1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SPECIAL_FUNCTIONS_H
11 #define EIGEN_SPECIAL_FUNCTIONS_H
12 
13 namespace Eigen {
14 namespace internal {
15 
16 //  Parts of this code are based on the Cephes Math Library.
17 //
18 //  Cephes Math Library Release 2.8:  June, 2000
19 //  Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20 //
21 //  Permission has been kindly provided by the original author
22 //  to incorporate the Cephes software into the Eigen codebase:
23 //
24 //    From: Stephen Moshier
25 //    To: Eugene Brevdo
26 //    Subject: Re: Permission to wrap several cephes functions in Eigen
27 //
28 //    Hello Eugene,
29 //
30 //    Thank you for writing.
31 //
32 //    If your licensing is similar to BSD, the formal way that has been
33 //    handled is simply to add a statement to the effect that you are incorporating
34 //    the Cephes software by permission of the author.
35 //
36 //    Good luck with your project,
37 //    Steve
38 
39 namespace cephes {
40 
41 /* polevl (modified for Eigen)
42  *
43  *      Evaluate polynomial
44  *
45  *
46  *
47  * SYNOPSIS:
48  *
49  * int N;
50  * Scalar x, y, coef[N+1];
51  *
52  * y = polevl<decltype(x), N>( x, coef);
53  *
54  *
55  *
56  * DESCRIPTION:
57  *
58  * Evaluates polynomial of degree N:
59  *
60  *                     2          N
61  * y  =  C  + C x + C x  +...+ C x
62  *        0    1     2          N
63  *
64  * Coefficients are stored in reverse order:
65  *
66  * coef[0] = C  , ..., coef[N] = C  .
67  *            N                   0
68  *
69  *  The function p1evl() assumes that coef[N] = 1.0 and is
70  * omitted from the array.  Its calling arguments are
71  * otherwise the same as polevl().
72  *
73  *
74  * The Eigen implementation is templatized.  For best speed, store
75  * coef as a const array (constexpr), e.g.
76  *
77  * const double coef[] = {1.0, 2.0, 3.0, ...};
78  *
79  */
80 template <typename Scalar, int N>
81 struct polevl {
82   EIGEN_DEVICE_FUNC
runpolevl83   static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) {
84     EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
85 
86     return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
87   }
88 };
89 
90 template <typename Scalar>
91 struct polevl<Scalar, 0> {
92   EIGEN_DEVICE_FUNC
93   static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) {
94     return coef[0];
95   }
96 };
97 
98 }  // end namespace cephes
99 
100 /****************************************************************************
101  * Implementation of lgamma, requires C++11/C99                             *
102  ****************************************************************************/
103 
104 template <typename Scalar>
105 struct lgamma_impl {
106   EIGEN_DEVICE_FUNC
107   static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
108     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
109                         THIS_TYPE_IS_NOT_SUPPORTED);
110     return Scalar(0);
111   }
112 };
113 
114 template <typename Scalar>
115 struct lgamma_retval {
116   typedef Scalar type;
117 };
118 
119 #if EIGEN_HAS_C99_MATH
120 template <>
121 struct lgamma_impl<float> {
122   EIGEN_DEVICE_FUNC
123   static EIGEN_STRONG_INLINE float run(float x) {
124 #if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
125     int signgam;
126     return ::lgammaf_r(x, &signgam);
127 #else
128     return ::lgammaf(x);
129 #endif
130   }
131 };
132 
133 template <>
134 struct lgamma_impl<double> {
135   EIGEN_DEVICE_FUNC
136   static EIGEN_STRONG_INLINE double run(double x) {
137 #if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
138     int signgam;
139     return ::lgamma_r(x, &signgam);
140 #else
141     return ::lgamma(x);
142 #endif
143   }
144 };
145 #endif
146 
147 /****************************************************************************
148  * Implementation of digamma (psi), based on Cephes                         *
149  ****************************************************************************/
150 
151 template <typename Scalar>
152 struct digamma_retval {
153   typedef Scalar type;
154 };
155 
156 /*
157  *
158  * Polynomial evaluation helper for the Psi (digamma) function.
159  *
160  * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
161  * input Scalar s, assuming s is above 10.0.
162  *
163  * If s is above a certain threshold for the given Scalar type, zero
164  * is returned.  Otherwise the polynomial is evaluated with enough
165  * coefficients for results matching Scalar machine precision.
166  *
167  *
168  */
169 template <typename Scalar>
170 struct digamma_impl_maybe_poly {
171   EIGEN_DEVICE_FUNC
172   static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
173     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
174                         THIS_TYPE_IS_NOT_SUPPORTED);
175     return Scalar(0);
176   }
177 };
178 
179 
180 template <>
181 struct digamma_impl_maybe_poly<float> {
182   EIGEN_DEVICE_FUNC
183   static EIGEN_STRONG_INLINE float run(const float s) {
184     const float A[] = {
185       -4.16666666666666666667E-3f,
186       3.96825396825396825397E-3f,
187       -8.33333333333333333333E-3f,
188       8.33333333333333333333E-2f
189     };
190 
191     float z;
192     if (s < 1.0e8f) {
193       z = 1.0f / (s * s);
194       return z * cephes::polevl<float, 3>::run(z, A);
195     } else return 0.0f;
196   }
197 };
198 
199 template <>
200 struct digamma_impl_maybe_poly<double> {
201   EIGEN_DEVICE_FUNC
202   static EIGEN_STRONG_INLINE double run(const double s) {
203     const double A[] = {
204       8.33333333333333333333E-2,
205       -2.10927960927960927961E-2,
206       7.57575757575757575758E-3,
207       -4.16666666666666666667E-3,
208       3.96825396825396825397E-3,
209       -8.33333333333333333333E-3,
210       8.33333333333333333333E-2
211     };
212 
213     double z;
214     if (s < 1.0e17) {
215       z = 1.0 / (s * s);
216       return z * cephes::polevl<double, 6>::run(z, A);
217     }
218     else return 0.0;
219   }
220 };
221 
222 template <typename Scalar>
223 struct digamma_impl {
224   EIGEN_DEVICE_FUNC
225   static Scalar run(Scalar x) {
226     /*
227      *
228      *     Psi (digamma) function (modified for Eigen)
229      *
230      *
231      * SYNOPSIS:
232      *
233      * double x, y, psi();
234      *
235      * y = psi( x );
236      *
237      *
238      * DESCRIPTION:
239      *
240      *              d      -
241      *   psi(x)  =  -- ln | (x)
242      *              dx
243      *
244      * is the logarithmic derivative of the gamma function.
