1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself.  This verifies that the basic constructs of
33 // Google Test work.
34 
35 #include "gtest/gtest.h"
36 
37 // Verifies that the command line flag variables can be accessed
38 // in code once <gtest/gtest.h> has been #included.
39 // Do not move it after other #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42       || testing::GTEST_FLAG(break_on_failure)
43       || testing::GTEST_FLAG(catch_exceptions)
44       || testing::GTEST_FLAG(color) != "unknown"
45       || testing::GTEST_FLAG(filter) != "unknown"
46       || testing::GTEST_FLAG(list_tests)
47       || testing::GTEST_FLAG(output) != "unknown"
48       || testing::GTEST_FLAG(print_time)
49       || testing::GTEST_FLAG(random_seed)
50       || testing::GTEST_FLAG(repeat) > 0
51       || testing::GTEST_FLAG(show_internal_stack_frames)
52       || testing::GTEST_FLAG(shuffle)
53       || testing::GTEST_FLAG(stack_trace_depth) > 0
54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
55       || testing::GTEST_FLAG(throw_on_failure);
56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57 }
58 
59 #include <limits.h>  // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63 
64 #include <map>
65 #include <vector>
66 #include <ostream>
67 
68 #include "gtest/gtest-spi.h"
69 
70 // Indicates that this translation unit is part of Google Test's
71 // implementation.  It must come before gtest-internal-inl.h is
72 // included, or there will be a compiler error.  This trick is to
73 // prevent a user from accidentally including gtest-internal-inl.h in
74 // his code.
75 #define GTEST_IMPLEMENTATION_ 1
76 #include "src/gtest-internal-inl.h"
77 #undef GTEST_IMPLEMENTATION_
78 
79 namespace testing {
80 namespace internal {
81 
82 // Provides access to otherwise private parts of the TestEventListeners class
83 // that are needed to test it.
84 class TestEventListenersAccessor {
85  public:
GetRepeater(TestEventListeners * listeners)86   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
87     return listeners->repeater();
88   }
89 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)90   static void SetDefaultResultPrinter(TestEventListeners* listeners,
91                                       TestEventListener* listener) {
92     listeners->SetDefaultResultPrinter(listener);
93   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)94   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
95                                      TestEventListener* listener) {
96     listeners->SetDefaultXmlGenerator(listener);
97   }
98 
EventForwardingEnabled(const TestEventListeners & listeners)99   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
100     return listeners.EventForwardingEnabled();
101   }
102 
SuppressEventForwarding(TestEventListeners * listeners)103   static void SuppressEventForwarding(TestEventListeners* listeners) {
104     listeners->SuppressEventForwarding();
105   }
106 };
107 
108 }  // namespace internal
109 }  // namespace testing
110 
111 using testing::AssertionFailure;
112 using testing::AssertionResult;
113 using testing::AssertionSuccess;
114 using testing::DoubleLE;
115 using testing::EmptyTestEventListener;
116 using testing::FloatLE;
117 using testing::GTEST_FLAG(also_run_disabled_tests);
118 using testing::GTEST_FLAG(break_on_failure);
119 using testing::GTEST_FLAG(catch_exceptions);
120 using testing::GTEST_FLAG(color);
121 using testing::GTEST_FLAG(death_test_use_fork);
122 using testing::GTEST_FLAG(filter);
123 using testing::GTEST_FLAG(list_tests);
124 using testing::GTEST_FLAG(output);
125 using testing::GTEST_FLAG(print_time);
126 using testing::GTEST_FLAG(random_seed);
127 using testing::GTEST_FLAG(repeat);
128 using testing::GTEST_FLAG(show_internal_stack_frames);
129 using testing::GTEST_FLAG(shuffle);
130 using testing::GTEST_FLAG(stack_trace_depth);
131 using testing::GTEST_FLAG(stream_result_to);
132 using testing::GTEST_FLAG(throw_on_failure);
133 using testing::IsNotSubstring;
134 using testing::IsSubstring;
135 using testing::Message;
136 using testing::ScopedFakeTestPartResultReporter;
137 using testing::StaticAssertTypeEq;
138 using testing::Test;
139 using testing::TestCase;
140 using testing::TestEventListeners;
141 using testing::TestPartResult;
142 using testing::TestPartResultArray;
143 using testing::TestProperty;
144 using testing::TestResult;
145 using testing::TimeInMillis;
146 using testing::UnitTest;
147 using testing::kMaxStackTraceDepth;
148 using testing::internal::AddReference;
149 using testing::internal::AlwaysFalse;
150 using testing::internal::AlwaysTrue;
151 using testing::internal::AppendUserMessage;
152 using testing::internal::ArrayAwareFind;
153 using testing::internal::ArrayEq;
154 using testing::internal::CodePointToUtf8;
155 using testing::internal::CompileAssertTypesEqual;
156 using testing::internal::CopyArray;
157 using testing::internal::CountIf;
158 using testing::internal::EqFailure;
159 using testing::internal::FloatingPoint;
160 using testing::internal::ForEach;
161 using testing::internal::FormatEpochTimeInMillisAsIso8601;
162 using testing::internal::FormatTimeInMillisAsSeconds;
163 using testing::internal::GTestFlagSaver;
164 using testing::internal::GetCurrentOsStackTraceExceptTop;
165 using testing::internal::GetElementOr;
166 using testing::internal::GetNextRandomSeed;
167 using testing::internal::GetRandomSeedFromFlag;
168 using testing::internal::GetTestTypeId;
169 using testing::internal::GetTimeInMillis;
170 using testing::internal::GetTypeId;
171 using testing::internal::GetUnitTestImpl;
172 using testing::internal::ImplicitlyConvertible;
173 using testing::internal::Int32;
174 using testing::internal::Int32FromEnvOrDie;
175 using testing::internal::IsAProtocolMessage;
176 using testing::internal::IsContainer;
177 using testing::internal::IsContainerTest;
178 using testing::internal::IsNotContainer;
179 using testing::internal::NativeArray;
180 using testing::internal::ParseInt32Flag;
181 using testing::internal::RemoveConst;
182 using testing::internal::RemoveReference;
183 using testing::internal::ShouldRunTestOnShard;
184 using testing::internal::ShouldShard;
185 using testing::internal::ShouldUseColor;
186 using testing::internal::Shuffle;
187 using testing::internal::ShuffleRange;
188 using testing::internal::SkipPrefix;
189 using testing::internal::StreamableToString;
190 using testing::internal::String;
191 using testing::internal::TestEventListenersAccessor;
192 using testing::internal::TestResultAccessor;
193 using testing::internal::UInt32;
194 using testing::internal::WideStringToUtf8;
195 using testing::internal::kCopy;
196 using testing::internal::kMaxRandomSeed;
197 using testing::internal::kReference;
198 using testing::internal::kTestTypeIdInGoogleTest;
199 using testing::internal::scoped_ptr;
200 
201 #if GTEST_HAS_STREAM_REDIRECTION
202 using testing::internal::CaptureStdout;
203 using testing::internal::GetCapturedStdout;
204 #endif
205 
206 #if GTEST_IS_THREADSAFE
207 using testing::internal::ThreadWithParam;
208 #endif
209 
210 class TestingVector : public std::vector<int> {
211 };
212 
operator <<(::std::ostream & os,const TestingVector & vector)213 ::std::ostream& operator<<(::std::ostream& os,
214                            const TestingVector& vector) {
215   os << "{ ";
216   for (size_t i = 0; i < vector.size(); i++) {
217     os << vector[i] << " ";
218   }
219   os << "}";
220   return os;
221 }
222 
223 // This line tests that we can define tests in an unnamed namespace.
224 namespace {
225 
TEST(GetRandomSeedFromFlagTest,HandlesZero)226 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
227   const int seed = GetRandomSeedFromFlag(0);
228   EXPECT_LE(1, seed);
229   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
230 }
231 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)232 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
233   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
234   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
235   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
236   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
237             GetRandomSeedFromFlag(kMaxRandomSeed));
238 }
239 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)240 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
241   const int seed1 = GetRandomSeedFromFlag(-1);
242   EXPECT_LE(1, seed1);
243   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
244 
245   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
246   EXPECT_LE(1, seed2);
247   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
248 }
249 
TEST(GetNextRandomSeedTest,WorksForValidInput)250 TEST(GetNextRandomSeedTest, WorksForValidInput) {
251   EXPECT_EQ(2, GetNextRandomSeed(1));
252   EXPECT_EQ(3, GetNextRandomSeed(2));
253   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
254             GetNextRandomSeed(kMaxRandomSeed - 1));
255   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
256 
257   // We deliberately don't test GetNextRandomSeed() with invalid
258   // inputs, as that requires death tests, which are expensive.  This
259   // is fine as GetNextRandomSeed() is internal and has a
260   // straightforward definition.
261 }
262 
ClearCurrentTestPartResults()263 static void ClearCurrentTestPartResults() {
264   TestResultAccessor::ClearTestPartResults(
265       GetUnitTestImpl()->current_test_result());
266 }
267 
268 // Tests GetTypeId.
269 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)270 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
271   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
272   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
273 }
274 
275 class SubClassOfTest : public Test {};
276 class AnotherSubClassOfTest : public Test {};
277 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)278 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
279   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
280   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
281   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
282   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
283   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
284   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
285 }
286 
287 // Verifies that GetTestTypeId() returns the same value, no matter it
288 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)289 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
290   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
291 }
292 
293 // Tests FormatTimeInMillisAsSeconds().
294 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)295 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
296   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
297 }
298 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)299 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
300   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
301   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
302   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
303   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
304   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
305 }
306 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)307 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
308   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
309   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
310   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
311   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
312   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
313 }
314 
315 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
316 // for particular dates below was verified in Python using
317 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
318 
319 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
320 // have to set up a particular timezone to obtain predictable results.
321 class FormatEpochTimeInMillisAsIso8601Test : public Test {
322  public:
323   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
324   // 32 bits, even when 64-bit integer types are available.  We have to
325   // force the constants to have a 64-bit type here.
326   static const TimeInMillis kMillisPerSec = 1000;
327 
328  private:
SetUp()329   virtual void SetUp() {
330     saved_tz_ = NULL;
331 #if _MSC_VER
332 # pragma warning(push)          // Saves the current warning state.
333 # pragma warning(disable:4996)  // Temporarily disables warning 4996
334                                 // (function or variable may be unsafe
335                                 // for getenv, function is deprecated for
336                                 // strdup).
337     if (getenv("TZ"))
338       saved_tz_ = strdup(getenv("TZ"));
339 # pragma warning(pop)           // Restores the warning state again.
340 #else
341     if (getenv("TZ"))
342       saved_tz_ = strdup(getenv("TZ"));
343 #endif
344 
345     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
346     // cannot use the local time zone because the function's output depends
347     // on the time zone.
348     SetTimeZone("UTC+00");
349   }
350 
TearDown()351   virtual void TearDown() {
352     SetTimeZone(saved_tz_);
353     free(const_cast<char*>(saved_tz_));
354     saved_tz_ = NULL;
355   }
356 
SetTimeZone(const char * time_zone)357   static void SetTimeZone(const char* time_zone) {
358     // tzset() distinguishes between the TZ variable being present and empty
359     // and not being present, so we have to consider the case of time_zone
360     // being NULL.
361 #if _MSC_VER
362     // ...Unless it's MSVC, whose standard library's _putenv doesn't
363     // distinguish between an empty and a missing variable.
364     const std::string env_var =
365         std::string("TZ=") + (time_zone ? time_zone : "");
366     _putenv(env_var.c_str());
367 # pragma warning(push)          // Saves the current warning state.
368 # pragma warning(disable:4996)  // Temporarily disables warning 4996
369                                 // (function is deprecated).
370     tzset();
371 # pragma warning(pop)           // Restores the warning state again.
372 #else
373     if (time_zone) {
374       setenv(("TZ"), time_zone, 1);
375     } else {
376       unsetenv("TZ");
377     }
378     tzset();
379 #endif
380   }
381 
382   const char* saved_tz_;
383 };
384 
385 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
386 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)387 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
388   EXPECT_EQ("2011-10-31T18:52:42",
389             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
390 }
391 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,MillisecondsDoNotAffectResult)392 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
393   EXPECT_EQ(
394       "2011-10-31T18:52:42",
395       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
396 }
397 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)398 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
399   EXPECT_EQ("2011-09-03T05:07:02",
400             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
401 }
402 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)403 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
404   EXPECT_EQ("2011-09-28T17:08:22",
405             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
406 }
407 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)408 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
409   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
410 }
411 
412 #if GTEST_CAN_COMPARE_NULL
413 
414 # ifdef __BORLANDC__
415 // Silences warnings: "Condition is always true", "Unreachable code"
416 #  pragma option push -w-ccc -w-rch
417 # endif
418 
419 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
420 // pointer literal.
TEST(NullLiteralTest,IsTrueForNullLiterals)421 TEST(NullLiteralTest, IsTrueForNullLiterals) {
422   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
423   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
424   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
425   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
426 
427 # ifndef __BORLANDC__
428 
429   // Some compilers may fail to detect some null pointer literals;
430   // as long as users of the framework don't use such literals, this
431   // is harmless.
432   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
433 
434 # endif
435 }
436 
437 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
438 // pointer literal.
TEST(NullLiteralTest,IsFalseForNonNullLiterals)439 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
440   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
441   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
442   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
443   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
444 }
445 
446 # ifdef __BORLANDC__
447 // Restores warnings after previous "#pragma option push" suppressed them.
448 #  pragma option pop
449 # endif
450 
451 #endif  // GTEST_CAN_COMPARE_NULL
452 //
453 // Tests CodePointToUtf8().
454 
455 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)456 TEST(CodePointToUtf8Test, CanEncodeNul) {
457   char buffer[32];
458   EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
459 }
460 
461 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)462 TEST(CodePointToUtf8Test, CanEncodeAscii) {
463   char buffer[32];
464   EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
465   EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
466   EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
467   EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
468 }
469 
470 // Tests that Unicode code-points that have 8 to 11 bits are encoded
471 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)472 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
473   char buffer[32];
474   // 000 1101 0011 => 110-00011 10-010011
475   EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
476 
477   // 101 0111 0110 => 110-10101 10-110110
478   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
479   // in wide strings and wide chars. In order to accomodate them, we have to
480   // introduce such character constants as integers.
481   EXPECT_STREQ("\xD5\xB6",
482                CodePointToUtf8(static_cast<wchar_t>(0x576), buffer));
483 }
484 
485 // Tests that Unicode code-points that have 12 to 16 bits are encoded
486 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)487 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
488   char buffer[32];
489   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
490   EXPECT_STREQ("\xE0\xA3\x93",
491                CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer));
492 
493   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
494   EXPECT_STREQ("\xEC\x9D\x8D",
495                CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer));
496 }
497 
498 #if !GTEST_WIDE_STRING_USES_UTF16_
499 // Tests in this group require a wchar_t to hold > 16 bits, and thus
500 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
501 // 16-bit wide. This code may not compile on those systems.
502 
503 // Tests that Unicode code-points that have 17 to 21 bits are encoded
504 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)505 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
506   char buffer[32];
507   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
508   EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
509 
510   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
511   EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
512 
513   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
514   EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
515 }
516 
517 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)518 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
519   char buffer[32];
520   EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
521                CodePointToUtf8(L'\x1234ABCD', buffer));
522 }
523 
524 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
525 
526 // Tests WideStringToUtf8().
527 
528 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)529 TEST(WideStringToUtf8Test, CanEncodeNul) {
530   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
531   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
532 }
533 
534 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)535 TEST(WideStringToUtf8Test, CanEncodeAscii) {
536   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
537   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
538   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
539   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
540 }
541 
542 // Tests that Unicode code-points that have 8 to 11 bits are encoded
543 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)544 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
545   // 000 1101 0011 => 110-00011 10-010011
546   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
547   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
548 
549   // 101 0111 0110 => 110-10101 10-110110
550   const wchar_t s[] = { 0x576, '\0' };
551   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
552   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
553 }
554 
555 // Tests that Unicode code-points that have 12 to 16 bits are encoded
556 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)557 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
558   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
559   const wchar_t s1[] = { 0x8D3, '\0' };
560   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
561   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
562 
563   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
564   const wchar_t s2[] = { 0xC74D, '\0' };
565   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
566   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
567 }
568 
569 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)570 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
571   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
572 }
573 
574 // Tests that the conversion stops when the function reaches the limit
575 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)576 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
577   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
578 }
579 
580 #if !GTEST_WIDE_STRING_USES_UTF16_
581 // Tests that Unicode code-points that have 17 to 21 bits are encoded
582 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
583 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)584 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
585   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
586   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
587   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
588 
589   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
590   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
591   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
592 }
593 
594 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)595 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
596   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
597                WideStringToUtf8(L"\xABCDFF", -1).c_str());
598 }
599 #else  // !GTEST_WIDE_STRING_USES_UTF16_
600 // Tests that surrogate pairs are encoded correctly on the systems using
601 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)602 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
603   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
604   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
605 }
606 
607 // Tests that encoding an invalid UTF-16 surrogate pair
608 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)609 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
610   // Leading surrogate is at the end of the string.
611   const wchar_t s1[] = { 0xD800, '\0' };
612   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
613   // Leading surrogate is not followed by the trailing surrogate.
614   const wchar_t s2[] = { 0xD800, 'M', '\0' };
615   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
616   // Trailing surrogate appearas without a leading surrogate.
617   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
618   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
619 }
620 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
621 
622 // Tests that codepoint concatenation works correctly.
623 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)624 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
625   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
626   EXPECT_STREQ(
627       "\xF4\x88\x98\xB4"
628           "\xEC\x9D\x8D"
629           "\n"
630           "\xD5\xB6"
631           "\xE0\xA3\x93"
632           "\xF4\x88\x98\xB4",
633       WideStringToUtf8(s, -1).c_str());
634 }
635 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)636 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
637   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
638   EXPECT_STREQ(
639       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
640       WideStringToUtf8(s, -1).c_str());
641 }
642 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
643 
644 // Tests the Random class.
