }
232 
233 /////////// Cholesky module ///////////
234 
235     const LLT<PlainObject, UpLo> llt() const;
236     const LDLT<PlainObject, UpLo> ldlt() const;
237 
238 /////////// Eigenvalue module ///////////
239 
240     /** Real part of #Scalar */
241     typedef typename NumTraits<Scalar>::Real RealScalar;
242     /** Return type of eigenvalues() */
243     typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
244 
245     EIGEN_DEVICE_FUNC
246     EigenvaluesReturnType eigenvalues() const;
247     EIGEN_DEVICE_FUNC
248     RealScalar operatorNorm() const;
249 
250   protected:
251     MatrixTypeNested m_matrix;
252 };
253 
254 
255 // template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
256 // internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
257 // operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
258 // {
259 //   return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
260 // }
261 
262 // selfadjoint to dense matrix
263 
264 namespace internal {
265 
266 // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
267 //      in the future selfadjoint-ness should be defined by the expression traits
268 //      such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
269 template<typename MatrixType, unsigned int Mode>
270 struct evaluator_traits<SelfAdjointView<MatrixType,Mode> >
271 {
272   typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
273   typedef SelfAdjointShape Shape;
274 };
275 
276 template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>
277 class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version>
278   : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
279 {
280 protected:
281   typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
282   typedef typename Base::DstXprType DstXprType;
283   typedef typename Base::SrcXprType SrcXprType;
284   using Base::m_dst;
285   using Base::m_src;
286   using Base::m_functor;
287 public:
288 
289   typedef typename Base::DstEvaluatorType DstEvaluatorType;
290   typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
291   typedef typename Base::Scalar Scalar;
292   typedef typename Base::AssignmentTraits AssignmentTraits;
293 
294 
295   EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
296     : Base(dst, src, func, dstExpr)
297   {}
298 
299   EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
300   {
301     eigen_internal_assert(row!=col);
302     Scalar tmp = m_src.coeff(row,col);
303     m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp);
304     m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp));
305   }
306 
307   EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id)
308   {
309     Base::assignCoeff(id,id);
310   }
311 
312   EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index)
313   { eigen_internal_assert(false && "should never be called"); }
314 };
315 
316 } // end namespace internal
317 
318 /***************************************************************************
319 * Implementation of MatrixBase methods
320 ***************************************************************************/
321 
322 /** This is the const version of MatrixBase::selfadjointView() */
323 template<typename Derived>
324 template<unsigned int UpLo>
325 typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
326 MatrixBase<Derived>::selfadjointView() const
327 {
328   return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived());
329 }
330 
331 /** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix
332   *
333   * The parameter \a UpLo can be either \c #Upper or \c #Lower
334   *
335   * Example: \include MatrixBase_selfadjointView.cpp
336   * Output: \verbinclude MatrixBase_selfadjointView.out
337   *
338   * \sa class SelfAdjointView
339   */
340 template<typename Derived>
341 template<unsigned int UpLo>
342 typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
343 MatrixBase<Derived>::selfadjointView()
344 {
345   return typename SelfAdjointViewReturnType<UpLo>::Type(derived());
346 }
347 
348 } // end namespace Eigen
349 
350 #endif // EIGEN_SELFADJOINTMATRIX_H
351