245      * For integer x,
246      *                   n-1
247      *                    -
248      * psi(n) = -EUL  +   >  1/k.
249      *                    -
250      *                   k=1
251      *
252      * If x is negative, it is transformed to a positive argument by the
253      * reflection formula  psi(1-x) = psi(x) + pi cot(pi x).
254      * For general positive x, the argument is made greater than 10
255      * using the recurrence  psi(x+1) = psi(x) + 1/x.
256      * Then the following asymptotic expansion is applied:
257      *
258      *                           inf.   B
259      *                            -      2k
260      * psi(x) = log(x) - 1/2x -   >   -------
261      *                            -        2k
262      *                           k=1   2k x
263      *
264      * where the B2k are Bernoulli numbers.
265      *
266      * ACCURACY (float):
267      *    Relative error (except absolute when |psi| < 1):
268      * arithmetic   domain     # trials      peak         rms
269      *    IEEE      0,30        30000       1.3e-15     1.4e-16
270      *    IEEE      -30,0       40000       1.5e-15     2.2e-16
271      *
272      * ACCURACY (double):
273      *    Absolute error,  relative when |psi| > 1 :
274      * arithmetic   domain     # trials      peak         rms
275      *    IEEE      -33,0        30000      8.2e-7      1.2e-7
276      *    IEEE      0,33        100000      7.3e-7      7.7e-8
277      *
278      * ERROR MESSAGES:
279      *     message         condition      value returned
280      * psi singularity    x integer <=0      INFINITY
281      */
282 
283     Scalar p, q, nz, s, w, y;
284     bool negative = false;
285 
286     const Scalar maxnum = NumTraits<Scalar>::infinity();
287     const Scalar m_pi = Scalar(EIGEN_PI);
288 
289     const Scalar zero = Scalar(0);
290     const Scalar one = Scalar(1);
291     const Scalar half = Scalar(0.5);
292     nz = zero;
293 
294     if (x <= zero) {
295       negative = true;
296       q = x;
297       p = numext::floor(q);
298       if (p == q) {
299         return maxnum;
300       }
301       /* Remove the zeros of tan(m_pi x)
302        * by subtracting the nearest integer from x
303        */
304       nz = q - p;
305       if (nz != half) {
306         if (nz > half) {
307           p += one;
308           nz = q - p;
309         }
310         nz = m_pi / numext::tan(m_pi * nz);
311       }
312       else {
313         nz = zero;
314       }
315       x = one - x;
316     }
317 
318     /* use the recurrence psi(x+1) = psi(x) + 1/x. */
319     s = x;
320     w = zero;
321     while (s < Scalar(10)) {
322       w += one / s;
323       s += one;
324     }
325 
326     y = digamma_impl_maybe_poly<Scalar>::run(s);
327 
328     y = numext::log(s) - (half / s) - y - w;
329 
330     return (negative) ? y - nz : y;
331   }
332 };
333 
334 /****************************************************************************
335  * Implementation of erf, requires C++11/C99                                *
336  ****************************************************************************/
337 
338 template <typename Scalar>
339 struct erf_impl {
340   EIGEN_DEVICE_FUNC
341   static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
342     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
343                         THIS_TYPE_IS_NOT_SUPPORTED);
344     return Scalar(0);
345   }
346 };
347 
348 template <typename Scalar>
349 struct erf_retval {
350   typedef Scalar type;
351 };
352 
353 #if EIGEN_HAS_C99_MATH
354 template <>
355 struct erf_impl<float> {
356   EIGEN_DEVICE_FUNC
357   static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
358 };
359 
360 template <>
361 struct erf_impl<double> {
362   EIGEN_DEVICE_FUNC
363   static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
364 };
365 #endif  // EIGEN_HAS_C99_MATH
366 
367 /***************************************************************************
368 * Implementation of erfc, requires C++11/C99                               *
369 ****************************************************************************/
370 
371 template <typename Scalar>
372 struct erfc_impl {
373   EIGEN_DEVICE_FUNC
374   static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
375     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
376                         THIS_TYPE_IS_NOT_SUPPORTED);
377     return Scalar(0);
378   }
379 };
380 
381 template <typename Scalar>
382 struct erfc_retval {
383   typedef Scalar type;
384 };
385 
386 #if EIGEN_HAS_C99_MATH
387 template <>
388 struct erfc_impl<float> {
389   EIGEN_DEVICE_FUNC
390   static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
391 };
392 
393 template <>
394 struct erfc_impl<double> {
395   EIGEN_DEVICE_FUNC
396   static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
397 };
398 #endif  // EIGEN_HAS_C99_MATH
399 
400 /**************************************************************************************************************