645 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)646 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
647   testing::internal::Random random(42);
648   EXPECT_DEATH_IF_SUPPORTED(
649       random.Generate(0),
650       "Cannot generate a number in the range \\[0, 0\\)");
651   EXPECT_DEATH_IF_SUPPORTED(
652       random.Generate(testing::internal::Random::kMaxRange + 1),
653       "Generation of a number in \\[0, 2147483649\\) was requested, "
654       "but this can only generate numbers in \\[0, 2147483648\\)");
655 }
656 
TEST(RandomTest,GeneratesNumbersWithinRange)657 TEST(RandomTest, GeneratesNumbersWithinRange) {
658   const UInt32 kRange = 10000;
659   testing::internal::Random random(12345);
660   for (int i = 0; i < 10; i++) {
661     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
662   }
663 
664   testing::internal::Random random2(testing::internal::Random::kMaxRange);
665   for (int i = 0; i < 10; i++) {
666     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
667   }
668 }
669 
TEST(RandomTest,RepeatsWhenReseeded)670 TEST(RandomTest, RepeatsWhenReseeded) {
671   const int kSeed = 123;
672   const int kArraySize = 10;
673   const UInt32 kRange = 10000;
674   UInt32 values[kArraySize];
675 
676   testing::internal::Random random(kSeed);
677   for (int i = 0; i < kArraySize; i++) {
678     values[i] = random.Generate(kRange);
679   }
680 
681   random.Reseed(kSeed);
682   for (int i = 0; i < kArraySize; i++) {
683     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
684   }
685 }
686 
687 // Tests STL container utilities.
688 
689 // Tests CountIf().
690 
IsPositive(int n)691 static bool IsPositive(int n) { return n > 0; }
692 
TEST(ContainerUtilityTest,CountIf)693 TEST(ContainerUtilityTest, CountIf) {
694   std::vector<int> v;
695   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
696 
697   v.push_back(-1);
698   v.push_back(0);
699   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
700 
701   v.push_back(2);
702   v.push_back(-10);
703   v.push_back(10);
704   EXPECT_EQ(2, CountIf(v, IsPositive));
705 }
706 
707 // Tests ForEach().
708 
709 static int g_sum = 0;
Accumulate(int n)710 static void Accumulate(int n) { g_sum += n; }
711 
TEST(ContainerUtilityTest,ForEach)712 TEST(ContainerUtilityTest, ForEach) {
713   std::vector<int> v;
714   g_sum = 0;
715   ForEach(v, Accumulate);
716   EXPECT_EQ(0, g_sum);  // Works for an empty container;
717 
718   g_sum = 0;
719   v.push_back(1);
720   ForEach(v, Accumulate);
721   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
722 
723   g_sum = 0;
724   v.push_back(20);
725   v.push_back(300);
726   ForEach(v, Accumulate);
727   EXPECT_EQ(321, g_sum);
728 }
729 
730 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)731 TEST(ContainerUtilityTest, GetElementOr) {
732   std::vector<char> a;
733   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
734 
735   a.push_back('a');
736   a.push_back('b');
737   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
738   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
739   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
740   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
741 }
742 
TEST(ContainerUtilityDeathTest,ShuffleRange)743 TEST(ContainerUtilityDeathTest, ShuffleRange) {
744   std::vector<int> a;
745   a.push_back(0);
746   a.push_back(1);
747   a.push_back(2);
748   testing::internal::Random random(1);
749 
750   EXPECT_DEATH_IF_SUPPORTED(
751       ShuffleRange(&random, -1, 1, &a),
752       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
753   EXPECT_DEATH_IF_SUPPORTED(
754       ShuffleRange(&random, 4, 4, &a),
755       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
756   EXPECT_DEATH_IF_SUPPORTED(
757       ShuffleRange(&random, 3, 2, &a),
758       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
759   EXPECT_DEATH_IF_SUPPORTED(
760       ShuffleRange(&random, 3, 4, &a),
761       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
762 }
763 
764 class VectorShuffleTest : public Test {
765  protected:
766   static const int kVectorSize = 20;
767 
VectorShuffleTest()768   VectorShuffleTest() : random_(1) {
769     for (int i = 0; i < kVectorSize; i++) {
770       vector_.push_back(i);
771     }
772   }
773 
VectorIsCorrupt(const TestingVector & vector)774   static bool VectorIsCorrupt(const TestingVector& vector) {
775     if (kVectorSize != static_cast<int>(vector.size())) {
776       return true;
777     }
778 
779     bool found_in_vector[kVectorSize] = { false };
780     for (size_t i = 0; i < vector.size(); i++) {
781       const int e = vector[i];
782       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
783         return true;
784       }
785       found_in_vector[e] = true;
786     }
787 
788     // Vector size is correct, elements' range is correct, no
789     // duplicate elements.  Therefore no corruption has occurred.
790     return false;
791   }
792 
VectorIsNotCorrupt(const TestingVector & vector)793   static bool VectorIsNotCorrupt(const TestingVector& vector) {
794     return !VectorIsCorrupt(vector);
795   }
796 
RangeIsShuffled(const TestingVector & vector,int begin,int end)797   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
798     for (int i = begin; i < end; i++) {
799       if (i != vector[i]) {
800         return true;
801       }
802     }
803     return false;
804   }
805 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)806   static bool RangeIsUnshuffled(
807       const TestingVector& vector, int begin, int end) {
808     return !RangeIsShuffled(vector, begin, end);
809   }
810 
VectorIsShuffled(const TestingVector & vector)811   static bool VectorIsShuffled(const TestingVector& vector) {
812     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
813   }
814 
VectorIsUnshuffled(const TestingVector & vector)815   static bool VectorIsUnshuffled(const TestingVector& vector) {
816     return !VectorIsShuffled(vector);
817   }
818 
819   testing::internal::Random random_;
820   TestingVector vector_;
821 };  // class VectorShuffleTest
822 
823 const int VectorShuffleTest::kVectorSize;
824 
TEST_F(VectorShuffleTest,HandlesEmptyRange)825 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
826   // Tests an empty range at the beginning...
827   ShuffleRange(&random_, 0, 0, &vector_);
828   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
829   ASSERT_PRED1(VectorIsUnshuffled, vector_);
830 
831   // ...in the middle...
832   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
833   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
834   ASSERT_PRED1(VectorIsUnshuffled, vector_);
835 
836   // ...at the end...
837   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
838   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
839   ASSERT_PRED1(VectorIsUnshuffled, vector_);
840 
841   // ...and past the end.
842   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
843   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
844   ASSERT_PRED1(VectorIsUnshuffled, vector_);
845 }
846 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)847 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
848   // Tests a size one range at the beginning...
849   ShuffleRange(&random_, 0, 1, &vector_);
850   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
851   ASSERT_PRED1(VectorIsUnshuffled, vector_);
852 
853   // ...in the middle...
854   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
855   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
856   ASSERT_PRED1(VectorIsUnshuffled, vector_);
857 
858   // ...and at the end.
859   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
860   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
861   ASSERT_PRED1(VectorIsUnshuffled, vector_);
862 }
863 
864 // Because we use our own random number generator and a fixed seed,
865 // we can guarantee that the following "random" tests will succeed.
866 
TEST_F(VectorShuffleTest,ShufflesEntireVector)867 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
868   Shuffle(&random_, &vector_);
869   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
870   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
871 
872   // Tests the first and last elements in particular to ensure that
873   // there are no off-by-one problems in our shuffle algorithm.
874   EXPECT_NE(0, vector_[0]);
875   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
876 }
877 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)878 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
879   const int kRangeSize = kVectorSize/2;
880 
881   ShuffleRange(&random_, 0, kRangeSize, &vector_);
882 
883   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
884   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
885   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
886 }
887 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)888 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
889   const int kRangeSize = kVectorSize / 2;
890   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
891 
892   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
893   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
894   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
895 }
896 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)897 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
898   int kRangeSize = kVectorSize/3;
899   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
900 
901   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
902   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
903   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
904   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
905 }
906 
TEST_F(VectorShuffleTest,ShufflesRepeatably)907 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
908   TestingVector vector2;
909   for (int i = 0; i < kVectorSize; i++) {
910     vector2.push_back(i);
911   }
912 
913   random_.Reseed(1234);
914   Shuffle(&random_, &vector_);
915   random_.Reseed(1234);
916   Shuffle(&random_, &vector2);
917 
918   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
919   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
920 
921   for (int i = 0; i < kVectorSize; i++) {
922     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
923   }
924 }
925 
926 // Tests the size of the AssertHelper class.
927 
TEST(AssertHelperTest,AssertHelperIsSmall)928 TEST(AssertHelperTest, AssertHelperIsSmall) {
929   // To avoid breaking clients that use lots of assertions in one
930   // function, we cannot grow the size of AssertHelper.
931   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
932 }
933 
934 // Tests the String class.
935 
936 // Tests String's constructors.
TEST(StringTest,Constructors)937 TEST(StringTest, Constructors) {
938   // Default ctor.
939   String s1;
940   // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
941   // pointers with NULL isn't supported on all platforms.
942   EXPECT_EQ(0U, s1.length());
943   EXPECT_TRUE(NULL == s1.c_str());
944 
945   // Implicitly constructs from a C-string.
946   String s2 = "Hi";
947   EXPECT_EQ(2U, s2.length());
948   EXPECT_STREQ("Hi", s2.c_str());
949 
950   // Constructs from a C-string and a length.
951   String s3("hello", 3);
952   EXPECT_EQ(3U, s3.length());
953   EXPECT_STREQ("hel", s3.c_str());
954 
955   // The empty String should be created when String is constructed with
956   // a NULL pointer and length 0.
957   EXPECT_EQ(0U, String(NULL, 0).length());
958   EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
959 
960   // Constructs a String that contains '\0'.
961   String s4("a\0bcd", 4);
962   EXPECT_EQ(4U, s4.length());
963   EXPECT_EQ('a', s4.c_str()[0]);
964   EXPECT_EQ('\0', s4.c_str()[1]);
965   EXPECT_EQ('b', s4.c_str()[2]);
966   EXPECT_EQ('c', s4.c_str()[3]);
967 
968   // Copy ctor where the source is NULL.
969   const String null_str;
970   String s5 = null_str;
971   EXPECT_TRUE(s5.c_str() == NULL);
972 
973   // Copy ctor where the source isn't NULL.
974   String s6 = s3;
975   EXPECT_EQ(3U, s6.length());
976   EXPECT_STREQ("hel", s6.c_str());
977 
978   // Copy ctor where the source contains '\0'.
979   String s7 = s4;
980   EXPECT_EQ(4U, s7.length());
981   EXPECT_EQ('a', s7.c_str()[0]);
982   EXPECT_EQ('\0', s7.c_str()[1]);
983   EXPECT_EQ('b', s7.c_str()[2]);
984   EXPECT_EQ('c', s7.c_str()[3]);
985 }
986 
TEST(StringTest,ConvertsFromStdString)987 TEST(StringTest, ConvertsFromStdString) {
988   // An empty std::string.
989   const std::string src1("");
990   const String dest1 = src1;
991   EXPECT_EQ(0U, dest1.length());
992   EXPECT_STREQ("", dest1.c_str());
993 
994   // A normal std::string.
995   const std::string src2("Hi");
996   const String dest2 = src2;
997   EXPECT_EQ(2U, dest2.length());
998   EXPECT_STREQ("Hi", dest2.c_str());
999 
1000   // An std::string with an embedded NUL character.
1001   const char src3[] = "a\0b";
1002   const String dest3 = std::string(src3, sizeof(src3));
1003   EXPECT_EQ(sizeof(src3), dest3.length());
1004   EXPECT_EQ('a', dest3.c_str()[0]);
1005   EXPECT_EQ('\0', dest3.c_str()[1]);
1006   EXPECT_EQ('b', dest3.c_str()[2]);
1007 }
1008 
TEST(StringTest,ConvertsToStdString)1009 TEST(StringTest, ConvertsToStdString) {
1010   // An empty String.
1011   const String src1("");
1012   const std::string dest1 = src1;
1013   EXPECT_EQ("", dest1);
1014 
1015   // A normal String.
1016   const String src2("Hi");
1017   const std::string dest2 = src2;
1018   EXPECT_EQ("Hi", dest2);
1019 
1020   // A String containing a '\0'.
1021   const String src3("x\0y", 3);
1022   const std::string dest3 = src3;
1023   EXPECT_EQ(std::string("x\0y", 3), dest3);
1024 }
1025 
1026 #if GTEST_HAS_GLOBAL_STRING
1027 
TEST(StringTest,ConvertsFromGlobalString)1028 TEST(StringTest, ConvertsFromGlobalString) {
1029   // An empty ::string.
1030   const ::string src1("");
1031   const String dest1 = src1;
1032   EXPECT_EQ(0U, dest1.length());
1033   EXPECT_STREQ("", dest1.c_str());
1034 
1035   // A normal ::string.
1036   const ::string src2("Hi");
1037   const String dest2 = src2;
1038   EXPECT_EQ(2U, dest2.length());
1039   EXPECT_STREQ("Hi", dest2.c_str());
1040 
1041   // An ::string with an embedded NUL character.
1042   const char src3[] = "x\0y";
1043   const String dest3 = ::string(src3, sizeof(src3));
1044   EXPECT_EQ(sizeof(src3), dest3.length());
1045   EXPECT_EQ('x', dest3.c_str()[0]);
1046   EXPECT_EQ('\0', dest3.c_str()[1]);
1047   EXPECT_EQ('y', dest3.c_str()[2]);
1048 }
1049 
TEST(StringTest,ConvertsToGlobalString)1050 TEST(StringTest, ConvertsToGlobalString) {
1051   // An empty String.
1052   const String src1("");
1053   const ::string dest1 = src1;
1054   EXPECT_EQ("", dest1);
1055 
1056   // A normal String.
1057   const String src2("Hi");
1058   const ::string dest2 = src2;
1059   EXPECT_EQ("Hi", dest2);
1060 
1061   const String src3("x\0y", 3);
1062   const ::string dest3 = src3;
1063   EXPECT_EQ(::string("x\0y", 3), dest3);
1064 }
1065 
1066 #endif  // GTEST_HAS_GLOBAL_STRING
1067 
1068 // Tests String::ShowCStringQuoted().
TEST(StringTest,ShowCStringQuoted)1069 TEST(StringTest, ShowCStringQuoted) {
1070   EXPECT_STREQ("(null)",
1071                String::ShowCStringQuoted(NULL).c_str());
1072   EXPECT_STREQ("\"\"",
1073                String::ShowCStringQuoted("").c_str());
1074   EXPECT_STREQ("\"foo\"",
1075                String::ShowCStringQuoted("foo").c_str());
1076 }
1077 
1078 // Tests String::empty().
TEST(StringTest,Empty)1079 TEST(StringTest, Empty) {
1080   EXPECT_TRUE(String("").empty());
1081   EXPECT_FALSE(String().empty());
1082   EXPECT_FALSE(String(NULL).empty());
1083   EXPECT_FALSE(String("a").empty());
1084   EXPECT_FALSE(String("\0", 1).empty());
1085 }
1086 
1087 // Tests String::Compare().
TEST(StringTest,Compare)1088 TEST(StringTest, Compare) {
1089   // NULL vs NULL.
1090   EXPECT_EQ(0, String().Compare(String()));
1091 
1092   // NULL vs non-NULL.
1093   EXPECT_EQ(-1, String().Compare(String("")));
1094 
1095   // Non-NULL vs NULL.
1096   EXPECT_EQ(1, String("").Compare(String()));
1097 
1098   // The following covers non-NULL vs non-NULL.
1099 
1100   // "" vs "".
1101   EXPECT_EQ(0, String("").Compare(String("")));
1102 
1103   // "" vs non-"".
1104   EXPECT_EQ(-1, String("").Compare(String("\0", 1)));
1105   EXPECT_EQ(-1, String("").Compare(" "));
1106 
1107   // Non-"" vs "".
1108   EXPECT_EQ(1, String("a").Compare(String("")));
1109 
1110   // The following covers non-"" vs non-"".
1111 
1112   // Same length and equal.
1113   EXPECT_EQ(0, String("a").Compare(String("a")));
1114 
1115   // Same length and different.
1116   EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3)));
1117   EXPECT_EQ(1, String("b").Compare(String("a")));
1118 
1119   // Different lengths.
1120   EXPECT_EQ(-1, String("a").Compare(String("ab")));
1121   EXPECT_EQ(-1, String("a").Compare(String("a\0", 2)));
1122   EXPECT_EQ(1, String("abc").Compare(String("aacd")));
1123 }
1124 
1125 // Tests String::operator==().
TEST(StringTest,Equals)1126 TEST(StringTest, Equals) {
1127   const String null(NULL);
1128   EXPECT_TRUE(null == NULL);  // NOLINT
1129   EXPECT_FALSE(null == "");  // NOLINT
1130   EXPECT_FALSE(null == "bar");  // NOLINT
1131 
1132   const String empty("");
1133   EXPECT_FALSE(empty == NULL);  // NOLINT
1134   EXPECT_TRUE(empty == "");  // NOLINT
1135   EXPECT_FALSE(empty == "bar");  // NOLINT
1136 
1137   const String foo("foo");
1138   EXPECT_FALSE(foo == NULL);  // NOLINT
1139   EXPECT_FALSE(foo == "");  // NOLINT
1140   EXPECT_FALSE(foo == "bar");  // NOLINT
1141   EXPECT_TRUE(foo == "foo");  // NOLINT
1142 
1143   const String bar("x\0y", 3);
1144   EXPECT_NE(bar, "x");
1145 }
1146 
1147 // Tests String::operator!=().
TEST(StringTest,NotEquals)1148 TEST(StringTest, NotEquals) {
1149   const String null(NULL);
1150   EXPECT_FALSE(null != NULL);  // NOLINT
1151   EXPECT_TRUE(null != "");  // NOLINT
1152   EXPECT_TRUE(null != "bar");  // NOLINT
1153 
1154   const String empty("");
1155   EXPECT_TRUE(empty != NULL);  // NOLINT
1156   EXPECT_FALSE(empty != "");  // NOLINT
1157   EXPECT_TRUE(empty != "bar");  // NOLINT
1158 
1159   const String foo("foo");
1160   EXPECT_TRUE(foo != NULL);  // NOLINT
1161   EXPECT_TRUE(foo != "");  // NOLINT
1162   EXPECT_TRUE(foo != "bar");  // NOLINT
1163   EXPECT_FALSE(foo != "foo");  // NOLINT
1164 
1165   const String bar("x\0y", 3);
1166   EXPECT_NE(bar, "x");
1167 }
1168 
1169 // Tests String::length().
TEST(StringTest,Length)1170 TEST(StringTest, Length) {
1171   EXPECT_EQ(0U, String().length());
1172   EXPECT_EQ(0U, String("").length());
1173   EXPECT_EQ(2U, String("ab").length());
1174   EXPECT_EQ(3U, String("a\0b", 3).length());
1175 }
1176 
1177 // Tests String::EndsWith().