401  * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
402  **************************************************************************************************************/
403 
404 template <typename Scalar>
405 struct igammac_retval {
406   typedef Scalar type;
407 };
408 
409 // NOTE: cephes_helper is also used to implement zeta
410 template <typename Scalar>
411 struct cephes_helper {
412   EIGEN_DEVICE_FUNC
413   static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
414   EIGEN_DEVICE_FUNC
415   static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
416   EIGEN_DEVICE_FUNC
417   static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
418 };
419 
420 template <>
421 struct cephes_helper<float> {
422   EIGEN_DEVICE_FUNC
423   static EIGEN_STRONG_INLINE float machep() {
424     return NumTraits<float>::epsilon() / 2;  // 1.0 - machep == 1.0
425   }
426   EIGEN_DEVICE_FUNC
427   static EIGEN_STRONG_INLINE float big() {
428     // use epsneg (1.0 - epsneg == 1.0)
429     return 1.0f / (NumTraits<float>::epsilon() / 2);
430   }
431   EIGEN_DEVICE_FUNC
432   static EIGEN_STRONG_INLINE float biginv() {
433     // epsneg
434     return machep();
435   }
436 };
437 
438 template <>
439 struct cephes_helper<double> {
440   EIGEN_DEVICE_FUNC
441   static EIGEN_STRONG_INLINE double machep() {
442     return NumTraits<double>::epsilon() / 2;  // 1.0 - machep == 1.0
443   }
444   EIGEN_DEVICE_FUNC
445   static EIGEN_STRONG_INLINE double big() {
446     return 1.0 / NumTraits<double>::epsilon();
447   }
448   EIGEN_DEVICE_FUNC
449   static EIGEN_STRONG_INLINE double biginv() {
450     // inverse of eps
451     return NumTraits<double>::epsilon();
452   }
453 };
454 
455 #if !EIGEN_HAS_C99_MATH
456 
457 template <typename Scalar>
458 struct igammac_impl {
459   EIGEN_DEVICE_FUNC
460   static Scalar run(Scalar a, Scalar x) {
461     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
462                         THIS_TYPE_IS_NOT_SUPPORTED);
463     return Scalar(0);
464   }
465 };
466 
467 #else
468 
469 template <typename Scalar> struct igamma_impl;  // predeclare igamma_impl
470 
471 template <typename Scalar>
472 struct igammac_impl {
473   EIGEN_DEVICE_FUNC
474   static Scalar run(Scalar a, Scalar x) {
475     /*  igamc()
476      *
477      *	Incomplete gamma integral (modified for Eigen)
478      *
479      *
480      *
481      * SYNOPSIS:
482      *
483      * double a, x, y, igamc();
484      *
485      * y = igamc( a, x );
486      *
487      * DESCRIPTION:
488      *
489      * The function is defined by
490      *
491      *
492      *  igamc(a,x)   =   1 - igam(a,x)
493      *
494      *                            inf.
495      *                              -
496      *                     1       | |  -t  a-1
497      *               =   -----     |   e   t   dt.
498      *                    -      | |
499      *                   | (a)    -
500      *                             x
501      *
502      *
503      * In this implementation both arguments must be positive.
504      * The integral is evaluated by either a power series or
505      * continued fraction expansion, depending on the relative
506      * values of a and x.
507      *
508      * ACCURACY (float):
509      *
510      *                      Relative error:
511      * arithmetic   domain     # trials      peak         rms
512      *    IEEE      0,30        30000       7.8e-6      5.9e-7
513      *
514      *
515      * ACCURACY (double):
516      *
517      * Tested at random a, x.
518      *                a         x                      Relative error:
519      * arithmetic   domain   domain     # trials      peak         rms
520      *    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15
521      *    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15
522      *
523      */
524     /*
525       Cephes Math Library Release 2.2: June, 1992
526       Copyright 1985, 1987, 1992 by Stephen L. Moshier
527       Direct inquiries to 30 Frost Street, Cambridge, MA 02140
528     */
529     const Scalar zero = 0;
530     const Scalar one = 1;
531     const Scalar nan = NumTraits<Scalar>::quiet_NaN();
532 
533     if ((x < zero) || (a <= zero)) {
534       // domain error
535       return nan;
536     }
537 
538     if ((x < one) || (x < a)) {
539       /* The checks above ensure that we meet the preconditions for
540        * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
541        * Calling Run() would also work, but in that case the compiler may not be
542        * able to prove that igammac_impl::Run and igamma_impl::Run are not
543        * mutually recursive.  This leads to worse code, particularly on
544        * platforms like nvptx, where recursion is allowed only begrudgingly.
545        */
546       return (one - igamma_impl<Scalar>::Impl(a, x));
547     }
548 
549     return Impl(a, x);
550   }
551 
552  private:
553   /* igamma_impl calls igammac_impl::Impl. */
554   friend struct igamma_impl<Scalar>;
555 
556   /* Actually computes igamc(a, x).
557    *
558    * Preconditions:
559    *   a > 0
560    *   x >= 1
561    *   x >= a
562    */
563   EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
564     const Scalar zero = 0;
565     const Scalar one = 1;
566     const Scalar two = 2;
567     const Scalar machep = cephes_helper<Scalar>::machep();
568     const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
569     const Scalar big = cephes_helper<Scalar>::big();
570     const Scalar biginv = cephes_helper<Scalar>::biginv();
571     const Scalar inf = NumTraits<Scalar>::infinity();
572 
573     Scalar ans, ax, c, yc, r, t, y, z;
574     Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
575 
576     if (x == inf) return zero;  // std::isinf crashes on CUDA
577 
578     /* Compute  x**a * exp(-x) / gamma(a)  */
579     ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
580     if (ax < -maxlog) {  // underflow
581       return zero;
582     }
583     ax = numext::exp(ax);
584 
585     // continued fraction
586     y = one - a;
587     z = x + y + one;
588     c = zero;
589     pkm2 = one;
590     qkm2 = x;
591     pkm1 = x + one;
592     qkm1 = z * x;
593     ans = pkm1 / qkm1;
594 
595     while (true) {
596       c += one;
597       y += one;
598       z += two;
599       yc = y * c;
600       pk = pkm1 * z - pkm2 * yc;
601       qk = qkm1 * z - qkm2 * yc;
602       if (qk != zero) {
603         r = pk / qk;
604         t = numext::abs((ans - r) / r);
605         ans = r;
606       } else {
607         t = one;
608       }
609       pkm2 = pkm1;
610       pkm1 = pk;
611       qkm2 = qkm1;
612       qkm1 = qk;
613       if (numext::abs(pk) > big) {
614         pkm2 *= biginv;
615         pkm1 *= biginv;
616         qkm2 *= biginv;
617         qkm1 *= biginv;
618       }
619       if (t <= machep) {
620         break;
621       }
622     }
623 
624     return (ans * ax);
625   }
626 };
627 
628 #endif  // EIGEN_HAS_C99_MATH
629 
630 /************************************************************************************************
631  * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
632  ************************************************************************************************/
633 
634 template <typename Scalar>
635 struct igamma_retval {
636   typedef Scalar type;
637 };
638 
639 #if !EIGEN_HAS_C99_MATH
640 
641 template <typename Scalar>
642 struct igamma_impl {
643   EIGEN_DEVICE_FUNC
644   static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
645     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
646                         THIS_TYPE_IS_NOT_SUPPORTED);
647     return Scalar(0);
648   }
649 };
650 
651 #else
652 
653 template <typename Scalar>
654 struct igamma_impl {
655   EIGEN_DEVICE_FUNC
656   static Scalar run(Scalar a, Scalar x) {
657     /*	igam()
658      *	Incomplete gamma integral
659      *
660      *
661      *
662      * SYNOPSIS:
663      *
664      * double a, x, y, igam();
665      *
666      * y = igam( a, x );
667      *
668      * DESCRIPTION:
669      *
670      * The function is defined by
671      *
672      *                           x
673      *                            -
674      *                   1       | |  -t  a-1
675      *  igam(a,x)  =   -----     |   e   t   dt.
676      *                  -      | |
677      *                 | (a)    -
678      *                           0
679      *
680      *
681      * In this implementation both arguments must be positive.
682      * The integral is evaluated by either a power series or
683      * continued fraction expansion, depending on the relative
684      * values of a and x.
685      *
686      * ACCURACY (double):
687      *
688      *                      Relative error:
689      * arithmetic   domain     # trials      peak         rms
690      *    IEEE      0,30       200000       3.6e-14     2.9e-15
691      *    IEEE      0,100      300000       9.9e-14     1.5e-14
692      *
693      *
694      * ACCURACY (float):
695      *
696      *                      Relative error:
697      * arithmetic   domain     # trials      peak         rms
698      *    IEEE      0,30        20000       7.8e-6      5.9e-7
699      *
700      */
701     /*
702       Cephes Math Library Release 2.2: June, 1992
703       Copyright 1985, 1987, 1992 by Stephen L. Moshier
704       Direct inquiries to 30 Frost Street, Cambridge, MA 02140
705     */
706 
707 
708     /* left tail of incomplete gamma function:
709      *
710      *          inf.      k
711      *   a  -x   -       x
712      *  x  e     >   ----------
713      *           -     -
714      *          k=0   | (a+k+1)
715      *
716      */
717     const Scalar zero = 0;
718     const Scalar one = 1;
719     const Scalar nan = NumTraits<Scalar>::quiet_NaN();
720 
721     if (x == zero) return zero;
722 
723     if ((x < zero) || (a <= zero)) {  // domain error
724       return nan;
725     }
726 
727     if ((x > one) && (x > a)) {
728       /* The checks above ensure that we meet the preconditions for
729        * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
730        * Calling Run() would also work, but in that case the compiler may not be
731        * able to prove that igammac_impl::Run and igamma_impl::Run are not
732        * mutually recursive.  This leads to worse code, particularly on
733        * platforms like nvptx, where recursion is allowed only begrudgingly.
734        */
735       return (one - igammac_impl<Scalar>::Impl(a, x));
736     }
737 
738     return Impl(a, x);
739   }
740 
741  private:
742   /* igammac_impl calls igamma_impl::Impl. */
743   friend struct igammac_impl<Scalar>;
744 
745   /* Actually computes igam(a, x).