TEST(StringTest,EndsWith)1178 TEST(StringTest, EndsWith) {
1179   EXPECT_TRUE(String("foobar").EndsWith("bar"));
1180   EXPECT_TRUE(String("foobar").EndsWith(""));
1181   EXPECT_TRUE(String("").EndsWith(""));
1182 
1183   EXPECT_FALSE(String("foobar").EndsWith("foo"));
1184   EXPECT_FALSE(String("").EndsWith("foo"));
1185 }
1186 
1187 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1188 TEST(StringTest, EndsWithCaseInsensitive) {
1189   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
1190   EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
1191   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
1192   EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
1193 
1194   EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
1195   EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
1196   EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
1197 }
1198 
1199 // C++Builder's preprocessor is buggy; it fails to expand macros that
1200 // appear in macro parameters after wide char literals.  Provide an alias
1201 // for NULL as a workaround.
1202 static const wchar_t* const kNull = NULL;
1203 
1204 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1205 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1206   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1207   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1208   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1209   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1210   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1211   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1212   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1213   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1214 }
1215 
1216 // Tests that NULL can be assigned to a String.
TEST(StringTest,CanBeAssignedNULL)1217 TEST(StringTest, CanBeAssignedNULL) {
1218   const String src(NULL);
1219   String dest;
1220 
1221   dest = src;
1222   EXPECT_STREQ(NULL, dest.c_str());
1223 }
1224 
1225 // Tests that the empty string "" can be assigned to a String.
TEST(StringTest,CanBeAssignedEmpty)1226 TEST(StringTest, CanBeAssignedEmpty) {
1227   const String src("");
1228   String dest;
1229 
1230   dest = src;
1231   EXPECT_STREQ("", dest.c_str());
1232 }
1233 
1234 // Tests that a non-empty string can be assigned to a String.
TEST(StringTest,CanBeAssignedNonEmpty)1235 TEST(StringTest, CanBeAssignedNonEmpty) {
1236   const String src("hello");
1237   String dest;
1238   dest = src;
1239   EXPECT_EQ(5U, dest.length());
1240   EXPECT_STREQ("hello", dest.c_str());
1241 
1242   const String src2("x\0y", 3);
1243   String dest2;
1244   dest2 = src2;
1245   EXPECT_EQ(3U, dest2.length());
1246   EXPECT_EQ('x', dest2.c_str()[0]);
1247   EXPECT_EQ('\0', dest2.c_str()[1]);
1248   EXPECT_EQ('y', dest2.c_str()[2]);
1249 }
1250 
1251 // Tests that a String can be assigned to itself.
TEST(StringTest,CanBeAssignedSelf)1252 TEST(StringTest, CanBeAssignedSelf) {
1253   String dest("hello");
1254 
1255   // Use explicit function call notation here to suppress self-assign warning.
1256   dest.operator=(dest);
1257   EXPECT_STREQ("hello", dest.c_str());
1258 }
1259 
1260 // Sun Studio < 12 incorrectly rejects this code due to an overloading
1261 // ambiguity.
1262 #if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
1263 // Tests streaming a String.
TEST(StringTest,Streams)1264 TEST(StringTest, Streams) {
1265   EXPECT_EQ(StreamableToString(String()), "(null)");
1266   EXPECT_EQ(StreamableToString(String("")), "");
1267   EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b");
1268 }
1269 #endif
1270 
1271 // Tests that String::Format() works.
TEST(StringTest,FormatWorks)1272 TEST(StringTest, FormatWorks) {
1273   // Normal case: the format spec is valid, the arguments match the
1274   // spec, and the result is < 4095 characters.
1275   EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
1276 
1277   // Edge case: the result is 4095 characters.
1278   char buffer[4096];
1279   const size_t kSize = sizeof(buffer);
1280   memset(buffer, 'a', kSize - 1);
1281   buffer[kSize - 1] = '\0';
1282   EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
1283 
1284   // The result needs to be 4096 characters, exceeding Format()'s limit.
1285   EXPECT_STREQ("<formatting error or buffer exceeded>",
1286                String::Format("x%s", buffer).c_str());
1287 
1288 #if GTEST_OS_LINUX
1289   // On Linux, invalid format spec should lead to an error message.
1290   // In other environment (e.g. MSVC on Windows), String::Format() may
1291   // simply ignore a bad format spec, so this assertion is run on
1292   // Linux only.
1293   EXPECT_STREQ("<formatting error or buffer exceeded>",
1294                String::Format("%").c_str());
1295 #endif
1296 }
1297 
1298 #if GTEST_OS_WINDOWS
1299 
1300 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1301 TEST(StringTest, ShowWideCString) {
1302   EXPECT_STREQ("(null)",
1303                String::ShowWideCString(NULL).c_str());
1304   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1305   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1306 }
1307 
1308 // Tests String::ShowWideCStringQuoted().
TEST(StringTest,ShowWideCStringQuoted)1309 TEST(StringTest, ShowWideCStringQuoted) {
1310   EXPECT_STREQ("(null)",
1311                String::ShowWideCStringQuoted(NULL).c_str());
1312   EXPECT_STREQ("L\"\"",
1313                String::ShowWideCStringQuoted(L"").c_str());
1314   EXPECT_STREQ("L\"foo\"",
1315                String::ShowWideCStringQuoted(L"foo").c_str());
1316 }
1317 
1318 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1319 TEST(StringTest, AnsiAndUtf16Null) {
1320   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1321   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1322 }
1323 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1324 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1325   const char* ansi = String::Utf16ToAnsi(L"str");
1326   EXPECT_STREQ("str", ansi);
1327   delete [] ansi;
1328   const WCHAR* utf16 = String::AnsiToUtf16("str");
1329   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1330   delete [] utf16;
1331 }
1332 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1333 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1334   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1335   EXPECT_STREQ(".:\\ \"*?", ansi);
1336   delete [] ansi;
1337   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1338   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1339   delete [] utf16;
1340 }
1341 # endif  // GTEST_OS_WINDOWS_MOBILE
1342 
1343 #endif  // GTEST_OS_WINDOWS
1344 
1345 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1346 TEST(TestPropertyTest, StringValue) {
1347   TestProperty property("key", "1");
1348   EXPECT_STREQ("key", property.key());
1349   EXPECT_STREQ("1", property.value());
1350 }
1351 
1352 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1353 TEST(TestPropertyTest, ReplaceStringValue) {
1354   TestProperty property("key", "1");
1355   EXPECT_STREQ("1", property.value());
1356   property.SetValue("2");
1357   EXPECT_STREQ("2", property.value());
1358 }
1359 
1360 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1361 // functions (i.e. their definitions cannot be inlined at the call
1362 // sites), or C++Builder won't compile the code.
AddFatalFailure()1363 static void AddFatalFailure() {
1364   FAIL() << "Expected fatal failure.";
1365 }
1366 
AddNonfatalFailure()1367 static void AddNonfatalFailure() {
1368   ADD_FAILURE() << "Expected non-fatal failure.";
1369 }
1370 
1371 class ScopedFakeTestPartResultReporterTest : public Test {
1372  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1373   enum FailureMode {
1374     FATAL_FAILURE,
1375     NONFATAL_FAILURE
1376   };
AddFailure(FailureMode failure)1377   static void AddFailure(FailureMode failure) {
1378     if (failure == FATAL_FAILURE) {
1379       AddFatalFailure();
1380     } else {
1381       AddNonfatalFailure();
1382     }
1383   }
1384 };
1385 
1386 // Tests that ScopedFakeTestPartResultReporter intercepts test
1387 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1388 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1389   TestPartResultArray results;
1390   {
1391     ScopedFakeTestPartResultReporter reporter(
1392         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1393         &results);
1394     AddFailure(NONFATAL_FAILURE);
1395     AddFailure(FATAL_FAILURE);
1396   }
1397 
1398   EXPECT_EQ(2, results.size());
1399   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1400   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1401 }
1402 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1403 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1404   TestPartResultArray results;
1405   {
1406     // Tests, that the deprecated constructor still works.
1407     ScopedFakeTestPartResultReporter reporter(&results);
1408     AddFailure(NONFATAL_FAILURE);
1409   }
1410   EXPECT_EQ(1, results.size());
1411 }
1412 
1413 #if GTEST_IS_THREADSAFE
1414 
1415 class ScopedFakeTestPartResultReporterWithThreadsTest
1416   : public ScopedFakeTestPartResultReporterTest {
1417  protected:
AddFailureInOtherThread(FailureMode failure)1418   static void AddFailureInOtherThread(FailureMode failure) {
1419     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1420     thread.Join();
1421   }
1422 };
1423 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1424 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1425        InterceptsTestFailuresInAllThreads) {
1426   TestPartResultArray results;
1427   {
1428     ScopedFakeTestPartResultReporter reporter(
1429         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1430     AddFailure(NONFATAL_FAILURE);
1431     AddFailure(FATAL_FAILURE);
1432     AddFailureInOtherThread(NONFATAL_FAILURE);
1433     AddFailureInOtherThread(FATAL_FAILURE);
1434   }
1435 
1436   EXPECT_EQ(4, results.size());
1437   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1438   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1439   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1440   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1441 }
1442 
1443 #endif  // GTEST_IS_THREADSAFE
1444 
1445 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1446 // work even if the failure is generated in a called function rather than
1447 // the current context.
1448 
1449 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1450 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1451 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1452   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1453 }
1454 
1455 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest,AcceptsStringObject)1456 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1457   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1458 }
1459 #endif
1460 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1461 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1462   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1463                        ::std::string("Expected fatal failure."));
1464 }
1465 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1466 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1467   // We have another test below to verify that the macro catches fatal
1468   // failures generated on another thread.
1469   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1470                                       "Expected fatal failure.");
1471 }
1472 
1473 #ifdef __BORLANDC__
1474 // Silences warnings: "Condition is always true"
1475 # pragma option push -w-ccc
1476 #endif
1477 
1478 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1479 // function even when the statement in it contains ASSERT_*.
1480 
NonVoidFunction()1481 int NonVoidFunction() {
1482   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1483   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1484   return 0;
1485 }
1486 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1487 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1488   NonVoidFunction();
1489 }
1490 
1491 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1492 // current function even though 'statement' generates a fatal failure.
1493 
DoesNotAbortHelper(bool * aborted)1494 void DoesNotAbortHelper(bool* aborted) {
1495   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1496   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1497 
1498   *aborted = false;
1499 }
1500 
1501 #ifdef __BORLANDC__
1502 // Restores warnings after previous "#pragma option push" suppressed them.
1503 # pragma option pop
1504 #endif
1505 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1506 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1507   bool aborted = true;
1508   DoesNotAbortHelper(&aborted);
1509   EXPECT_FALSE(aborted);
1510 }
1511 
1512 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1513 // statement that contains a macro which expands to code containing an
1514 // unprotected comma.
1515 
1516 static int global_var = 0;
1517 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1518 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1519 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1520 #ifndef __BORLANDC__
1521   // ICE's in C++Builder.
1522   EXPECT_FATAL_FAILURE({
1523     GTEST_USE_UNPROTECTED_COMMA_;
1524     AddFatalFailure();
1525   }, "");
1526 #endif
1527 
1528   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1529     GTEST_USE_UNPROTECTED_COMMA_;
1530     AddFatalFailure();
1531   }, "");
1532 }
1533 
1534 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1535 
1536 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1537 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1538 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1539   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1540                           "Expected non-fatal failure.");
1541 }
1542 
1543 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest,AcceptsStringObject)1544 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1545   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1546                           ::string("Expected non-fatal failure."));
1547 }
1548 #endif
1549 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1550 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1551   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1552                           ::std::string("Expected non-fatal failure."));
1553 }
1554 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1555 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1556   // We have another test below to verify that the macro catches
1557   // non-fatal failures generated on another thread.
1558   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1559                                          "Expected non-fatal failure.");
1560 }
1561 
1562 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1563 // statement that contains a macro which expands to code containing an
1564 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1565 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1566   EXPECT_NONFATAL_FAILURE({
1567     GTEST_USE_UNPROTECTED_COMMA_;
1568     AddNonfatalFailure();
1569   }, "");
1570 
1571   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1572     GTEST_USE_UNPROTECTED_COMMA_;
1573     AddNonfatalFailure();
1574   }, "");
1575 }
1576 
1577 #if GTEST_IS_THREADSAFE
1578 
1579 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1580     ExpectFailureWithThreadsTest;
1581 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1582 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1583   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1584                                       "Expected fatal failure.");
1585 }
1586 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1587 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1588   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1589       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1590 }
1591 
1592 #endif  // GTEST_IS_THREADSAFE
1593 
1594 // Tests the TestProperty class.
1595 
TEST(TestPropertyTest,ConstructorWorks)1596 TEST(TestPropertyTest, ConstructorWorks) {
1597   const TestProperty property("key", "value");
1598   EXPECT_STREQ("key", property.key());
1599   EXPECT_STREQ("value", property.value());
1600 }
1601 
TEST(TestPropertyTest,SetValue)1602 TEST(TestPropertyTest, SetValue) {
1603   TestProperty property("key", "value_1");
1604   EXPECT_STREQ("key", property.key());
1605   property.SetValue("value_2");
1606   EXPECT_STREQ("key", property.key());
1607   EXPECT_STREQ("value_2", property.value());
1608 }
1609 
1610 // Tests the TestResult class
1611 
1612 // The test fixture for testing TestResult.
1613 class TestResultTest : public Test {
1614  protected:
1615   typedef std::vector<TestPartResult> TPRVector;
1616 
1617   // We make use of 2 TestPartResult objects,
1618   TestPartResult * pr1, * pr2;
1619 
1620   // ... and 3 TestResult objects.
1621   TestResult * r0, * r1, * r2;
1622 
SetUp()1623   virtual void SetUp() {
1624     // pr1 is for success.
1625     pr1 = new TestPartResult(TestPartResult::kSuccess,
1626                              "foo/bar.cc",
1627                              10,
1628                              "Success!");
1629 
1630     // pr2 is for fatal failure.
1631     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1632                              "foo/bar.cc",
1633                              -1,  // This line number means "unknown"
1634                              "Failure!");
1635 
1636     // Creates the TestResult objects.
1637     r0 = new TestResult();
1638     r1 = new TestResult();
1639     r2 = new TestResult();
1640 
1641     // In order to test TestResult, we need to modify its internal
1642     // state, in particular the TestPartResult vector it holds.
1643     // test_part_results() returns a const reference to this vector.
1644     // We cast it to a non-const object s.t. it can be modified (yes,
1645     // this is a hack).
1646     TPRVector* results1 = const_cast<TPRVector*>(
1647         &TestResultAccessor::test_part_results(*r1));
1648     TPRVector* results2 = const_cast<TPRVector*>(
1649         &TestResultAccessor::test_part_results(*r2));
1650 
1651     // r0 is an empty TestResult.
1652 
1653     // r1 contains a single SUCCESS TestPartResult.
1654     results1->push_back(*pr1);
1655 
1656     // r2 contains a SUCCESS, and a FAILURE.
1657     results2->push_back(*pr1);
1658     results2->push_back(*pr2);
1659   }
1660 
TearDown()1661   virtual void TearDown() {
1662     delete pr1;
1663     delete pr2;
1664 
1665     delete r0;
1666     delete r1;
1667     delete r2;
1668   }
1669 
1670   // Helper that compares two two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1671   static void CompareTestPartResult(const TestPartResult& expected,
1672                                     const TestPartResult& actual) {
1673     EXPECT_EQ(expected.type(), actual.type());
1674     EXPECT_STREQ(expected.file_name(), actual.file_name());
1675     EXPECT_EQ(expected.line_number(), actual.line_number());
1676     EXPECT_STREQ(expected.summary(), actual.summary());
1677     EXPECT_STREQ(expected.message(), actual.message());
1678     EXPECT_EQ(expected.passed(), actual.passed());
1679     EXPECT_EQ(expected.failed(), actual.failed());
1680     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1681     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1682   }
1683 };
1684 
1685 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1686 TEST_F(TestResultTest, total_part_count) {
1687   ASSERT_EQ(0, r0->total_part_count());
1688   ASSERT_EQ(1, r1->total_part_count());
1689   ASSERT_EQ(2, r2->total_part_count());
1690 }
1691 
1692 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1693 TEST_F(TestResultTest, Passed) {
1694   ASSERT_TRUE(r0->Passed());
1695   ASSERT_TRUE(r1->Passed());
1696   ASSERT_FALSE(r2->Passed());
1697 }
1698 
1699 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1700 TEST_F(TestResultTest, Failed) {
1701   ASSERT_FALSE(r0->Failed());
1702   ASSERT_FALSE(r1->Failed());
1703   ASSERT_TRUE(r2->Failed());
1704 }
1705 
1706 // Tests TestResult::GetTestPartResult().