746    *
747    * Preconditions:
748    *   x > 0
749    *   a > 0
750    *   !(x > 1 && x > a)
751    */
752   EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
753     const Scalar zero = 0;
754     const Scalar one = 1;
755     const Scalar machep = cephes_helper<Scalar>::machep();
756     const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
757 
758     Scalar ans, ax, c, r;
759 
760     /* Compute  x**a * exp(-x) / gamma(a)  */
761     ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
762     if (ax < -maxlog) {
763       // underflow
764       return zero;
765     }
766     ax = numext::exp(ax);
767 
768     /* power series */
769     r = a;
770     c = one;
771     ans = one;
772 
773     while (true) {
774       r += one;
775       c *= x/r;
776       ans += c;
777       if (c/ans <= machep) {
778         break;
779       }
780     }
781 
782     return (ans * ax / a);
783   }
784 };
785 
786 #endif  // EIGEN_HAS_C99_MATH
787 
788 /*****************************************************************************
789  * Implementation of Riemann zeta function of two arguments, based on Cephes *
790  *****************************************************************************/
791 
792 template <typename Scalar>
793 struct zeta_retval {
794     typedef Scalar type;
795 };
796 
797 template <typename Scalar>
798 struct zeta_impl_series {
799   EIGEN_DEVICE_FUNC
800   static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
801     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
802                         THIS_TYPE_IS_NOT_SUPPORTED);
803     return Scalar(0);
804   }
805 };
806 
807 template <>
808 struct zeta_impl_series<float> {
809   EIGEN_DEVICE_FUNC
810   static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
811     int i = 0;
812     while(i < 9)
813     {
814         i += 1;
815         a += 1.0f;
816         b = numext::pow( a, -x );
817         s += b;
818         if( numext::abs(b/s) < machep )
819             return true;
820     }
821 
822     //Return whether we are done
823     return false;
824   }
825 };
826 
827 template <>
828 struct zeta_impl_series<double> {
829   EIGEN_DEVICE_FUNC
830   static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
831     int i = 0;
832     while( (i < 9) || (a <= 9.0) )
833     {
834         i += 1;
835         a += 1.0;
836         b = numext::pow( a, -x );
837         s += b;
838         if( numext::abs(b/s) < machep )
839             return true;
840     }
841 
842     //Return whether we are done
843     return false;
844   }
845 };
846 
847 template <typename Scalar>
848 struct zeta_impl {
849     EIGEN_DEVICE_FUNC
850     static Scalar run(Scalar x, Scalar q) {
851         /*							zeta.c
852          *
853          *	Riemann zeta function of two arguments
854          *
855          *
856          *
857          * SYNOPSIS:
858          *
859          * double x, q, y, zeta();
860          *
861          * y = zeta( x, q );
862          *
863          *
864          *
865          * DESCRIPTION:
866          *
867          *
868          *
869          *                 inf.
870          *                  -        -x
871          *   zeta(x,q)  =   >   (k+q)
872          *                  -
873          *                 k=0
874          *
875          * where x > 1 and q is not a negative integer or zero.
876          * The Euler-Maclaurin summation formula is used to obtain
877          * the expansion
878          *
879          *                n
880          *                -       -x
881          * zeta(x,q)  =   >  (k+q)
882          *                -
883          *               k=1
884          *
885          *           1-x                 inf.  B   x(x+1)...(x+2j)
886          *      (n+q)           1         -     2j
887          *  +  ---------  -  -------  +   >    --------------------
888          *        x-1              x      -                   x+2j+1
889          *                   2(n+q)      j=1       (2j)! (n+q)
890          *
891          * where the B2j are Bernoulli numbers.  Note that (see zetac.c)
892          * zeta(x,1) = zetac(x) + 1.
893          *
894          *
895          *
896          * ACCURACY:
897          *
898          * Relative error for single precision:
899          * arithmetic   domain     # trials      peak         rms
900          *    IEEE      0,25        10000       6.9e-7      1.0e-7
901          *
902          * Large arguments may produce underflow in powf(), in which
903          * case the results are inaccurate.
904          *
905          * REFERENCE:
906          *
907          * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
908          * Series, and Products, p. 1073; Academic Press, 1980.
909          *
910          */
911 
912         int i;
913         Scalar p, r, a, b, k, s, t, w;
914 
915         const Scalar A[] = {
916             Scalar(12.0),
917             Scalar(-720.0),
918             Scalar(30240.0),
919             Scalar(-1209600.0),
920             Scalar(47900160.0),
921             Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
922             Scalar(7.47242496e10),
923             Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
924             Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
925             Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
926             Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
927             Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
928             };
929 
930         const Scalar maxnum = NumTraits<Scalar>::infinity();
931         const Scalar zero = 0.0, half = 0.5, one = 1.0;
932         const Scalar machep = cephes_helper<Scalar>::machep();
933         const Scalar nan = NumTraits<Scalar>::quiet_NaN();
934 
935         if( x == one )
936             return maxnum;
937 
938         if( x < one )
939         {
940             return nan;
941         }
942 
943         if( q <= zero )
944         {
945             if(q == numext::floor(q))
946             {
947                 return maxnum;
948             }
949             p = x;
950             r = numext::floor(p);
951             if (p != r)
952                 return nan;
953         }
954 
955         /* Permit negative q but continue sum until n+q > +9 .
956          * This case should be handled by a reflection formula.
957          * If q<0 and x is an integer, there is a relation to
958          * the polygamma function.