1707 
1708 typedef TestResultTest TestResultDeathTest;
1709 
TEST_F(TestResultDeathTest,GetTestPartResult)1710 TEST_F(TestResultDeathTest, GetTestPartResult) {
1711   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1712   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1713   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1714   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1715 }
1716 
1717 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1718 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1719   TestResult test_result;
1720   ASSERT_EQ(0, test_result.test_property_count());
1721 }
1722 
1723 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1724 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1725   TestResult test_result;
1726   TestProperty property("key_1", "1");
1727   TestResultAccessor::RecordProperty(&test_result, property);
1728   ASSERT_EQ(1, test_result.test_property_count());
1729   const TestProperty& actual_property = test_result.GetTestProperty(0);
1730   EXPECT_STREQ("key_1", actual_property.key());
1731   EXPECT_STREQ("1", actual_property.value());
1732 }
1733 
1734 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1735 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1736   TestResult test_result;
1737   TestProperty property_1("key_1", "1");
1738   TestProperty property_2("key_2", "2");
1739   TestResultAccessor::RecordProperty(&test_result, property_1);
1740   TestResultAccessor::RecordProperty(&test_result, property_2);
1741   ASSERT_EQ(2, test_result.test_property_count());
1742   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1743   EXPECT_STREQ("key_1", actual_property_1.key());
1744   EXPECT_STREQ("1", actual_property_1.value());
1745 
1746   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1747   EXPECT_STREQ("key_2", actual_property_2.key());
1748   EXPECT_STREQ("2", actual_property_2.value());
1749 }
1750 
1751 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1752 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1753   TestResult test_result;
1754   TestProperty property_1_1("key_1", "1");
1755   TestProperty property_2_1("key_2", "2");
1756   TestProperty property_1_2("key_1", "12");
1757   TestProperty property_2_2("key_2", "22");
1758   TestResultAccessor::RecordProperty(&test_result, property_1_1);
1759   TestResultAccessor::RecordProperty(&test_result, property_2_1);
1760   TestResultAccessor::RecordProperty(&test_result, property_1_2);
1761   TestResultAccessor::RecordProperty(&test_result, property_2_2);
1762 
1763   ASSERT_EQ(2, test_result.test_property_count());
1764   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1765   EXPECT_STREQ("key_1", actual_property_1.key());
1766   EXPECT_STREQ("12", actual_property_1.value());
1767 
1768   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1769   EXPECT_STREQ("key_2", actual_property_2.key());
1770   EXPECT_STREQ("22", actual_property_2.value());
1771 }
1772 
1773 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyDeathTest,GetTestProperty)1774 TEST(TestResultPropertyDeathTest, GetTestProperty) {
1775   TestResult test_result;
1776   TestProperty property_1("key_1", "1");
1777   TestProperty property_2("key_2", "2");
1778   TestProperty property_3("key_3", "3");
1779   TestResultAccessor::RecordProperty(&test_result, property_1);
1780   TestResultAccessor::RecordProperty(&test_result, property_2);
1781   TestResultAccessor::RecordProperty(&test_result, property_3);
1782 
1783   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1784   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1785   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1786 
1787   EXPECT_STREQ("key_1", fetched_property_1.key());
1788   EXPECT_STREQ("1", fetched_property_1.value());
1789 
1790   EXPECT_STREQ("key_2", fetched_property_2.key());
1791   EXPECT_STREQ("2", fetched_property_2.value());
1792 
1793   EXPECT_STREQ("key_3", fetched_property_3.key());
1794   EXPECT_STREQ("3", fetched_property_3.value());
1795 
1796   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1797   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1798 }
1799 
1800 // When a property using a reserved key is supplied to this function, it tests
1801 // that a non-fatal failure is added, a fatal failure is not added, and that the
1802 // property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char * key)1803 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
1804   TestResult test_result;
1805   TestProperty property(key, "1");
1806   EXPECT_NONFATAL_FAILURE(
1807       TestResultAccessor::RecordProperty(&test_result, property),
1808       "Reserved key");
1809   ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
1810 }
1811 
1812 // Attempting to recording a property with the Reserved literal "name"
1813 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledName)1814 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
1815   ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
1816 }
1817 
1818 // Attempting to recording a property with the Reserved literal "status"
1819 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledStatus)1820 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
1821   ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
1822 }
1823 
1824 // Attempting to recording a property with the Reserved literal "time"
1825 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledTime)1826 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
1827   ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
1828 }
1829 
1830 // Attempting to recording a property with the Reserved literal "classname"
1831 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledClassname)1832 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
1833   ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
1834 }
1835 
1836 // Tests that GTestFlagSaver works on Windows and Mac.
1837 
1838 class GTestFlagSaverTest : public Test {
1839  protected:
1840   // Saves the Google Test flags such that we can restore them later, and
1841   // then sets them to their default values.  This will be called
1842   // before the first test in this test case is run.
SetUpTestCase()1843   static void SetUpTestCase() {
1844     saver_ = new GTestFlagSaver;
1845 
1846     GTEST_FLAG(also_run_disabled_tests) = false;
1847     GTEST_FLAG(break_on_failure) = false;
1848     GTEST_FLAG(catch_exceptions) = false;
1849     GTEST_FLAG(death_test_use_fork) = false;
1850     GTEST_FLAG(color) = "auto";
1851     GTEST_FLAG(filter) = "";
1852     GTEST_FLAG(list_tests) = false;
1853     GTEST_FLAG(output) = "";
1854     GTEST_FLAG(print_time) = true;
1855     GTEST_FLAG(random_seed) = 0;
1856     GTEST_FLAG(repeat) = 1;
1857     GTEST_FLAG(shuffle) = false;
1858     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1859     GTEST_FLAG(stream_result_to) = "";
1860     GTEST_FLAG(throw_on_failure) = false;
1861   }
1862 
1863   // Restores the Google Test flags that the tests have modified.  This will
1864   // be called after the last test in this test case is run.
TearDownTestCase()1865   static void TearDownTestCase() {
1866     delete saver_;
1867     saver_ = NULL;
1868   }
1869 
1870   // Verifies that the Google Test flags have their default values, and then
1871   // modifies each of them.
VerifyAndModifyFlags()1872   void VerifyAndModifyFlags() {
1873     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1874     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1875     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1876     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1877     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1878     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1879     EXPECT_FALSE(GTEST_FLAG(list_tests));
1880     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1881     EXPECT_TRUE(GTEST_FLAG(print_time));
1882     EXPECT_EQ(0, GTEST_FLAG(random_seed));
1883     EXPECT_EQ(1, GTEST_FLAG(repeat));
1884     EXPECT_FALSE(GTEST_FLAG(shuffle));
1885     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1886     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1887     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1888 
1889     GTEST_FLAG(also_run_disabled_tests) = true;
1890     GTEST_FLAG(break_on_failure) = true;
1891     GTEST_FLAG(catch_exceptions) = true;
1892     GTEST_FLAG(color) = "no";
1893     GTEST_FLAG(death_test_use_fork) = true;
1894     GTEST_FLAG(filter) = "abc";
1895     GTEST_FLAG(list_tests) = true;
1896     GTEST_FLAG(output) = "xml:foo.xml";
1897     GTEST_FLAG(print_time) = false;
1898     GTEST_FLAG(random_seed) = 1;
1899     GTEST_FLAG(repeat) = 100;
1900     GTEST_FLAG(shuffle) = true;
1901     GTEST_FLAG(stack_trace_depth) = 1;
1902     GTEST_FLAG(stream_result_to) = "localhost:1234";
1903     GTEST_FLAG(throw_on_failure) = true;
1904   }
1905 
1906  private:
1907   // For saving Google Test flags during this test case.
1908   static GTestFlagSaver* saver_;
1909 };
1910 
1911 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1912 
1913 // Google Test doesn't guarantee the order of tests.  The following two
1914 // tests are designed to work regardless of their order.
1915 
1916 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1917 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1918   VerifyAndModifyFlags();
1919 }
1920 
1921 // Verifies that the Google Test flags in the body of the previous test were
1922 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1923 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1924   VerifyAndModifyFlags();
1925 }
1926 
1927 // Sets an environment variable with the given name to the given
1928 // value.  If the value argument is "", unsets the environment
1929 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1930 static void SetEnv(const char* name, const char* value) {
1931 #if GTEST_OS_WINDOWS_MOBILE
1932   // Environment variables are not supported on Windows CE.
1933   return;
1934 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1935   // C++Builder's putenv only stores a pointer to its parameter; we have to
1936   // ensure that the string remains valid as long as it might be needed.
1937   // We use an std::map to do so.
1938   static std::map<String, String*> added_env;
1939 
1940   // Because putenv stores a pointer to the string buffer, we can't delete the
1941   // previous string (if present) until after it's replaced.
1942   String *prev_env = NULL;
1943   if (added_env.find(name) != added_env.end()) {
1944     prev_env = added_env[name];
1945   }
1946   added_env[name] = new String((Message() << name << "=" << value).GetString());
1947 
1948   // The standard signature of putenv accepts a 'char*' argument. Other
1949   // implementations, like C++Builder's, accept a 'const char*'.
1950   // We cast away the 'const' since that would work for both variants.
1951   putenv(const_cast<char*>(added_env[name]->c_str()));
1952   delete prev_env;
1953 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1954   _putenv((Message() << name << "=" << value).GetString().c_str());
1955 #else
1956   if (*value == '\0') {
1957     unsetenv(name);
1958   } else {
1959     setenv(name, value, 1);
1960   }
1961 #endif  // GTEST_OS_WINDOWS_MOBILE
1962 }
1963 
1964 #if !GTEST_OS_WINDOWS_MOBILE
1965 // Environment variables are not supported on Windows CE.
1966 
1967 using testing::internal::Int32FromGTestEnv;
1968 
1969 // Tests Int32FromGTestEnv().
1970 
1971 // Tests that Int32FromGTestEnv() returns the default value when the
1972 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1973 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1974   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1975   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1976 }
1977 
1978 // Tests that Int32FromGTestEnv() returns the default value when the
1979 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1980 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1981   printf("(expecting 2 warnings)\n");
1982 
1983   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1984   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1985 
1986   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1987   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1988 }
1989 
1990 // Tests that Int32FromGTestEnv() returns the default value when the
1991 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1992 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1993   printf("(expecting 2 warnings)\n");
1994 
1995   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1996   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1997 
1998   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1999   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
2000 }
2001 
2002 // Tests that Int32FromGTestEnv() parses and returns the value of the
2003 // environment variable when it represents a valid decimal integer in
2004 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)2005 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
2006   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
2007   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
2008 
2009   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
2010   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
2011 }
2012 #endif  // !GTEST_OS_WINDOWS_MOBILE
2013 
2014 // Tests ParseInt32Flag().
2015 
2016 // Tests that ParseInt32Flag() returns false and doesn't change the
2017 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)2018 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
2019   Int32 value = 123;
2020   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
2021   EXPECT_EQ(123, value);
2022 
2023   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
2024   EXPECT_EQ(123, value);
2025 }
2026 
2027 // Tests that ParseInt32Flag() returns false and doesn't change the
2028 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)2029 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
2030   printf("(expecting 2 warnings)\n");
2031 
2032   Int32 value = 123;
2033   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
2034   EXPECT_EQ(123, value);
2035 
2036   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
2037   EXPECT_EQ(123, value);
2038 }
2039 
2040 // Tests that ParseInt32Flag() returns false and doesn't change the
2041 // output value when the flag does not represent a valid decimal
2042 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)2043 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
2044   printf("(expecting 2 warnings)\n");
2045 
2046   Int32 value = 123;
2047   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
2048   EXPECT_EQ(123, value);
2049 
2050   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
2051   EXPECT_EQ(123, value);
2052 }
2053 
2054 // Tests that ParseInt32Flag() parses the value of the flag and
2055 // returns true when the flag represents a valid decimal integer in
2056 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)2057 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
2058   Int32 value = 123;
2059   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
2060   EXPECT_EQ(456, value);
2061 
2062   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
2063                              "abc", &value));
2064   EXPECT_EQ(-789, value);
2065 }
2066 
2067 // Tests that Int32FromEnvOrDie() parses the value of the var or
2068 // returns the correct default.
2069 // Environment variables are not supported on Windows CE.
2070 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)2071 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
2072   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
2073   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
2074   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
2075   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
2076   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
2077 }
2078 #endif  // !GTEST_OS_WINDOWS_MOBILE
2079 
2080 // Tests that Int32FromEnvOrDie() aborts with an error message
2081 // if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)2082 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
2083   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
2084   EXPECT_DEATH_IF_SUPPORTED(
2085       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
2086       ".*");
2087 }
2088 
2089 // Tests that Int32FromEnvOrDie() aborts with an error message
2090 // if the variable cannot be represnted by an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)2091 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
2092   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
2093   EXPECT_DEATH_IF_SUPPORTED(
2094       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
2095       ".*");
2096 }
2097 
2098 // Tests that ShouldRunTestOnShard() selects all tests
2099 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)2100 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
2101   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
2102   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
2103   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
2104   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
2105   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
2106 }
2107 
2108 class ShouldShardTest : public testing::Test {
2109  protected:
SetUp()2110   virtual void SetUp() {
2111     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
2112     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
2113   }
2114 
TearDown()2115   virtual void TearDown() {
2116     SetEnv(index_var_, "");
2117     SetEnv(total_var_, "");
2118   }
2119 
2120   const char* index_var_;
2121   const char* total_var_;
2122 };
2123 
2124 // Tests that sharding is disabled if neither of the environment variables
2125 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)2126 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
2127   SetEnv(index_var_, "");
2128   SetEnv(total_var_, "");
2129 
2130   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
2131   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2132 }
2133 
2134 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)2135 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
2136   SetEnv(index_var_, "0");
2137   SetEnv(total_var_, "1");
2138   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
2139   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2140 }
2141 
2142 // Tests that sharding is enabled if total_shards > 1 and
2143 // we are not in a death test subprocess.
2144 // Environment variables are not supported on Windows CE.
2145 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)2146 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
2147   SetEnv(index_var_, "4");
2148   SetEnv(total_var_, "22");
2149   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2150   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2151 
2152   SetEnv(index_var_, "8");
2153   SetEnv(total_var_, "9");
2154   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2155   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2156 
2157   SetEnv(index_var_, "0");
2158   SetEnv(total_var_, "9");
2159   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2160   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2161 }
2162 #endif  // !GTEST_OS_WINDOWS_MOBILE
2163 
2164 // Tests that we exit in error if the sharding values are not valid.
2165 
2166 typedef ShouldShardTest ShouldShardDeathTest;
2167 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)2168 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
2169   SetEnv(index_var_, "4");
2170   SetEnv(total_var_, "4");
2171   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2172 
2173   SetEnv(index_var_, "4");
2174   SetEnv(total_var_, "-2");
2175   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2176 
2177   SetEnv(index_var_, "5");
2178   SetEnv(total_var_, "");
2179   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2180 
2181   SetEnv(index_var_, "");
2182   SetEnv(total_var_, "5");
2183   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2184 }
2185 
2186 // Tests that ShouldRunTestOnShard is a partition when 5
2187 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)2188 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
2189   // Choose an arbitrary number of tests and shards.
2190   const int num_tests = 17;
2191   const int num_shards = 5;
2192 
2193   // Check partitioning: each test should be on exactly 1 shard.
2194   for (int test_id = 0; test_id < num_tests; test_id++) {
2195     int prev_selected_shard_index = -1;
2196     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
2197       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
2198         if (prev_selected_shard_index < 0) {
2199           prev_selected_shard_index = shard_index;
2200         } else {
2201           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
2202             << shard_index << " are both selected to run test " << test_id;
2203         }
2204       }
2205     }
2206   }
2207 
2208   // Check balance: This is not required by the sharding protocol, but is a
2209   // desirable property for performance.
2210   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
2211     int num_tests_on_shard = 0;
2212     for (int test_id = 0; test_id < num_tests; test_id++) {
2213       num_tests_on_shard +=
2214         ShouldRunTestOnShard(num_shards, shard_index, test_id);
2215     }
2216     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
2217   }
2218 }
2219 
2220 // For the same reason we are not explicitly testing everything in the
2221 // Test class, there are no separate tests for the following classes
2222 // (except for some trivial cases):
2223 //
2224 //   TestCase, UnitTest, UnitTestResultPrinter.
2225 //
2226 // Similarly, there are no separate tests for the following macros:
2227 //
2228 //   TEST, TEST_F, RUN_ALL_TESTS
2229 
TEST(UnitTestTest,CanGetOriginalWorkingDir)2230 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
2231   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
2232   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2233 }
2234 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2235 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2236   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2237   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2238 }
2239 
2240 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2241 // of various arities.  They do not attempt to be exhaustive.  Rather,
2242 // view them as smoke tests that can be easily reviewed and verified.
2243 // A more complete set of tests for predicate assertions can be found
2244 // in gtest_pred_impl_unittest.cc.
2245 
2246 // First, some predicates and predicate-formatters needed by the tests.
2247 
2248 // Returns true iff the argument is an even number.
IsEven(int n)2249 bool IsEven(int n) {
2250   return (n % 2) == 0;
2251 }
2252 
2253 // A functor that returns true iff the argument is an even number.
2254 struct IsEvenFunctor {
operator ()__anona73f14e70111::IsEvenFunctor2255   bool operator()(int n) { return IsEven(n); }
2256 };
2257 
2258 // A predicate-formatter function that asserts the argument is an even
2259 // number.
AssertIsEven(const char * expr,int n)2260 AssertionResult AssertIsEven(const char* expr, int n) {
2261   if (IsEven(n)) {
2262     return AssertionSuccess();
2263   }
2264 
2265   Message msg;
2266   msg << expr << " evaluates to " << n << ", which is not even.";
2267   return AssertionFailure(msg);
2268 }
2269 
2270 // A predicate function that returns AssertionResult for use in
2271 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2272 AssertionResult ResultIsEven(int n) {
2273   if (IsEven(n))
2274     return AssertionSuccess() << n << " is even";
2275   else
2276     return AssertionFailure() << n << " is odd";
2277 }
2278 
2279 // A predicate function that returns AssertionResult but gives no
2280 // explanation why it succeeds. Needed for testing that
2281 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2282 AssertionResult ResultIsEvenNoExplanation(int n) {
2283   if (IsEven(n))
2284     return AssertionSuccess();
2285   else
2286     return AssertionFailure() << n << " is odd";
2287 }
2288 
2289 // A predicate-formatter functor that asserts the argument is an even
2290 // number.
2291 struct AssertIsEvenFunctor {
operator ()__anona73f14e70111::AssertIsEvenFunctor2292   AssertionResult operator()(const char* expr, int n) {
2293     return AssertIsEven(expr, n);
2294   }
2295 };
2296 
2297 // Returns true iff the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2298 bool SumIsEven2(int n1, int n2) {
2299   return IsEven(n1 + n2);
2300 }
2301 
2302 // A functor that returns true iff the sum of the arguments is an even
2303 // number.
2304 struct SumIsEven3Functor {
operator ()__anona73f14e70111::SumIsEven3Functor2305   bool operator()(int n1, int n2, int n3) {
2306     return IsEven(n1 + n2 + n3);
2307   }
2308 };
2309 
2310 // A predicate-formatter function that asserts the sum of the
2311 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2312 AssertionResult AssertSumIsEven4(
2313     const char* e1, const char* e2, const char* e3, const char* e4,
2314     int n1, int n2, int n3, int n4) {
2315   const int sum = n1 + n2 + n3 + n4;
2316   if (IsEven(sum)) {
2317     return AssertionSuccess();
2318   }
2319 
2320   Message msg;
2321   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2322       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2323       << ") evaluates to " << sum << ", which is not even.";
2324   return AssertionFailure(msg);
2325 }
2326 
2327 // A predicate-formatter functor that asserts the sum of the arguments
2328 // is an even number.
2329 struct AssertSumIsEven5Functor {
operator ()__anona73f14e70111::AssertSumIsEven5Functor2330   AssertionResult operator()(
2331       const char* e1, const char* e2, const char* e3, const char* e4,
2332       const char* e5, int n1, int n2, int n3, int n4, int n5) {
2333     const int sum = n1 + n2 + n3 + n4 + n5;
2334     if (IsEven(sum)) {
2335       return AssertionSuccess();
2336     }
2337 
2338     Message msg;
2339     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2340         << " ("
2341         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2342         << ") evaluates to " << sum << ", which is not even.";
2343     return AssertionFailure(msg);
2344   }
2345 };
2346 
2347 
2348 // Tests unary predicate assertions.
2349 
2350 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2351 TEST(Pred1Test, WithoutFormat) {
2352   // Success cases.
2353   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2354   ASSERT_PRED1(IsEven, 4);
2355 
2356   // Failure cases.