959          */
960         s = numext::pow( q, -x );
961         a = q;
962         b = zero;
963         // Run the summation in a helper function that is specific to the floating precision
964         if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
965             return s;
966         }
967 
968         w = a;
969         s += b*w/(x-one);
970         s -= half * b;
971         a = one;
972         k = zero;
973         for( i=0; i<12; i++ )
974         {
975             a *= x + k;
976             b /= w;
977             t = a*b/A[i];
978             s = s + t;
979             t = numext::abs(t/s);
980             if( t < machep ) {
981               break;
982             }
983             k += one;
984             a *= x + k;
985             b /= w;
986             k += one;
987         }
988         return s;
989   }
990 };
991 
992 /****************************************************************************
993  * Implementation of polygamma function, requires C++11/C99                 *
994  ****************************************************************************/
995 
996 template <typename Scalar>
997 struct polygamma_retval {
998     typedef Scalar type;
999 };
1000 
1001 #if !EIGEN_HAS_C99_MATH
1002 
1003 template <typename Scalar>
1004 struct polygamma_impl {
1005     EIGEN_DEVICE_FUNC
1006     static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
1007         EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
1008                             THIS_TYPE_IS_NOT_SUPPORTED);
1009         return Scalar(0);
1010     }
1011 };
1012 
1013 #else
1014 
1015 template <typename Scalar>
1016 struct polygamma_impl {
1017     EIGEN_DEVICE_FUNC
1018     static Scalar run(Scalar n, Scalar x) {
1019         Scalar zero = 0.0, one = 1.0;
1020         Scalar nplus = n + one;
1021         const Scalar nan = NumTraits<Scalar>::quiet_NaN();
1022 
1023         // Check that n is an integer
1024         if (numext::floor(n) != n) {
1025             return nan;
1026         }
1027         // Just return the digamma function for n = 1
1028         else if (n == zero) {
1029             return digamma_impl<Scalar>::run(x);
1030         }
1031         // Use the same implementation as scipy
1032         else {
1033             Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
1034             return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
1035         }
1036   }
1037 };
1038 
1039 #endif  // EIGEN_HAS_C99_MATH
1040 
1041 /************************************************************************************************
1042  * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
1043  ************************************************************************************************/
1044 
1045 template <typename Scalar>
1046 struct betainc_retval {
1047   typedef Scalar type;
1048 };
1049 
1050 #if !EIGEN_HAS_C99_MATH
1051 
1052 template <typename Scalar>
1053 struct betainc_impl {
1054   EIGEN_DEVICE_FUNC
1055   static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
1056     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
1057                         THIS_TYPE_IS_NOT_SUPPORTED);
1058     return Scalar(0);
1059   }
1060 };
1061 
1062 #else
1063 
1064 template <typename Scalar>
1065 struct betainc_impl {
1066   EIGEN_DEVICE_FUNC
1067   static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
1068     /*	betaincf.c
1069      *
1070      *	Incomplete beta integral
1071      *
1072      *
1073      * SYNOPSIS:
1074      *
1075      * float a, b, x, y, betaincf();
1076      *
1077      * y = betaincf( a, b, x );
1078      *
1079      *
1080      * DESCRIPTION:
1081      *
1082      * Returns incomplete beta integral of the arguments, evaluated
1083      * from zero to x.  The function is defined as
1084      *
1085      *                  x
1086      *     -            -
1087      *    | (a+b)      | |  a-1     b-1
1088      *  -----------    |   t   (1-t)   dt.
1089      *   -     -     | |
1090      *  | (a) | (b)   -
1091      *                 0
1092      *
1093      * The domain of definition is 0 <= x <= 1.  In this
1094      * implementation a and b are restricted to positive values.
1095      * The integral from x to 1 may be obtained by the symmetry
1096      * relation
1097      *
1098      *    1 - betainc( a, b, x )  =  betainc( b, a, 1-x ).
1099      *
1100      * The integral is evaluated by a continued fraction expansion.
1101      * If a < 1, the function calls itself recursively after a
1102      * transformation to increase a to a+1.
1103      *
1104      * ACCURACY (float):
1105      *
1106      * Tested at random points (a,b,x) with a and b in the indicated
1107      * interval and x between 0 and 1.
1108      *
1109      * arithmetic   domain     # trials      peak         rms
1110      * Relative error:
1111      *    IEEE       0,30       10000       3.7e-5      5.1e-6
1112      *    IEEE       0,100      10000       1.7e-4      2.5e-5
1113      * The useful domain for relative error is limited by underflow
1114      * of the single precision exponential function.
1115      * Absolute error:
1116      *    IEEE       0,30      100000       2.2e-5      9.6e-7
1117      *    IEEE       0,100      10000       6.5e-5      3.7e-6
1118      *
1119      * Larger errors may occur for extreme ratios of a and b.
1120      *
1121      * ACCURACY (double):
1122      * arithmetic   domain     # trials      peak         rms
1123      *    IEEE      0,5         10000       6.9e-15     4.5e-16
1124      *    IEEE      0,85       250000       2.2e-13     1.7e-14
1125      *    IEEE      0,1000      30000       5.3e-12     6.3e-13
1126      *    IEEE      0,10000    250000       9.3e-11     7.1e-12
1127      *    IEEE      0,100000    10000       8.7e-10     4.8e-11
1128      * Outputs smaller than the IEEE gradual underflow threshold
1129      * were excluded from these statistics.