2357   EXPECT_NONFATAL_FAILURE({  // NOLINT
2358     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2359   }, "This failure is expected.");
2360   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2361                        "evaluates to false");
2362 }
2363 
2364 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2365 TEST(Pred1Test, WithFormat) {
2366   // Success cases.
2367   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2368   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2369     << "This failure is UNEXPECTED!";
2370 
2371   // Failure cases.
2372   const int n = 5;
2373   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2374                           "n evaluates to 5, which is not even.");
2375   EXPECT_FATAL_FAILURE({  // NOLINT
2376     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2377   }, "This failure is expected.");
2378 }
2379 
2380 // Tests that unary predicate assertions evaluates their arguments
2381 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2382 TEST(Pred1Test, SingleEvaluationOnFailure) {
2383   // A success case.
2384   static int n = 0;
2385   EXPECT_PRED1(IsEven, n++);
2386   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2387 
2388   // A failure case.
2389   EXPECT_FATAL_FAILURE({  // NOLINT
2390     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2391         << "This failure is expected.";
2392   }, "This failure is expected.");
2393   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2394 }
2395 
2396 
2397 // Tests predicate assertions whose arity is >= 2.
2398 
2399 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2400 TEST(PredTest, WithoutFormat) {
2401   // Success cases.
2402   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2403   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2404 
2405   // Failure cases.
2406   const int n1 = 1;
2407   const int n2 = 2;
2408   EXPECT_NONFATAL_FAILURE({  // NOLINT
2409     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2410   }, "This failure is expected.");
2411   EXPECT_FATAL_FAILURE({  // NOLINT
2412     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2413   }, "evaluates to false");
2414 }
2415 
2416 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2417 TEST(PredTest, WithFormat) {
2418   // Success cases.
2419   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2420     "This failure is UNEXPECTED!";
2421   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2422 
2423   // Failure cases.
2424   const int n1 = 1;
2425   const int n2 = 2;
2426   const int n3 = 4;
2427   const int n4 = 6;
2428   EXPECT_NONFATAL_FAILURE({  // NOLINT
2429     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2430   }, "evaluates to 13, which is not even.");
2431   EXPECT_FATAL_FAILURE({  // NOLINT
2432     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2433         << "This failure is expected.";
2434   }, "This failure is expected.");
2435 }
2436 
2437 // Tests that predicate assertions evaluates their arguments
2438 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2439 TEST(PredTest, SingleEvaluationOnFailure) {
2440   // A success case.
2441   int n1 = 0;
2442   int n2 = 0;
2443   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2444   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2445   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2446 
2447   // Another success case.
2448   n1 = n2 = 0;
2449   int n3 = 0;
2450   int n4 = 0;
2451   int n5 = 0;
2452   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2453                       n1++, n2++, n3++, n4++, n5++)
2454                         << "This failure is UNEXPECTED!";
2455   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2456   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2457   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2458   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2459   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2460 
2461   // A failure case.
2462   n1 = n2 = n3 = 0;
2463   EXPECT_NONFATAL_FAILURE({  // NOLINT
2464     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2465         << "This failure is expected.";
2466   }, "This failure is expected.");
2467   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2468   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2469   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2470 
2471   // Another failure case.
2472   n1 = n2 = n3 = n4 = 0;
2473   EXPECT_NONFATAL_FAILURE({  // NOLINT
2474     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2475   }, "evaluates to 1, which is not even.");
2476   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2477   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2478   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2479   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2480 }
2481 
2482 
2483 // Some helper functions for testing using overloaded/template
2484 // functions with ASSERT_PREDn and EXPECT_PREDn.
2485 
IsPositive(double x)2486 bool IsPositive(double x) {
2487   return x > 0;
2488 }
2489 
2490 template <typename T>
IsNegative(T x)2491 bool IsNegative(T x) {
2492   return x < 0;
2493 }
2494 
2495 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2496 bool GreaterThan(T1 x1, T2 x2) {
2497   return x1 > x2;
2498 }
2499 
2500 // Tests that overloaded functions can be used in *_PRED* as long as
2501 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2502 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2503   // C++Builder requires C-style casts rather than static_cast.
2504   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2505   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2506 }
2507 
2508 // Tests that template functions can be used in *_PRED* as long as
2509 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2510 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2511   EXPECT_PRED1(IsNegative<int>, -5);
2512   // Makes sure that we can handle templates with more than one
2513   // parameter.
2514   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2515 }
2516 
2517 
2518 // Some helper functions for testing using overloaded/template
2519 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2520 
IsPositiveFormat(const char *,int n)2521 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2522   return n > 0 ? AssertionSuccess() :
2523       AssertionFailure(Message() << "Failure");
2524 }
2525 
IsPositiveFormat(const char *,double x)2526 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2527   return x > 0 ? AssertionSuccess() :
2528       AssertionFailure(Message() << "Failure");
2529 }
2530 
2531 template <typename T>
IsNegativeFormat(const char *,T x)2532 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2533   return x < 0 ? AssertionSuccess() :
2534       AssertionFailure(Message() << "Failure");
2535 }
2536 
2537 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2538 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2539                              const T1& x1, const T2& x2) {
2540   return x1 == x2 ? AssertionSuccess() :
2541       AssertionFailure(Message() << "Failure");
2542 }
2543 
2544 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2545 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2546 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2547   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2548   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2549 }
2550 
2551 // Tests that template functions can be used in *_PRED_FORMAT* without
2552 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2553 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2554   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2555   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2556 }
2557 
2558 
2559 // Tests string assertions.
2560 
2561 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2562 TEST(StringAssertionTest, ASSERT_STREQ) {
2563   const char * const p1 = "good";
2564   ASSERT_STREQ(p1, p1);
2565 
2566   // Let p2 have the same content as p1, but be at a different address.
2567   const char p2[] = "good";
2568   ASSERT_STREQ(p1, p2);
2569 
2570   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2571                        "Expected: \"bad\"");
2572 }
2573 
2574 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2575 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2576   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2577   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2578                        "non-null");
2579 }
2580 
2581 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2582 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2583   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2584                        "non-null");
2585 }
2586 
2587 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2588 TEST(StringAssertionTest, ASSERT_STRNE) {
2589   ASSERT_STRNE("hi", "Hi");
2590   ASSERT_STRNE("Hi", NULL);
2591   ASSERT_STRNE(NULL, "Hi");
2592   ASSERT_STRNE("", NULL);
2593   ASSERT_STRNE(NULL, "");
2594   ASSERT_STRNE("", "Hi");
2595   ASSERT_STRNE("Hi", "");
2596   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2597                        "\"Hi\" vs \"Hi\"");
2598 }
2599 
2600 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2601 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2602   ASSERT_STRCASEEQ("hi", "Hi");
2603   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2604 
2605   ASSERT_STRCASEEQ("", "");
2606   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2607                        "(ignoring case)");
2608 }
2609 
2610 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2611 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2612   ASSERT_STRCASENE("hi1", "Hi2");
2613   ASSERT_STRCASENE("Hi", NULL);
2614   ASSERT_STRCASENE(NULL, "Hi");
2615   ASSERT_STRCASENE("", NULL);
2616   ASSERT_STRCASENE(NULL, "");
2617   ASSERT_STRCASENE("", "Hi");
2618   ASSERT_STRCASENE("Hi", "");
2619   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2620                        "(ignoring case)");
2621 }
2622 
2623 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2624 TEST(StringAssertionTest, STREQ_Wide) {
2625   // NULL strings.
2626   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2627 
2628   // Empty strings.
2629   ASSERT_STREQ(L"", L"");
2630 
2631   // Non-null vs NULL.
2632   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2633                           "non-null");
2634 
2635   // Equal strings.
2636   EXPECT_STREQ(L"Hi", L"Hi");
2637 
2638   // Unequal strings.
2639   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2640                           "Abc");
2641 
2642   // Strings containing wide characters.
2643   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2644                           "abc");
2645 
2646   // The streaming variation.
2647   EXPECT_NONFATAL_FAILURE({  // NOLINT
2648     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2649   }, "Expected failure");
2650 }
2651 
2652 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2653 TEST(StringAssertionTest, STRNE_Wide) {
2654   // NULL strings.
2655   EXPECT_NONFATAL_FAILURE({  // NOLINT
2656     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2657   }, "");
2658 
2659   // Empty strings.
2660   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2661                           "L\"\"");
2662 
2663   // Non-null vs NULL.
2664   ASSERT_STRNE(L"non-null", NULL);
2665 
2666   // Equal strings.
2667   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2668                           "L\"Hi\"");
2669 
2670   // Unequal strings.
2671   EXPECT_STRNE(L"abc", L"Abc");
2672 
2673   // Strings containing wide characters.
2674   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2675                           "abc");
2676 
2677   // The streaming variation.
2678   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2679 }
2680 
2681 // Tests for ::testing::IsSubstring().
2682 
2683 // Tests that IsSubstring() returns the correct result when the input
2684 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2685 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2686   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2687   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2688   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2689 
2690   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2691   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2692 }
2693 
2694 // Tests that IsSubstring() returns the correct result when the input
2695 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2696 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2697   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2698   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2699   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2700 
2701   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2702   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2703 }
2704 
2705 // Tests that IsSubstring() generates the correct message when the input
2706 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2707 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2708   EXPECT_STREQ("Value of: needle_expr\n"
2709                "  Actual: \"needle\"\n"
2710                "Expected: a substring of haystack_expr\n"
2711                "Which is: \"haystack\"",
2712                IsSubstring("needle_expr", "haystack_expr",
2713                            "needle", "haystack").failure_message());
2714 }
2715 
2716 // Tests that IsSubstring returns the correct result when the input
2717 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2718 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2719   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2720   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2721 }
2722 
2723 #if GTEST_HAS_STD_WSTRING
2724 // Tests that IsSubstring returns the correct result when the input
2725 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2726 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2727   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2728   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2729 }
2730 
2731 // Tests that IsSubstring() generates the correct message when the input
2732 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2733 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2734   EXPECT_STREQ("Value of: needle_expr\n"
2735                "  Actual: L\"needle\"\n"
2736                "Expected: a substring of haystack_expr\n"
2737                "Which is: L\"haystack\"",
2738                IsSubstring(
2739                    "needle_expr", "haystack_expr",
2740                    ::std::wstring(L"needle"), L"haystack").failure_message());
2741 }
2742 
2743 #endif  // GTEST_HAS_STD_WSTRING
2744 
2745 // Tests for ::testing::IsNotSubstring().
2746 
2747 // Tests that IsNotSubstring() returns the correct result when the input
2748 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2749 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2750   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2751   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2752 }
2753 
2754 // Tests that IsNotSubstring() returns the correct result when the input
2755 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2756 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2757   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2758   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2759 }
2760 
2761 // Tests that IsNotSubstring() generates the correct message when the input
2762 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2763 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2764   EXPECT_STREQ("Value of: needle_expr\n"
2765                "  Actual: L\"needle\"\n"
2766                "Expected: not a substring of haystack_expr\n"
2767                "Which is: L\"two needles\"",
2768                IsNotSubstring(
2769                    "needle_expr", "haystack_expr",
2770                    L"needle", L"two needles").failure_message());
2771 }
2772 
2773 // Tests that IsNotSubstring returns the correct result when the input
2774 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2775 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2776   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2777   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2778 }
2779 
2780 // Tests that IsNotSubstring() generates the correct message when the input
2781 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2782 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2783   EXPECT_STREQ("Value of: needle_expr\n"
2784                "  Actual: \"needle\"\n"
2785                "Expected: not a substring of haystack_expr\n"
2786                "Which is: \"two needles\"",
2787                IsNotSubstring(
2788                    "needle_expr", "haystack_expr",
2789                    ::std::string("needle"), "two needles").failure_message());
2790 }
2791 
2792 #if GTEST_HAS_STD_WSTRING
2793 
2794 // Tests that IsNotSubstring returns the correct result when the input
2795 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2796 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2797   EXPECT_FALSE(
2798       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2799   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2800 }
2801 
2802 #endif  // GTEST_HAS_STD_WSTRING
2803 
2804 // Tests floating-point assertions.
2805 
2806 template <typename RawType>
2807 class FloatingPointTest : public Test {
2808  protected:
2809   // Pre-calculated numbers to be used by the tests.
2810   struct TestValues {
2811     RawType close_to_positive_zero;
2812     RawType close_to_negative_zero;
2813     RawType further_from_negative_zero;
2814 
2815     RawType close_to_one;
2816     RawType further_from_one;
2817 
2818     RawType infinity;
2819     RawType close_to_infinity;
2820     RawType further_from_infinity;
2821 
2822     RawType nan1;
2823     RawType nan2;
2824   };
2825 
2826   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2827   typedef typename Floating::Bits Bits;
2828 
SetUp()2829   virtual void SetUp() {
2830     const size_t max_ulps = Floating::kMaxUlps;
2831 
2832     // The bits that represent 0.0.
2833     const Bits zero_bits = Floating(0).bits();
2834 
2835     // Makes some numbers close to 0.0.
2836     values_.close_to_positive_zero = Floating::ReinterpretBits(
2837         zero_bits + max_ulps/2);
2838     values_.close_to_negative_zero = -Floating::ReinterpretBits(
2839         zero_bits + max_ulps - max_ulps/2);
2840     values_.further_from_negative_zero = -Floating::ReinterpretBits(
2841         zero_bits + max_ulps + 1 - max_ulps/2);
2842 
2843     // The bits that represent 1.0.
2844     const Bits one_bits = Floating(1).bits();
2845 
2846     // Makes some numbers close to 1.0.
2847     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2848     values_.further_from_one = Floating::ReinterpretBits(
2849         one_bits + max_ulps + 1);
2850 
2851     // +infinity.
2852     values_.infinity = Floating::Infinity();
2853 
2854     // The bits that represent +infinity.
2855     const Bits infinity_bits = Floating(values_.infinity).bits();
2856 
2857     // Makes some numbers close to infinity.
2858     values_.close_to_infinity = Floating::ReinterpretBits(
2859         infinity_bits - max_ulps);
2860     values_.further_from_infinity = Floating::ReinterpretBits(
2861         infinity_bits - max_ulps - 1);
2862 
2863     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2864     // our NaN's are quiet; trying to process a signaling NaN would raise an
2865     // exception if our environment enables floating point exceptions.
2866     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2867         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2868     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2869         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2870   }
2871 
TestSize()2872   void TestSize() {
2873     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2874   }
2875 
2876   static TestValues values_;
2877 };
2878 
2879 template <typename RawType>
2880 typename FloatingPointTest<RawType>::TestValues
2881     FloatingPointTest<RawType>::values_;
2882 
2883 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2884 typedef FloatingPointTest<float> FloatTest;
2885 
2886 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2887 TEST_F(FloatTest, Size) {
2888   TestSize();
2889 }
2890 
2891 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2892 TEST_F(FloatTest, Zeros) {
2893   EXPECT_FLOAT_EQ(0.0, -0.0);
2894   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2895                           "1.0");
2896   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2897                        "1.5");
2898 }
2899 
2900 // Tests comparing numbers close to 0.
2901 //
2902 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2903 // overflow occurs when comparing numbers whose absolute value is very
2904 // small.
TEST_F(FloatTest,AlmostZeros)2905 TEST_F(FloatTest, AlmostZeros) {
2906   // In C++Builder, names within local classes (such as used by
2907   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2908   // scoping class.  Use a static local alias as a workaround.
2909   // We use the assignment syntax since some compilers, like Sun Studio,
2910   // don't allow initializing references using construction syntax
2911   // (parentheses).
2912   static const FloatTest::TestValues& v = this->values_;
2913 
2914   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2915   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2916   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2917 
2918   EXPECT_FATAL_FAILURE({  // NOLINT
2919     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2920                     v.further_from_negative_zero);
2921   }, "v.further_from_negative_zero");
2922 }
2923 
2924 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2925 TEST_F(FloatTest, SmallDiff) {
2926   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2927   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2928                           "values_.further_from_one");
2929 }
2930 
2931 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2932 TEST_F(FloatTest, LargeDiff) {
2933   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2934                           "3.0");
2935 }
2936 
2937 // Tests comparing with infinity.
2938 //
2939 // This ensures that no overflow occurs when comparing numbers whose
2940 // absolute value is very large.
TEST_F(FloatTest,Infinity)2941 TEST_F(FloatTest, Infinity) {
2942   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2943   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2944 #if !GTEST_OS_SYMBIAN
2945   // Nokia's STLport crashes if we try to output infinity or NaN.
2946   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2947                           "-values_.infinity");
2948 
2949   // This is interesting as the representations of infinity and nan1
2950   // are only 1 DLP apart.
2951   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2952                           "values_.nan1");
2953 #endif  // !GTEST_OS_SYMBIAN
2954 }
2955 
2956 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2957 TEST_F(FloatTest, NaN) {
2958 #if !GTEST_OS_SYMBIAN
2959 // Nokia's STLport crashes if we try to output infinity or NaN.
2960 
2961   // In C++Builder, names within local classes (such as used by
2962   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2963   // scoping class.  Use a static local alias as a workaround.
2964   // We use the assignment syntax since some compilers, like Sun Studio,
2965   // don't allow initializing references using construction syntax
2966   // (parentheses).
2967   static const FloatTest::TestValues& v = this->values_;
2968 
2969   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2970                           "v.nan1");
2971   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2972                           "v.nan2");
2973   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2974                           "v.nan1");
2975 
2976   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2977                        "v.infinity");
2978 #endif  // !GTEST_OS_SYMBIAN
2979 }
2980 
2981 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2982 TEST_F(FloatTest, Reflexive) {
2983   EXPECT_FLOAT_EQ(0.0, 0.0);
2984   EXPECT_FLOAT_EQ(1.0, 1.0);
2985   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2986 }
2987 
2988 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2989 TEST_F(FloatTest, Commutative) {
2990   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2991   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2992 
2993   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2994   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2995                           "1.0");
2996 }
2997 
2998 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2999 TEST_F(FloatTest, EXPECT_NEAR) {
3000   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
3001   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
3002   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
3003                           "The difference between 1.0f and 1.5f is 0.5, "
3004                           "which exceeds 0.25f");
3005   // To work around a bug in gcc 2.95.0, there is intentionally no
3006   // space after the first comma in the previous line.
3007 }
3008 
3009 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)3010 TEST_F(FloatTest, ASSERT_NEAR) {
3011   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
3012   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
3013   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
3014                        "The difference between 1.0f and 1.5f is 0.5, "
3015                        "which exceeds 0.25f");
3016   // To work around a bug in gcc 2.95.0, there is intentionally no
3017   // space after the first comma in the previous line.
3018 }
3019 
3020 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)3021 TEST_F(FloatTest, FloatLESucceeds) {
3022   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
3023   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
3024 
3025   // or when val1 is greater than, but almost equals to, val2.
3026   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
3027 }
3028 
3029 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)3030 TEST_F(FloatTest, FloatLEFails) {
3031   // When val1 is greater than val2 by a large margin,
3032   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
3033                           "(2.0f) <= (1.0f)");
3034 
3035   // or by a small yet non-negligible margin,
3036   EXPECT_NONFATAL_FAILURE({  // NOLINT
3037     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
3038   }, "(values_.further_from_one) <= (1.0f)");
3039 
3040 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3041   // Nokia's STLport crashes if we try to output infinity or NaN.
3042   // C++Builder gives bad results for ordered comparisons involving NaNs
3043   // due to compiler bugs.
3044   EXPECT_NONFATAL_FAILURE({  // NOLINT
3045     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
3046   }, "(values_.nan1) <= (values_.infinity)");
3047   EXPECT_NONFATAL_FAILURE({  // NOLINT
3048     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
3049   }, "(-values_.infinity) <= (values_.nan1)");
3050   EXPECT_FATAL_FAILURE({  // NOLINT
3051     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
3052   }, "(values_.nan1) <= (values_.nan1)");
3053 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3054 }
3055 
3056 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
3057 typedef FloatingPointTest<double> DoubleTest;
3058 
3059 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)3060 TEST_F(DoubleTest, Size) {
3061   TestSize();
3062 }
3063 
3064 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)3065 TEST_F(DoubleTest, Zeros) {
3066   EXPECT_DOUBLE_EQ(0.0, -0.0);
3067   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
3068                           "1.0");
3069   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
3070                        "1.0");
3071 }
3072 
3073 // Tests comparing numbers close to 0.
3074 //
3075 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
3076 // overflow occurs when comparing numbers whose absolute value is very
3077 // small.
TEST_F(DoubleTest,AlmostZeros)3078 TEST_F(DoubleTest, AlmostZeros) {
3079   // In C++Builder, names within local classes (such as used by
3080   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3081   // scoping class.  Use a static local alias as a workaround.
3082   // We use the assignment syntax since some compilers, like Sun Studio,
3083   // don't allow initializing references using construction syntax
3084   // (parentheses).
3085   static const DoubleTest::TestValues& v = this->values_;
3086 
3087   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3088   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3089   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3090 
3091   EXPECT_FATAL_FAILURE({  // NOLINT
3092     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3093                      v.further_from_negative_zero);
3094   }, "v.further_from_negative_zero");
3095 }
3096 
3097 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3098 TEST_F(DoubleTest, SmallDiff) {
3099   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3100   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3101                           "values_.further_from_one");
3102 }
3103 
3104 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3105 TEST_F(DoubleTest, LargeDiff) {
3106   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
3107                           "3.0");
3108 }
3109 
3110 // Tests comparing with infinity.
3111 //
3112 // This ensures that no overflow occurs when comparing numbers whose
3113 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3114 TEST_F(DoubleTest, Infinity) {
3115   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3116   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3117 #if !GTEST_OS_SYMBIAN
3118   // Nokia's STLport crashes if we try to output infinity or NaN.
3119   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3120                           "-values_.infinity");
3121 
3122   // This is interesting as the representations of infinity_ and nan1_
3123   // are only 1 DLP apart.
3124   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3125                           "values_.nan1");
3126 #endif  // !GTEST_OS_SYMBIAN
3127 }
3128 
3129 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3130 TEST_F(DoubleTest, NaN) {
3131 #if !GTEST_OS_SYMBIAN
3132   // In C++Builder, names within local classes (such as used by
3133   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3134   // scoping class.  Use a static local alias as a workaround.
3135   // We use the assignment syntax since some compilers, like Sun Studio,
3136   // don't allow initializing references using construction syntax
3137   // (parentheses).
3138   static const DoubleTest::TestValues& v = this->values_;
3139 
3140   // Nokia's STLport crashes if we try to output infinity or NaN.
3141   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3142                           "v.nan1");
3143   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3144   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3145   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3146                        "v.infinity");
3147 #endif  // !GTEST_OS_SYMBIAN
3148 }
3149 
3150 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3151 TEST_F(DoubleTest, Reflexive) {
3152   EXPECT_DOUBLE_EQ(0.0, 0.0);
3153   EXPECT_DOUBLE_EQ(1.0, 1.0);
3154 #if !GTEST_OS_SYMBIAN
3155   // Nokia's STLport crashes if we try to output infinity or NaN.
3156   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3157 #endif  // !GTEST_OS_SYMBIAN
3158 }
3159 
3160 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3161 TEST_F(DoubleTest, Commutative) {
3162   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3163   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3164 
3165   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3166   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3167                           "1.0");
3168 }
3169 
3170 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3171 TEST_F(DoubleTest, EXPECT_NEAR) {
3172   EXPECT_NEAR(-1.0, -1.1, 0.2);
3173   EXPECT_NEAR(2.0, 3.0, 1.0);
3174   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3175                           "The difference between 1.0 and 1.5 is 0.5, "
3176                           "which exceeds 0.25");
3177   // To work around a bug in gcc 2.95.0, there is intentionally no
3178   // space after the first comma in the previous statement.
3179 }
3180 
3181 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3182 TEST_F(DoubleTest, ASSERT_NEAR) {
3183   ASSERT_NEAR(-1.0, -1.1, 0.2);
3184   ASSERT_NEAR(2.0, 3.0, 1.0);
3185   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3186                        "The difference between 1.0 and 1.5 is 0.5, "
3187                        "which exceeds 0.25");
3188   // To work around a bug in gcc 2.95.0, there is intentionally no
3189   // space after the first comma in the previous statement.
3190 }
3191 
3192 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3193 TEST_F(DoubleTest, DoubleLESucceeds) {
3194   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3195   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3196 
3197   // or when val1 is greater than, but almost equals to, val2.
3198   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3199 }
3200 
3201 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3202 TEST_F(DoubleTest, DoubleLEFails) {
3203   // When val1 is greater than val2 by a large margin,
3204   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3205                           "(2.0) <= (1.0)");
3206 
3207   // or by a small yet non-negligible margin,
3208   EXPECT_NONFATAL_FAILURE({  // NOLINT
3209     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3210   }, "(values_.further_from_one) <= (1.0)");
3211 
3212 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3213   // Nokia's STLport crashes if we try to output infinity or NaN.
3214   // C++Builder gives bad results for ordered comparisons involving NaNs
3215   // due to compiler bugs.
3216   EXPECT_NONFATAL_FAILURE({  // NOLINT
3217     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3218   }, "(values_.nan1) <= (values_.infinity)");
3219   EXPECT_NONFATAL_FAILURE({  // NOLINT
3220     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3221   }, " (-values_.infinity) <= (values_.nan1)");
3222   EXPECT_FATAL_FAILURE({  // NOLINT
3223     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3224   }, "(values_.nan1) <= (values_.nan1)");
3225 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3226 }
3227 
3228 
3229 // Verifies that a test or test case whose name starts with DISABLED_ is
3230 // not run.
3231 
3232 // A test whose name starts with DISABLED_.
3233 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3234 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3235   FAIL() << "Unexpected failure: Disabled test should not be run.";
3236 }
3237 
3238 // A test whose name does not start with DISABLED_.
3239 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3240 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3241   EXPECT_EQ(1, 1);
3242 }
3243 
3244 // A test case whose name starts with DISABLED_.
3245 // Should not run.
TEST(DISABLED_TestCase,TestShouldNotRun)3246 TEST(DISABLED_TestCase, TestShouldNotRun) {
3247   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3248 }
3249 
3250 // A test case and test whose names start with DISABLED_.
3251 // Should not run.
TEST(DISABLED_TestCase,DISABLED_TestShouldNotRun)3252 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3253   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3254 }
3255 
3256 // Check that when all tests in a test case are disabled, SetupTestCase() and
3257 // TearDownTestCase() are not called.
3258 class DisabledTestsTest : public Test {
3259  protected:
SetUpTestCase()3260   static void SetUpTestCase() {
3261     FAIL() << "Unexpected failure: All tests disabled in test case. "
3262               "SetupTestCase() should not be called.";
3263   }
3264 
TearDownTestCase()3265   static void TearDownTestCase() {
3266     FAIL() << "Unexpected failure: All tests disabled in test case. "
3267               "TearDownTestCase() should not be called.";
3268   }
3269 };
3270 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3271 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3272   FAIL() << "Unexpected failure: Disabled test should not be run.";
3273 }
3274 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3275 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3276   FAIL() << "Unexpected failure: Disabled test should not be run.";
3277 }
3278 
3279 // Tests that disabled typed tests aren't run.
3280 
3281 #if GTEST_HAS_TYPED_TEST
3282 
3283 template <typename T>
3284 class TypedTest : public Test {
3285 };
3286 
3287 typedef testing::Types<int, double> NumericTypes;
3288 TYPED_TEST_CASE(TypedTest, NumericTypes);
3289 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3290 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3291   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3292 }
3293 
3294 template <typename T>
3295 class DISABLED_TypedTest : public Test {
3296 };
3297 
3298 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3299 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3300 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3301   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3302 }
3303 
3304 #endif  // GTEST_HAS_TYPED_TEST
3305 
3306 // Tests that disabled type-parameterized tests aren't run.
3307 
3308 #if GTEST_HAS_TYPED_TEST_P
3309 
3310 template <typename T>
3311 class TypedTestP : public Test {
3312 };
3313 
3314 TYPED_TEST_CASE_P(TypedTestP);
3315 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3316 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3317   FAIL() << "Unexpected failure: "
3318          << "Disabled type-parameterized test should not run.";
3319 }
3320 
3321 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3322 
3323 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3324 
3325 template <typename T>
3326 class DISABLED_TypedTestP : public Test {
3327 };
3328 
3329 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3330 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3331 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3332   FAIL() << "Unexpected failure: "
3333          << "Disabled type-parameterized test should not run.";
3334 }
3335 
3336 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3337 
3338 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3339 
3340 #endif  // GTEST_HAS_TYPED_TEST_P
3341 
3342 // Tests that assertion macros evaluate their arguments exactly once.
3343 
3344 class SingleEvaluationTest : public Test {
3345  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3346   // This helper function is needed by the FailedASSERT_STREQ test
3347   // below.  It's public to work around C++Builder's bug with scoping local
3348   // classes.
CompareAndIncrementCharPtrs()3349   static void CompareAndIncrementCharPtrs() {
3350     ASSERT_STREQ(p1_++, p2_++);
3351   }
3352 
3353   // This helper function is needed by the FailedASSERT_NE test below.  It's
3354   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3355   static void CompareAndIncrementInts() {
3356     ASSERT_NE(a_++, b_++);
3357   }
3358 
3359  protected:
SingleEvaluationTest()3360   SingleEvaluationTest() {
3361     p1_ = s1_;
3362     p2_ = s2_;
3363     a_ = 0;
3364     b_ = 0;
3365   }
3366 
3367   static const char* const s1_;
3368   static const char* const s2_;
3369   static const char* p1_;
3370   static const char* p2_;
3371 
3372   static int a_;
3373   static int b_;
3374 };
3375 
3376 const char* const SingleEvaluationTest::s1_ = "01234";
3377 const char* const SingleEvaluationTest::s2_ = "abcde";
3378 const char* SingleEvaluationTest::p1_;
3379 const char* SingleEvaluationTest::p2_;
3380 int SingleEvaluationTest::a_;
3381 int SingleEvaluationTest::b_;
3382 
3383 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3384 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3385 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3386   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3387                        "p2_++");
3388   EXPECT_EQ(s1_ + 1, p1_);
3389   EXPECT_EQ(s2_ + 1, p2_);
3390 }
3391 
3392 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3393 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3394   // successful EXPECT_STRNE
3395   EXPECT_STRNE(p1_++, p2_++);
3396   EXPECT_EQ(s1_ + 1, p1_);
3397   EXPECT_EQ(s2_ + 1, p2_);
3398 
3399   // failed EXPECT_STRCASEEQ
3400   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3401                           "ignoring case");
3402   EXPECT_EQ(s1_ + 2, p1_);
3403   EXPECT_EQ(s2_ + 2, p2_);
3404 }
3405 
3406 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3407 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3408 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3409   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3410                        "(a_++) != (b_++)");
3411   EXPECT_EQ(1, a_);
3412   EXPECT_EQ(1, b_);
3413 }
3414 
3415 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3416 TEST_F(SingleEvaluationTest, OtherCases) {
3417   // successful EXPECT_TRUE
3418   EXPECT_TRUE(0 == a_++);  // NOLINT
3419   EXPECT_EQ(1, a_);
3420 
3421   // failed EXPECT_TRUE
3422   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3423   EXPECT_EQ(2, a_);
3424 
3425   // successful EXPECT_GT
3426   EXPECT_GT(a_++, b_++);
3427   EXPECT_EQ(3, a_);
3428   EXPECT_EQ(1, b_);
3429 
3430   // failed EXPECT_LT
3431   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3432   EXPECT_EQ(4, a_);
3433   EXPECT_EQ(2, b_);
3434 
3435   // successful ASSERT_TRUE
3436   ASSERT_TRUE(0 < a_++);  // NOLINT
3437   EXPECT_EQ(5, a_);
3438 
3439   // successful ASSERT_GT
3440   ASSERT_GT(a_++, b_++);
3441   EXPECT_EQ(6, a_);
3442   EXPECT_EQ(3, b_);
3443 }
3444 
3445 #if GTEST_HAS_EXCEPTIONS
3446 
ThrowAnInteger()3447 void ThrowAnInteger() {
3448   throw 1;
3449 }
3450 
3451 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3452 TEST_F(SingleEvaluationTest, ExceptionTests) {
3453   // successful EXPECT_THROW
3454   EXPECT_THROW({  // NOLINT
3455     a_++;
3456     ThrowAnInteger();
3457   }, int);
3458   EXPECT_EQ(1, a_);
3459 
3460   // failed EXPECT_THROW, throws different
3461   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3462     a_++;
3463     ThrowAnInteger();
3464   }, bool), "throws a different type");
3465   EXPECT_EQ(2, a_);
3466 
3467   // failed EXPECT_THROW, throws nothing
3468   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3469   EXPECT_EQ(3, a_);
3470 
3471   // successful EXPECT_NO_THROW
3472   EXPECT_NO_THROW(a_++);
3473   EXPECT_EQ(4, a_);
3474 
3475   // failed EXPECT_NO_THROW
3476   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3477     a_++;
3478     ThrowAnInteger();
3479   }), "it throws");
3480   EXPECT_EQ(5, a_);
3481 
3482   // successful EXPECT_ANY_THROW
3483   EXPECT_ANY_THROW({  // NOLINT
3484     a_++;
3485     ThrowAnInteger();
3486   });
3487   EXPECT_EQ(6, a_);
3488 
3489   // failed EXPECT_ANY_THROW
3490   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3491   EXPECT_EQ(7, a_);
3492 }
3493 
3494 #endif  // GTEST_HAS_EXCEPTIONS
3495 
3496 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3497 class NoFatalFailureTest : public Test {
3498  protected:
Succeeds()3499   void Succeeds() {}
FailsNonFatal()3500   void FailsNonFatal() {
3501     ADD_FAILURE() << "some non-fatal failure";
3502   }
Fails()3503   void Fails() {
3504     FAIL() << "some fatal failure";
3505   }
3506 
DoAssertNoFatalFailureOnFails()3507   void DoAssertNoFatalFailureOnFails() {
3508     ASSERT_NO_FATAL_FAILURE(Fails());
3509     ADD_FAILURE() << "shold not reach here.";
3510   }
3511 
DoExpectNoFatalFailureOnFails()3512   void DoExpectNoFatalFailureOnFails() {
3513     EXPECT_NO_FATAL_FAILURE(Fails());
3514     ADD_FAILURE() << "other failure";
3515   }
3516 };
3517 
TEST_F(NoFatalFailureTest,NoFailure)3518 TEST_F(NoFatalFailureTest, NoFailure) {
3519   EXPECT_NO_FATAL_FAILURE(Succeeds());
3520   ASSERT_NO_FATAL_FAILURE(Succeeds());
3521 }
3522 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3523 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3524   EXPECT_NONFATAL_FAILURE(
3525       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3526       "some non-fatal failure");
3527   EXPECT_NONFATAL_FAILURE(
3528       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3529       "some non-fatal failure");
3530 }
3531 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3532 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3533   TestPartResultArray gtest_failures;
3534   {
3535     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3536     DoAssertNoFatalFailureOnFails();
3537   }
3538   ASSERT_EQ(2, gtest_failures.size());
3539   EXPECT_EQ(TestPartResult::kFatalFailure,
3540             gtest_failures.GetTestPartResult(0).type());
3541   EXPECT_EQ(TestPartResult::kFatalFailure,
3542             gtest_failures.GetTestPartResult(1).type());
3543   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3544                       gtest_failures.GetTestPartResult(0).message());
3545   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3546                       gtest_failures.GetTestPartResult(1).message());
3547 }
3548 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3549 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3550   TestPartResultArray gtest_failures;
3551   {
3552     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3553     DoExpectNoFatalFailureOnFails();
3554   }
3555   ASSERT_EQ(3, gtest_failures.size());
3556   EXPECT_EQ(TestPartResult::kFatalFailure,
3557             gtest_failures.GetTestPartResult(0).type());
3558   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3559             gtest_failures.GetTestPartResult(1).type());
3560   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3561             gtest_failures.GetTestPartResult(2).type());
3562   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3563                       gtest_failures.GetTestPartResult(0).message());
3564   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3565                       gtest_failures.GetTestPartResult(1).message());
3566   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3567                       gtest_failures.GetTestPartResult(2).message());
3568 }
3569 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3570 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3571   TestPartResultArray gtest_failures;
3572   {
3573     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3574     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3575   }
3576   ASSERT_EQ(2, gtest_failures.size());
3577   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3578             gtest_failures.GetTestPartResult(0).type());
3579   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3580             gtest_failures.GetTestPartResult(1).type());
3581   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3582                       gtest_failures.GetTestPartResult(0).message());
3583   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3584                       gtest_failures.GetTestPartResult(1).message());
3585 }
3586 
3587 // Tests non-string assertions.