1130      *
1131      * ERROR MESSAGES:
1132      *   message         condition      value returned
1133      * incbet domain      x<0, x>1          nan
1134      * incbet underflow                     nan
1135      */
1136 
1137     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
1138                         THIS_TYPE_IS_NOT_SUPPORTED);
1139     return Scalar(0);
1140   }
1141 };
1142 
1143 /* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
1144  * Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
1145  */
1146 template <typename Scalar>
1147 struct incbeta_cfe {
1148   EIGEN_DEVICE_FUNC
1149   static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
1150     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
1151                          internal::is_same<Scalar, double>::value),
1152                         THIS_TYPE_IS_NOT_SUPPORTED);
1153     const Scalar big = cephes_helper<Scalar>::big();
1154     const Scalar machep = cephes_helper<Scalar>::machep();
1155     const Scalar biginv = cephes_helper<Scalar>::biginv();
1156 
1157     const Scalar zero = 0;
1158     const Scalar one = 1;
1159     const Scalar two = 2;
1160 
1161     Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
1162     Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
1163     Scalar ans;
1164     int n;
1165 
1166     const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
1167     const Scalar thresh =
1168         (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
1169     Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;
1170 
1171     if (small_branch) {
1172       k1 = a;
1173       k2 = a + b;
1174       k3 = a;
1175       k4 = a + one;
1176       k5 = one;
1177       k6 = b - one;
1178       k7 = k4;
1179       k8 = a + two;
1180       k26update = one;
1181     } else {
1182       k1 = a;
1183       k2 = b - one;
1184       k3 = a;
1185       k4 = a + one;
1186       k5 = one;
1187       k6 = a + b;
1188       k7 = a + one;
1189       k8 = a + two;
1190       k26update = -one;
1191       x = x / (one - x);
1192     }
1193 
1194     pkm2 = zero;
1195     qkm2 = one;
1196     pkm1 = one;
1197     qkm1 = one;
1198     ans = one;
1199     n = 0;
1200 
1201     do {
1202       xk = -(x * k1 * k2) / (k3 * k4);
1203       pk = pkm1 + pkm2 * xk;
1204       qk = qkm1 + qkm2 * xk;
1205       pkm2 = pkm1;
1206       pkm1 = pk;
1207       qkm2 = qkm1;
1208       qkm1 = qk;
1209 
1210       xk = (x * k5 * k6) / (k7 * k8);
1211       pk = pkm1 + pkm2 * xk;
1212       qk = qkm1 + qkm2 * xk;
1213       pkm2 = pkm1;
1214       pkm1 = pk;
1215       qkm2 = qkm1;
1216       qkm1 = qk;
1217 
1218       if (qk != zero) {
1219         r = pk / qk;
1220         if (numext::abs(ans - r) < numext::abs(r) * thresh) {
1221           return r;
1222         }
1223         ans = r;
1224       }
1225 
1226       k1 += one;
1227       k2 += k26update;
1228       k3 += two;
1229       k4 += two;
1230       k5 += one;
1231       k6 -= k26update;
1232       k7 += two;
1233       k8 += two;
1234 
1235       if ((numext::abs(qk) + numext::abs(pk)) > big) {
1236         pkm2 *= biginv;
1237         pkm1 *= biginv;
1238         qkm2 *= biginv;
1239         qkm1 *= biginv;
1240       }
1241       if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
1242         pkm2 *= big;
1243         pkm1 *= big;
1244         qkm2 *= big;
1245         qkm1 *= big;
1246       }
1247     } while (++n < num_iters);
1248 
1249     return ans;
1250   }
1251 };
1252 
1253 /* Helper functions depending on the Scalar type */
1254 template <typename Scalar>
1255 struct betainc_helper {};
1256 
1257 template <>
1258 struct betainc_helper<float> {
1259   /* Core implementation, assumes a large (> 1.0) */
1260   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
1261                                                             float xx) {
1262     float ans, a, b, t, x, onemx;
1263     bool reversed_a_b = false;
1264 
1265     onemx = 1.0f - xx;
1266 
1267     /* see if x is greater than the mean */
1268     if (xx > (aa / (aa + bb))) {
1269       reversed_a_b = true;
1270       a = bb;
1271       b = aa;
1272       t = xx;
1273       x = onemx;
1274     } else {
1275       a = aa;
1276       b = bb;
1277       t = onemx;
1278       x = xx;
1279     }
1280 
1281     /* Choose expansion for optimal convergence */
1282     if (b > 10.0f) {
1283       if (numext::abs(b * x / a) < 0.3f) {
1284         t = betainc_helper<float>::incbps(a, b, x);
1285         if (reversed_a_b) t = 1.0f - t;
1286         return t;
1287       }
1288     }
1289 
1290     ans = x * (a + b - 2.0f) / (a - 1.0f);
1291     if (ans < 1.0f) {
1292       ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
1293       t = b * numext::log(t);
1294     } else {
1295       ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
1296       t = (b - 1.0f) * numext::log(t);
1297     }
1298 
1299     t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
1300          lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
1301     t += numext::log(ans / a);
1302     t = numext::exp(t);
1303 
1304     if (reversed_a_b) t = 1.0f - t;
1305     return t;
1306   }
1307 
1308   EIGEN_DEVICE_FUNC
1309   static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
1310     float t, u, y, s;
1311     const float machep = cephes_helper<float>::machep();
1312 
1313     y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
1314     y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
1315     y += lgamma_impl<float>::run(a + b);
1316 
1317     t = x / (1.0f - x);
1318     s = 0.0f;
1319     u = 1.0f;
1320     do {
1321       b -= 1.0f;
1322       if (b == 0.0f) {
1323         break;
1324       }
1325       a += 1.0f;
1326       u *= t * b / a;
1327       s += u;
1328     } while (numext::abs(u) > machep);
1329 
1330     return numext::exp(y) * (1.0f + s);
1331   }
1332 };
1333 
1334 template <>
1335 struct betainc_impl<float> {
1336   EIGEN_DEVICE_FUNC
1337   static float run(float a, float b, float x) {
1338     const float nan = NumTraits<float>::quiet_NaN();
1339     float ans, t;
1340 
1341     if (a <= 0.0f) return nan;
1342     if (b <= 0.0f) return nan;
1343     if ((x <= 0.0f) || (x >= 1.0f)) {
1344       if (x == 0.0f) return 0.0f;
1345       if (x == 1.0f) return 1.0f;
1346       // mtherr("betaincf", DOMAIN);
1347       return nan;
1348     }
1349 
1350     /* transformation for small aa */
1351     if (a <= 1.0f) {
1352       ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
1353       t = a * numext::log(x) + b * numext::log1p(-x) +
1354           lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
1355           lgamma_impl<float>::run(b);
1356       return (ans + numext::exp(t));
1357     } else {
1358       return betainc_helper<float>::incbsa(a, b, x);
1359     }
1360   }
1361 };
1362 
1363 template <>
1364 struct betainc_helper<double> {
1365   EIGEN_DEVICE_FUNC
1366   static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
1367     const double machep = cephes_helper<double>::machep();
1368 
1369     double s, t, u, v, n, t1, z, ai;
1370 
1371     ai = 1.0 / a;
1372     u = (1.0 - b) * x;
1373     v = u / (a + 1.0);
1374     t1 = v;
1375     t = u;
1376     n = 2.0;
1377     s = 0.0;
1378     z = machep * ai;
1379     while (numext::abs(v) > z) {
1380       u = (n - b) * x / n;
1381       t *= u;
1382       v = t / (a + n);
1383       s += v;
1384       n += 1.0;
1385     }
1386     s += t1;
1387     s += ai;
1388 
1389     u = a * numext::log(x);
1390     // TODO: gamma() is not directly implemented in Eigen.