3588 
3589 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3590 TEST(AssertionTest, EqFailure) {
3591   const String foo_val("5"), bar_val("6");
3592   const String msg1(
3593       EqFailure("foo", "bar", foo_val, bar_val, false)
3594       .failure_message());
3595   EXPECT_STREQ(
3596       "Value of: bar\n"
3597       "  Actual: 6\n"
3598       "Expected: foo\n"
3599       "Which is: 5",
3600       msg1.c_str());
3601 
3602   const String msg2(
3603       EqFailure("foo", "6", foo_val, bar_val, false)
3604       .failure_message());
3605   EXPECT_STREQ(
3606       "Value of: 6\n"
3607       "Expected: foo\n"
3608       "Which is: 5",
3609       msg2.c_str());
3610 
3611   const String msg3(
3612       EqFailure("5", "bar", foo_val, bar_val, false)
3613       .failure_message());
3614   EXPECT_STREQ(
3615       "Value of: bar\n"
3616       "  Actual: 6\n"
3617       "Expected: 5",
3618       msg3.c_str());
3619 
3620   const String msg4(
3621       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3622   EXPECT_STREQ(
3623       "Value of: 6\n"
3624       "Expected: 5",
3625       msg4.c_str());
3626 
3627   const String msg5(
3628       EqFailure("foo", "bar",
3629                 String("\"x\""), String("\"y\""),
3630                 true).failure_message());
3631   EXPECT_STREQ(
3632       "Value of: bar\n"
3633       "  Actual: \"y\"\n"
3634       "Expected: foo (ignoring case)\n"
3635       "Which is: \"x\"",
3636       msg5.c_str());
3637 }
3638 
3639 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3640 TEST(AssertionTest, AppendUserMessage) {
3641   const String foo("foo");
3642 
3643   Message msg;
3644   EXPECT_STREQ("foo",
3645                AppendUserMessage(foo, msg).c_str());
3646 
3647   msg << "bar";
3648   EXPECT_STREQ("foo\nbar",
3649                AppendUserMessage(foo, msg).c_str());
3650 }
3651 
3652 #ifdef __BORLANDC__
3653 // Silences warnings: "Condition is always true", "Unreachable code"
3654 # pragma option push -w-ccc -w-rch
3655 #endif
3656 
3657 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3658 TEST(AssertionTest, ASSERT_TRUE) {
3659   ASSERT_TRUE(2 > 1);  // NOLINT
3660   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3661                        "2 < 1");
3662 }
3663 
3664 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3665 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3666   ASSERT_TRUE(ResultIsEven(2));
3667 #ifndef __BORLANDC__
3668   // ICE's in C++Builder.
3669   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3670                        "Value of: ResultIsEven(3)\n"
3671                        "  Actual: false (3 is odd)\n"
3672                        "Expected: true");
3673 #endif
3674   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3675   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3676                        "Value of: ResultIsEvenNoExplanation(3)\n"
3677                        "  Actual: false (3 is odd)\n"
3678                        "Expected: true");
3679 }
3680 
3681 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3682 TEST(AssertionTest, ASSERT_FALSE) {
3683   ASSERT_FALSE(2 < 1);  // NOLINT
3684   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3685                        "Value of: 2 > 1\n"
3686                        "  Actual: true\n"
3687                        "Expected: false");
3688 }
3689 
3690 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3691 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3692   ASSERT_FALSE(ResultIsEven(3));
3693 #ifndef __BORLANDC__
3694   // ICE's in C++Builder.
3695   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3696                        "Value of: ResultIsEven(2)\n"
3697                        "  Actual: true (2 is even)\n"
3698                        "Expected: false");
3699 #endif
3700   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3701   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3702                        "Value of: ResultIsEvenNoExplanation(2)\n"
3703                        "  Actual: true\n"
3704                        "Expected: false");
3705 }
3706 
3707 #ifdef __BORLANDC__
3708 // Restores warnings after previous "#pragma option push" supressed them
3709 # pragma option pop
3710 #endif
3711 
3712 // Tests using ASSERT_EQ on double values.  The purpose is to make
3713 // sure that the specialization we did for integer and anonymous enums
3714 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3715 TEST(ExpectTest, ASSERT_EQ_Double) {
3716   // A success.
3717   ASSERT_EQ(5.6, 5.6);
3718 
3719   // A failure.
3720   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3721                        "5.1");
3722 }
3723 
3724 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3725 TEST(AssertionTest, ASSERT_EQ) {
3726   ASSERT_EQ(5, 2 + 3);
3727   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3728                        "Value of: 2*3\n"
3729                        "  Actual: 6\n"
3730                        "Expected: 5");
3731 }
3732 
3733 // Tests ASSERT_EQ(NULL, pointer).
3734 #if GTEST_CAN_COMPARE_NULL
TEST(AssertionTest,ASSERT_EQ_NULL)3735 TEST(AssertionTest, ASSERT_EQ_NULL) {
3736   // A success.
3737   const char* p = NULL;
3738   // Some older GCC versions may issue a spurious waring in this or the next
3739   // assertion statement. This warning should not be suppressed with
3740   // static_cast since the test verifies the ability to use bare NULL as the
3741   // expected parameter to the macro.
3742   ASSERT_EQ(NULL, p);
3743 
3744   // A failure.
3745   static int n = 0;
3746   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3747                        "Value of: &n\n");
3748 }
3749 #endif  // GTEST_CAN_COMPARE_NULL
3750 
3751 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3752 // treated as a null pointer by the compiler, we need to make sure
3753 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3754 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3755 TEST(ExpectTest, ASSERT_EQ_0) {
3756   int n = 0;
3757 
3758   // A success.
3759   ASSERT_EQ(0, n);
3760 
3761   // A failure.
3762   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3763                        "Expected: 0");
3764 }
3765 
3766 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3767 TEST(AssertionTest, ASSERT_NE) {
3768   ASSERT_NE(6, 7);
3769   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3770                        "Expected: ('a') != ('a'), "
3771                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3772 }
3773 
3774 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3775 TEST(AssertionTest, ASSERT_LE) {
3776   ASSERT_LE(2, 3);
3777   ASSERT_LE(2, 2);
3778   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3779                        "Expected: (2) <= (0), actual: 2 vs 0");
3780 }
3781 
3782 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3783 TEST(AssertionTest, ASSERT_LT) {
3784   ASSERT_LT(2, 3);
3785   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3786                        "Expected: (2) < (2), actual: 2 vs 2");
3787 }
3788 
3789 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3790 TEST(AssertionTest, ASSERT_GE) {
3791   ASSERT_GE(2, 1);
3792   ASSERT_GE(2, 2);
3793   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3794                        "Expected: (2) >= (3), actual: 2 vs 3");
3795 }
3796 
3797 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3798 TEST(AssertionTest, ASSERT_GT) {
3799   ASSERT_GT(2, 1);
3800   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3801                        "Expected: (2) > (2), actual: 2 vs 2");
3802 }
3803 
3804 #if GTEST_HAS_EXCEPTIONS
3805 
ThrowNothing()3806 void ThrowNothing() {}
3807 
3808 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3809 TEST(AssertionTest, ASSERT_THROW) {
3810   ASSERT_THROW(ThrowAnInteger(), int);
3811 
3812 # ifndef __BORLANDC__
3813 
3814   // ICE's in C++Builder 2007 and 2009.
3815   EXPECT_FATAL_FAILURE(
3816       ASSERT_THROW(ThrowAnInteger(), bool),
3817       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3818       "  Actual: it throws a different type.");
3819 # endif
3820 
3821   EXPECT_FATAL_FAILURE(
3822       ASSERT_THROW(ThrowNothing(), bool),
3823       "Expected: ThrowNothing() throws an exception of type bool.\n"
3824       "  Actual: it throws nothing.");
3825 }
3826 
3827 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3828 TEST(AssertionTest, ASSERT_NO_THROW) {
3829   ASSERT_NO_THROW(ThrowNothing());
3830   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3831                        "Expected: ThrowAnInteger() doesn't throw an exception."
3832                        "\n  Actual: it throws.");
3833 }
3834 
3835 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3836 TEST(AssertionTest, ASSERT_ANY_THROW) {
3837   ASSERT_ANY_THROW(ThrowAnInteger());
3838   EXPECT_FATAL_FAILURE(
3839       ASSERT_ANY_THROW(ThrowNothing()),
3840       "Expected: ThrowNothing() throws an exception.\n"
3841       "  Actual: it doesn't.");
3842 }
3843 
3844 #endif  // GTEST_HAS_EXCEPTIONS
3845 
3846 // Makes sure we deal with the precedence of <<.  This test should
3847 // compile.
TEST(AssertionTest,AssertPrecedence)3848 TEST(AssertionTest, AssertPrecedence) {
3849   ASSERT_EQ(1 < 2, true);
3850   bool false_value = false;
3851   ASSERT_EQ(true && false_value, false);
3852 }
3853 
3854 // A subroutine used by the following test.
TestEq1(int x)3855 void TestEq1(int x) {
3856   ASSERT_EQ(1, x);
3857 }
3858 
3859 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3860 TEST(AssertionTest, NonFixtureSubroutine) {
3861   EXPECT_FATAL_FAILURE(TestEq1(2),
3862                        "Value of: x");
3863 }
3864 
3865 // An uncopyable class.
3866 class Uncopyable {
3867  public:
Uncopyable(int a_value)3868   explicit Uncopyable(int a_value) : value_(a_value) {}
3869 
value() const3870   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3871   bool operator==(const Uncopyable& rhs) const {
3872     return value() == rhs.value();
3873   }
3874  private:
3875   // This constructor deliberately has no implementation, as we don't
3876   // want this class to be copyable.
3877   Uncopyable(const Uncopyable&);  // NOLINT
3878 
3879   int value_;
3880 };
3881 
operator <<(::std::ostream & os,const Uncopyable & value)3882 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3883   return os << value.value();
3884 }
3885 
3886 
IsPositiveUncopyable(const Uncopyable & x)3887 bool IsPositiveUncopyable(const Uncopyable& x) {
3888   return x.value() > 0;
3889 }
3890 
3891 // A subroutine used by the following test.
TestAssertNonPositive()3892 void TestAssertNonPositive() {
3893   Uncopyable y(-1);
3894   ASSERT_PRED1(IsPositiveUncopyable, y);
3895 }
3896 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3897 void TestAssertEqualsUncopyable() {
3898   Uncopyable x(5);
3899   Uncopyable y(-1);
3900   ASSERT_EQ(x, y);
3901 }
3902 
3903 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3904 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3905   Uncopyable x(5);
3906   ASSERT_PRED1(IsPositiveUncopyable, x);
3907   ASSERT_EQ(x, x);
3908   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3909     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3910   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3911     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3912 }
3913 
3914 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3915 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3916   Uncopyable x(5);
3917   EXPECT_PRED1(IsPositiveUncopyable, x);
3918   Uncopyable y(-1);
3919   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3920     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3921   EXPECT_EQ(x, x);
3922   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3923     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3924 }
3925 
3926 enum NamedEnum {
3927   kE1 = 0,
3928   kE2 = 1
3929 };
3930 
TEST(AssertionTest,NamedEnum)3931 TEST(AssertionTest, NamedEnum) {
3932   EXPECT_EQ(kE1, kE1);
3933   EXPECT_LT(kE1, kE2);
3934   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3935   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3936 }
3937 
3938 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3939 // anonymous enums in assertions.  Therefore the following test is not
3940 // done on Mac.
3941 // Sun Studio and HP aCC also reject this code.
3942 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3943 
3944 // Tests using assertions with anonymous enums.
3945 enum {
3946   kCaseA = -1,
3947 
3948 # if GTEST_OS_LINUX
3949 
3950   // We want to test the case where the size of the anonymous enum is
3951   // larger than sizeof(int), to make sure our implementation of the
3952   // assertions doesn't truncate the enums.  However, MSVC
3953   // (incorrectly) doesn't allow an enum value to exceed the range of
3954   // an int, so this has to be conditionally compiled.
3955   //
3956   // On Linux, kCaseB and kCaseA have the same value when truncated to
3957   // int size.  We want to test whether this will confuse the
3958   // assertions.
3959   kCaseB = testing::internal::kMaxBiggestInt,
3960 
3961 # else
3962 
3963   kCaseB = INT_MAX,
3964 
3965 # endif  // GTEST_OS_LINUX
3966 
3967   kCaseC = 42
3968 };
3969 
TEST(AssertionTest,AnonymousEnum)3970 TEST(AssertionTest, AnonymousEnum) {
3971 # if GTEST_OS_LINUX
3972 
3973   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3974 
3975 # endif  // GTEST_OS_LINUX
3976 
3977   EXPECT_EQ(kCaseA, kCaseA);
3978   EXPECT_NE(kCaseA, kCaseB);
3979   EXPECT_LT(kCaseA, kCaseB);
3980   EXPECT_LE(kCaseA, kCaseB);
3981   EXPECT_GT(kCaseB, kCaseA);
3982   EXPECT_GE(kCaseA, kCaseA);
3983   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3984                           "(kCaseA) >= (kCaseB)");
3985   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3986                           "-1 vs 42");
3987 
3988   ASSERT_EQ(kCaseA, kCaseA);
3989   ASSERT_NE(kCaseA, kCaseB);
3990   ASSERT_LT(kCaseA, kCaseB);
3991   ASSERT_LE(kCaseA, kCaseB);
3992   ASSERT_GT(kCaseB, kCaseA);
3993   ASSERT_GE(kCaseA, kCaseA);
3994 
3995 # ifndef __BORLANDC__
3996 
3997   // ICE's in C++Builder.
3998   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3999                        "Value of: kCaseB");
4000   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4001                        "Actual: 42");
4002 # endif
4003 
4004   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4005                        "Which is: -1");
4006 }
4007 
4008 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
4009 
4010 #if GTEST_OS_WINDOWS
4011 
UnexpectedHRESULTFailure()4012 static HRESULT UnexpectedHRESULTFailure() {
4013   return E_UNEXPECTED;
4014 }
4015 
OkHRESULTSuccess()4016 static HRESULT OkHRESULTSuccess() {
4017   return S_OK;
4018 }
4019 
FalseHRESULTSuccess()4020 static HRESULT FalseHRESULTSuccess() {
4021   return S_FALSE;
4022 }
4023 
4024 // HRESULT assertion tests test both zero and non-zero
4025 // success codes as well as failure message for each.
4026 //
4027 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4028 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4029   EXPECT_HRESULT_SUCCEEDED(S_OK);
4030   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4031 
4032   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4033     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4034     "  Actual: 0x8000FFFF");
4035 }
4036 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4037 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4038   ASSERT_HRESULT_SUCCEEDED(S_OK);
4039   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4040 
4041   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4042     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4043     "  Actual: 0x8000FFFF");
4044 }
4045 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4046 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4047   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4048 
4049   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4050     "Expected: (OkHRESULTSuccess()) fails.\n"
4051     "  Actual: 0x00000000");
4052   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4053     "Expected: (FalseHRESULTSuccess()) fails.\n"
4054     "  Actual: 0x00000001");
4055 }
4056 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4057 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4058   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4059 
4060 # ifndef __BORLANDC__
4061 
4062   // ICE's in C++Builder 2007 and 2009.
4063   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4064     "Expected: (OkHRESULTSuccess()) fails.\n"
4065     "  Actual: 0x00000000");
4066 # endif
4067 
4068   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4069     "Expected: (FalseHRESULTSuccess()) fails.\n"
4070     "  Actual: 0x00000001");
4071 }
4072 
4073 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4074 TEST(HRESULTAssertionTest, Streaming) {
4075   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4076   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4077   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4078   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4079 
4080   EXPECT_NONFATAL_FAILURE(
4081       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4082       "expected failure");
4083 
4084 # ifndef __BORLANDC__
4085 
4086   // ICE's in C++Builder 2007 and 2009.
4087   EXPECT_FATAL_FAILURE(
4088       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4089       "expected failure");
4090 # endif
4091 
4092   EXPECT_NONFATAL_FAILURE(
4093       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4094       "expected failure");
4095 
4096   EXPECT_FATAL_FAILURE(
4097       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4098       "expected failure");
4099 }
4100 
4101 #endif  // GTEST_OS_WINDOWS
4102 
4103 #ifdef __BORLANDC__
4104 // Silences warnings: "Condition is always true", "Unreachable code"
4105 # pragma option push -w-ccc -w-rch
4106 #endif
4107 
4108 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4109 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4110   if (AlwaysFalse())
4111     ASSERT_TRUE(false) << "This should never be executed; "
4112                           "It's a compilation test only.";
4113 
4114   if (AlwaysTrue())
4115     EXPECT_FALSE(false);
4116   else
4117     ;  // NOLINT
4118 
4119   if (AlwaysFalse())
4120     ASSERT_LT(1, 3);
4121 
4122   if (AlwaysFalse())
4123     ;  // NOLINT
4124   else
4125     EXPECT_GT(3, 2) << "";
4126 }
4127 
4128 #if GTEST_HAS_EXCEPTIONS
4129 // Tests that the compiler will not complain about unreachable code in the
4130 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4131 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4132   int n = 0;
4133 
4134   EXPECT_THROW(throw 1, int);
4135   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4136   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4137   EXPECT_NO_THROW(n++);
4138   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4139   EXPECT_ANY_THROW(throw 1);
4140   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4141 }
4142 
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4143 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4144   if (AlwaysFalse())
4145     EXPECT_THROW(ThrowNothing(), bool);
4146 
4147   if (AlwaysTrue())
4148     EXPECT_THROW(ThrowAnInteger(), int);
4149   else
4150     ;  // NOLINT
4151 
4152   if (AlwaysFalse())
4153     EXPECT_NO_THROW(ThrowAnInteger());
4154 
4155   if (AlwaysTrue())
4156     EXPECT_NO_THROW(ThrowNothing());
4157   else
4158     ;  // NOLINT
4159 
4160   if (AlwaysFalse())
4161     EXPECT_ANY_THROW(ThrowNothing());
4162 
4163   if (AlwaysTrue())
4164     EXPECT_ANY_THROW(ThrowAnInteger());
4165   else
4166     ;  // NOLINT
4167 }
4168 #endif  // GTEST_HAS_EXCEPTIONS
4169 
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4170 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4171   if (AlwaysFalse())
4172     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4173                                     << "It's a compilation test only.";
4174   else
4175     ;  // NOLINT
4176 
4177   if (AlwaysFalse())
4178     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4179   else
4180     ;  // NOLINT
4181 
4182   if (AlwaysTrue())
4183     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4184   else
4185     ;  // NOLINT
4186 
4187   if (AlwaysFalse())
4188     ;  // NOLINT
4189   else
4190     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4191 }
4192 
4193 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4194 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4195   switch (0) {
4196     case 1:
4197       break;
4198     default:
4199       ASSERT_TRUE(true);
4200   }
4201 
4202   switch (0)
4203     case 0:
4204       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4205 
4206   // Binary assertions are implemented using a different code path
4207   // than the Boolean assertions.  Hence we test them separately.