1391     /*
1392     if ((a + b) < maxgam && numext::abs(u) < maxlog) {
1393       t = gamma(a + b) / (gamma(a) * gamma(b));
1394       s = s * t * pow(x, a);
1395     } else {
1396     */
1397     t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
1398         lgamma_impl<double>::run(b) + u + numext::log(s);
1399     return s = numext::exp(t);
1400   }
1401 };
1402 
1403 template <>
1404 struct betainc_impl<double> {
1405   EIGEN_DEVICE_FUNC
1406   static double run(double aa, double bb, double xx) {
1407     const double nan = NumTraits<double>::quiet_NaN();
1408     const double machep = cephes_helper<double>::machep();
1409     // const double maxgam = 171.624376956302725;
1410 
1411     double a, b, t, x, xc, w, y;
1412     bool reversed_a_b = false;
1413 
1414     if (aa <= 0.0 || bb <= 0.0) {
1415       return nan;  // goto domerr;
1416     }
1417 
1418     if ((xx <= 0.0) || (xx >= 1.0)) {
1419       if (xx == 0.0) return (0.0);
1420       if (xx == 1.0) return (1.0);
1421       // mtherr("incbet", DOMAIN);
1422       return nan;
1423     }
1424 
1425     if ((bb * xx) <= 1.0 && xx <= 0.95) {
1426       return betainc_helper<double>::incbps(aa, bb, xx);
1427     }
1428 
1429     w = 1.0 - xx;
1430 
1431     /* Reverse a and b if x is greater than the mean. */
1432     if (xx > (aa / (aa + bb))) {
1433       reversed_a_b = true;
1434       a = bb;
1435       b = aa;
1436       xc = xx;
1437       x = w;
1438     } else {
1439       a = aa;
1440       b = bb;
1441       xc = w;
1442       x = xx;
1443     }
1444 
1445     if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
1446       t = betainc_helper<double>::incbps(a, b, x);
1447       if (t <= machep) {
1448         t = 1.0 - machep;
1449       } else {
1450         t = 1.0 - t;
1451       }
1452       return t;
1453     }
1454 
1455     /* Choose expansion for better convergence. */
1456     y = x * (a + b - 2.0) - (a - 1.0);
1457     if (y < 0.0) {
1458       w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
1459     } else {
1460       w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
1461     }
1462 
1463     /* Multiply w by the factor
1464          a      b   _             _     _
1465         x  (1-x)   | (a+b) / ( a | (a) | (b) ) .   */
1466 
1467     y = a * numext::log(x);
1468     t = b * numext::log(xc);
1469     // TODO: gamma is not directly implemented in Eigen.
1470     /*
1471     if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
1472     {
1473       t = pow(xc, b);
1474       t *= pow(x, a);
1475       t /= a;
1476       t *= w;
1477       t *= gamma(a + b) / (gamma(a) * gamma(b));
1478     } else {
1479     */
1480     /* Resort to logarithms.  */
1481     y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
1482          lgamma_impl<double>::run(b);
1483     y += numext::log(w / a);
1484     t = numext::exp(y);
1485 
1486     /* } */
1487     // done:
1488 
1489     if (reversed_a_b) {
1490       if (t <= machep) {
1491         t = 1.0 - machep;
1492       } else {
1493         t = 1.0 - t;
1494       }
1495     }
1496     return t;
1497   }
1498 };
1499 
1500 #endif  // EIGEN_HAS_C99_MATH
1501 
1502 }  // end namespace internal
1503 
1504 namespace numext {
1505 
1506 template <typename Scalar>
1507 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
1508     lgamma(const Scalar& x) {
1509   return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
1510 }
1511 
1512 template <typename Scalar>
1513 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
1514     digamma(const Scalar& x) {
1515   return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
1516 }
1517 
1518 template <typename Scalar>
1519 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
1520 zeta(const Scalar& x, const Scalar& q) {
1521     return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
1522 }
1523 
1524 template <typename Scalar>
1525 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
1526 polygamma(const Scalar& n, const Scalar& x) {
1527     return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
1528 }
1529 
1530 template <typename Scalar>
1531 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
1532     erf(const Scalar& x) {
1533   return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
1534 }
1535 
1536 template <typename Scalar>
1537 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
1538     erfc(const Scalar& x) {
1539   return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
1540 }
1541 
1542 template <typename Scalar>
1543 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
1544     igamma(const Scalar& a, const Scalar& x) {
1545   return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
1546 }
1547 
1548 template <typename Scalar>
1549 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
1550     igammac(const Scalar& a, const Scalar& x) {
1551   return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
1552 }
1553 
1554 template <typename Scalar>
1555 EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
1556     betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
1557   return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
1558 }
1559 
1560 }  // end namespace numext
1561 
1562 
1563 }  // end namespace Eigen
1564 
1565 #endif  // EIGEN_SPECIAL_FUNCTIONS_H
1566