4208   switch (0) {
4209     case 1:
4210     default:
4211       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4212   }
4213 
4214   switch (0)
4215     case 0:
4216       EXPECT_NE(1, 2);
4217 }
4218 
4219 #if GTEST_HAS_EXCEPTIONS
4220 
ThrowAString()4221 void ThrowAString() {
4222     throw "String";
4223 }
4224 
4225 // Test that the exception assertion macros compile and work with const
4226 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4227 TEST(AssertionSyntaxTest, WorksWithConst) {
4228     ASSERT_THROW(ThrowAString(), const char*);
4229 
4230     EXPECT_THROW(ThrowAString(), const char*);
4231 }
4232 
4233 #endif  // GTEST_HAS_EXCEPTIONS
4234 
4235 }  // namespace
4236 
4237 namespace testing {
4238 
4239 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4240 TEST(SuccessfulAssertionTest, SUCCEED) {
4241   SUCCEED();
4242   SUCCEED() << "OK";
4243   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4244 }
4245 
4246 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4247 TEST(SuccessfulAssertionTest, EXPECT) {
4248   EXPECT_TRUE(true);
4249   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4250 }
4251 
4252 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4253 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4254   EXPECT_STREQ("", "");
4255   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4256 }
4257 
4258 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4259 TEST(SuccessfulAssertionTest, ASSERT) {
4260   ASSERT_TRUE(true);
4261   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4262 }
4263 
4264 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4265 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4266   ASSERT_STREQ("", "");
4267   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4268 }
4269 
4270 }  // namespace testing
4271 
4272 namespace {
4273 
4274 // Tests the message streaming variation of assertions.
4275 
TEST(AssertionWithMessageTest,EXPECT)4276 TEST(AssertionWithMessageTest, EXPECT) {
4277   EXPECT_EQ(1, 1) << "This should succeed.";
4278   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4279                           "Expected failure #1");
4280   EXPECT_LE(1, 2) << "This should succeed.";
4281   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4282                           "Expected failure #2.");
4283   EXPECT_GE(1, 0) << "This should succeed.";
4284   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4285                           "Expected failure #3.");
4286 
4287   EXPECT_STREQ("1", "1") << "This should succeed.";
4288   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4289                           "Expected failure #4.");
4290   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4291   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4292                           "Expected failure #5.");
4293 
4294   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4295   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4296                           "Expected failure #6.");
4297   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4298 }
4299 
TEST(AssertionWithMessageTest,ASSERT)4300 TEST(AssertionWithMessageTest, ASSERT) {
4301   ASSERT_EQ(1, 1) << "This should succeed.";
4302   ASSERT_NE(1, 2) << "This should succeed.";
4303   ASSERT_LE(1, 2) << "This should succeed.";
4304   ASSERT_LT(1, 2) << "This should succeed.";
4305   ASSERT_GE(1, 0) << "This should succeed.";
4306   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4307                        "Expected failure.");
4308 }
4309 
TEST(AssertionWithMessageTest,ASSERT_STR)4310 TEST(AssertionWithMessageTest, ASSERT_STR) {
4311   ASSERT_STREQ("1", "1") << "This should succeed.";
4312   ASSERT_STRNE("1", "2") << "This should succeed.";
4313   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4314   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4315                        "Expected failure.");
4316 }
4317 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4318 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4319   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4320   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4321   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4322                        "Expect failure.");
4323   // To work around a bug in gcc 2.95.0, there is intentionally no
4324   // space after the first comma in the previous statement.
4325 }
4326 
4327 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4328 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4329   ASSERT_FALSE(false) << "This shouldn't fail.";
4330   EXPECT_FATAL_FAILURE({  // NOLINT
4331     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4332                        << " evaluates to " << true;
4333   }, "Expected failure");
4334 }
4335 
4336 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4337 TEST(AssertionWithMessageTest, FAIL) {
4338   EXPECT_FATAL_FAILURE(FAIL() << 0,
4339                        "0");
4340 }
4341 
4342 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4343 TEST(AssertionWithMessageTest, SUCCEED) {
4344   SUCCEED() << "Success == " << 1;
4345 }
4346 
4347 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4348 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4349   ASSERT_TRUE(true) << "This should succeed.";
4350   ASSERT_TRUE(true) << true;
4351   EXPECT_FATAL_FAILURE({  // NOLINT
4352     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4353                        << static_cast<char *>(NULL);
4354   }, "(null)(null)");
4355 }
4356 
4357 #if GTEST_OS_WINDOWS
4358 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4359 TEST(AssertionWithMessageTest, WideStringMessage) {
4360   EXPECT_NONFATAL_FAILURE({  // NOLINT
4361     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4362   }, "This failure is expected.");
4363   EXPECT_FATAL_FAILURE({  // NOLINT
4364     ASSERT_EQ(1, 2) << "This failure is "
4365                     << L"expected too.\x8120";
4366   }, "This failure is expected too.");
4367 }
4368 #endif  // GTEST_OS_WINDOWS
4369 
4370 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4371 TEST(ExpectTest, EXPECT_TRUE) {
4372   EXPECT_TRUE(true) << "Intentional success";
4373   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4374                           "Intentional failure #1.");
4375   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4376                           "Intentional failure #2.");
4377   EXPECT_TRUE(2 > 1);  // NOLINT
4378   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4379                           "Value of: 2 < 1\n"
4380                           "  Actual: false\n"
4381                           "Expected: true");
4382   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4383                           "2 > 3");
4384 }
4385 
4386 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4387 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4388   EXPECT_TRUE(ResultIsEven(2));
4389   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4390                           "Value of: ResultIsEven(3)\n"
4391                           "  Actual: false (3 is odd)\n"
4392                           "Expected: true");
4393   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4394   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4395                           "Value of: ResultIsEvenNoExplanation(3)\n"
4396                           "  Actual: false (3 is odd)\n"
4397                           "Expected: true");
4398 }
4399 
4400 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4401 TEST(ExpectTest, EXPECT_FALSE) {
4402   EXPECT_FALSE(2 < 1);  // NOLINT
4403   EXPECT_FALSE(false) << "Intentional success";
4404   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4405                           "Intentional failure #1.");
4406   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4407                           "Intentional failure #2.");
4408   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4409                           "Value of: 2 > 1\n"
4410                           "  Actual: true\n"
4411                           "Expected: false");
4412   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4413                           "2 < 3");
4414 }
4415 
4416 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4417 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4418   EXPECT_FALSE(ResultIsEven(3));
4419   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4420                           "Value of: ResultIsEven(2)\n"
4421                           "  Actual: true (2 is even)\n"
4422                           "Expected: false");
4423   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4424   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4425                           "Value of: ResultIsEvenNoExplanation(2)\n"
4426                           "  Actual: true\n"
4427                           "Expected: false");
4428 }
4429 
4430 #ifdef __BORLANDC__
4431 // Restores warnings after previous "#pragma option push" supressed them
4432 # pragma option pop
4433 #endif
4434 
4435 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4436 TEST(ExpectTest, EXPECT_EQ) {
4437   EXPECT_EQ(5, 2 + 3);
4438   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4439                           "Value of: 2*3\n"
4440                           "  Actual: 6\n"
4441                           "Expected: 5");
4442   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4443                           "2 - 3");
4444 }
4445 
4446 // Tests using EXPECT_EQ on double values.  The purpose is to make
4447 // sure that the specialization we did for integer and anonymous enums
4448 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4449 TEST(ExpectTest, EXPECT_EQ_Double) {
4450   // A success.
4451   EXPECT_EQ(5.6, 5.6);
4452 
4453   // A failure.
4454   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4455                           "5.1");
4456 }
4457 
4458 #if GTEST_CAN_COMPARE_NULL
4459 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4460 TEST(ExpectTest, EXPECT_EQ_NULL) {
4461   // A success.
4462   const char* p = NULL;
4463   // Some older GCC versions may issue a spurious warning in this or the next
4464   // assertion statement. This warning should not be suppressed with
4465   // static_cast since the test verifies the ability to use bare NULL as the
4466   // expected parameter to the macro.
4467   EXPECT_EQ(NULL, p);
4468 
4469   // A failure.
4470   int n = 0;
4471   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4472                           "Value of: &n\n");
4473 }
4474 #endif  // GTEST_CAN_COMPARE_NULL
4475 
4476 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4477 // treated as a null pointer by the compiler, we need to make sure
4478 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4479 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4480 TEST(ExpectTest, EXPECT_EQ_0) {
4481   int n = 0;
4482 
4483   // A success.
4484   EXPECT_EQ(0, n);
4485 
4486   // A failure.
4487   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4488                           "Expected: 0");
4489 }
4490 
4491 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4492 TEST(ExpectTest, EXPECT_NE) {
4493   EXPECT_NE(6, 7);
4494 
4495   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4496                           "Expected: ('a') != ('a'), "
4497                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4498   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4499                           "2");
4500   char* const p0 = NULL;
4501   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4502                           "p0");
4503   // Only way to get the Nokia compiler to compile the cast
4504   // is to have a separate void* variable first. Putting
4505   // the two casts on the same line doesn't work, neither does
4506   // a direct C-style to char*.
4507   void* pv1 = (void*)0x1234;  // NOLINT
4508   char* const p1 = reinterpret_cast<char*>(pv1);
4509   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4510                           "p1");
4511 }
4512 
4513 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4514 TEST(ExpectTest, EXPECT_LE) {
4515   EXPECT_LE(2, 3);
4516   EXPECT_LE(2, 2);
4517   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4518                           "Expected: (2) <= (0), actual: 2 vs 0");
4519   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4520                           "(1.1) <= (0.9)");
4521 }
4522 
4523 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4524 TEST(ExpectTest, EXPECT_LT) {
4525   EXPECT_LT(2, 3);
4526   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4527                           "Expected: (2) < (2), actual: 2 vs 2");
4528   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4529                           "(2) < (1)");
4530 }
4531 
4532 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4533 TEST(ExpectTest, EXPECT_GE) {
4534   EXPECT_GE(2, 1);
4535   EXPECT_GE(2, 2);
4536   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4537                           "Expected: (2) >= (3), actual: 2 vs 3");
4538   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4539                           "(0.9) >= (1.1)");
4540 }
4541 
4542 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4543 TEST(ExpectTest, EXPECT_GT) {
4544   EXPECT_GT(2, 1);
4545   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4546                           "Expected: (2) > (2), actual: 2 vs 2");
4547   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4548                           "(2) > (3)");
4549 }
4550 
4551 #if GTEST_HAS_EXCEPTIONS
4552 
4553 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4554 TEST(ExpectTest, EXPECT_THROW) {
4555   EXPECT_THROW(ThrowAnInteger(), int);
4556   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4557                           "Expected: ThrowAnInteger() throws an exception of "
4558                           "type bool.\n  Actual: it throws a different type.");
4559   EXPECT_NONFATAL_FAILURE(
4560       EXPECT_THROW(ThrowNothing(), bool),
4561       "Expected: ThrowNothing() throws an exception of type bool.\n"
4562       "  Actual: it throws nothing.");
4563 }
4564 
4565 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4566 TEST(ExpectTest, EXPECT_NO_THROW) {
4567   EXPECT_NO_THROW(ThrowNothing());
4568   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4569                           "Expected: ThrowAnInteger() doesn't throw an "
4570                           "exception.\n  Actual: it throws.");
4571 }
4572 
4573 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4574 TEST(ExpectTest, EXPECT_ANY_THROW) {
4575   EXPECT_ANY_THROW(ThrowAnInteger());
4576   EXPECT_NONFATAL_FAILURE(
4577       EXPECT_ANY_THROW(ThrowNothing()),
4578       "Expected: ThrowNothing() throws an exception.\n"
4579       "  Actual: it doesn't.");
4580 }
4581 
4582 #endif  // GTEST_HAS_EXCEPTIONS
4583 
4584 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4585 TEST(ExpectTest, ExpectPrecedence) {
4586   EXPECT_EQ(1 < 2, true);
4587   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4588                           "Value of: true && false");
4589 }
4590 
4591 
4592 // Tests the StreamableToString() function.
4593 
4594 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4595 TEST(StreamableToStringTest, Scalar) {
4596   EXPECT_STREQ("5", StreamableToString(5).c_str());
4597 }
4598 
4599 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4600 TEST(StreamableToStringTest, Pointer) {
4601   int n = 0;
4602   int* p = &n;
4603   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4604 }
4605 
4606 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4607 TEST(StreamableToStringTest, NullPointer) {
4608   int* p = NULL;
4609   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4610 }
4611 
4612 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4613 TEST(StreamableToStringTest, CString) {
4614   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4615 }
4616 
4617 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4618 TEST(StreamableToStringTest, NullCString) {
4619   char* p = NULL;
4620   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4621 }
4622 
4623 // Tests using streamable values as assertion messages.
4624 
4625 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4626 TEST(StreamableTest, string) {
4627   static const std::string str(
4628       "This failure message is a std::string, and is expected.");
4629   EXPECT_FATAL_FAILURE(FAIL() << str,
4630                        str.c_str());
4631 }
4632 
4633 // Tests that we can output strings containing embedded NULs.
4634 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4635 TEST(StreamableTest, stringWithEmbeddedNUL) {
4636   static const char char_array_with_nul[] =
4637       "Here's a NUL\0 and some more string";
4638   static const std::string string_with_nul(char_array_with_nul,
4639                                            sizeof(char_array_with_nul)
4640                                            - 1);  // drops the trailing NUL
4641   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4642                        "Here's a NUL\\0 and some more string");
4643 }
4644 
4645 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4646 TEST(StreamableTest, NULChar) {
4647   EXPECT_FATAL_FAILURE({  // NOLINT
4648     FAIL() << "A NUL" << '\0' << " and some more string";
4649   }, "A NUL\\0 and some more string");
4650 }
4651 
4652 // Tests using int as an assertion message.
TEST(StreamableTest,int)4653 TEST(StreamableTest, int) {
4654   EXPECT_FATAL_FAILURE(FAIL() << 900913,
4655                        "900913");
4656 }
4657 
4658 // Tests using NULL char pointer as an assertion message.
4659 //
4660 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4661 // implemented a workaround (substituting "(null)" for NULL).  This
4662 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4663 TEST(StreamableTest, NullCharPtr) {
4664   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4665                        "(null)");
4666 }
4667 
4668 // Tests that basic IO manipulators (endl, ends, and flush) can be
4669 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4670 TEST(StreamableTest, BasicIoManip) {
4671   EXPECT_FATAL_FAILURE({  // NOLINT
4672     FAIL() << "Line 1." << std::endl
4673            << "A NUL char " << std::ends << std::flush << " in line 2.";
4674   }, "Line 1.\nA NUL char \\0 in line 2.");
4675 }
4676 
4677 // Tests the macros that haven't been covered so far.
4678 
AddFailureHelper(bool * aborted)4679 void AddFailureHelper(bool* aborted) {
4680   *aborted = true;
4681   ADD_FAILURE() << "Intentional failure.";
4682   *aborted = false;
4683 }
4684 
4685 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4686 TEST(MacroTest, ADD_FAILURE) {
4687   bool aborted = true;
4688   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4689                           "Intentional failure.");
4690   EXPECT_FALSE(aborted);
4691 }
4692 
4693 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4694 TEST(MacroTest, ADD_FAILURE_AT) {
4695   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4696   // the failure message contains the user-streamed part.
4697   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4698 
4699   // Verifies that the user-streamed part is optional.
4700   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4701 
4702   // Unfortunately, we cannot verify that the failure message contains
4703   // the right file path and line number the same way, as
4704   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4705   // line number.  Instead, we do that in gtest_output_test_.cc.
4706 }
4707 
4708 // Tests FAIL.
TEST(MacroTest,FAIL)4709 TEST(MacroTest, FAIL) {
4710   EXPECT_FATAL_FAILURE(FAIL(),
4711                        "Failed");
4712   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4713                        "Intentional failure.");
4714 }
4715 
4716 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4717 TEST(MacroTest, SUCCEED) {
4718   SUCCEED();
4719   SUCCEED() << "Explicit success.";
4720 }
4721 
4722 // Tests for EXPECT_EQ() and ASSERT_EQ().
4723 //
4724 // These tests fail *intentionally*, s.t. the failure messages can be
4725 // generated and tested.
4726 //
4727 // We have different tests for different argument types.
4728 
4729 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4730 TEST(EqAssertionTest, Bool) {
4731   EXPECT_EQ(true,  true);
4732   EXPECT_FATAL_FAILURE({
4733       bool false_value = false;
4734       ASSERT_EQ(false_value, true);
4735     }, "Value of: true");
4736 }
4737 
4738 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4739 TEST(EqAssertionTest, Int) {
4740   ASSERT_EQ(32, 32);
4741   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4742                           "33");
4743 }
4744 
4745 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4746 TEST(EqAssertionTest, Time_T) {
4747   EXPECT_EQ(static_cast<time_t>(0),
4748             static_cast<time_t>(0));
4749   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4750                                  static_cast<time_t>(1234)),
4751                        "1234");
4752 }
4753 
4754 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4755 TEST(EqAssertionTest, Char) {
4756   ASSERT_EQ('z', 'z');
4757   const char ch = 'b';
4758   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4759                           "ch");
4760   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4761                           "ch");
4762 }
4763 
4764 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4765 TEST(EqAssertionTest, WideChar) {
4766   EXPECT_EQ(L'b', L'b');
4767 
4768   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4769                           "Value of: L'x'\n"
4770                           "  Actual: L'x' (120, 0x78)\n"
4771                           "Expected: L'\0'\n"
4772                           "Which is: L'\0' (0, 0x0)");
4773 
4774   static wchar_t wchar;
4775   wchar = L'b';
4776   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4777                           "wchar");
4778   wchar = 0x8119;
4779   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4780                        "Value of: wchar");
4781 }
4782 
4783 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4784 TEST(EqAssertionTest, StdString) {
4785   // Compares a const char* to an std::string that has identical
4786   // content.
4787   ASSERT_EQ("Test", ::std::string("Test"));
4788 
4789   // Compares two identical std::strings.
4790   static const ::std::string str1("A * in the middle");
4791   static const ::std::string str2(str1);
4792   EXPECT_EQ(str1, str2);
4793 
4794   // Compares a const char* to an std::string that has different
4795   // content
4796   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4797                           "::std::string(\"test\")");
4798 
4799   // Compares an std::string to a char* that has different content.
4800   char* const p1 = const_cast<char*>("foo");
4801   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4802                           "p1");
4803 
4804   // Compares two std::strings that have different contents, one of
4805   // which having a NUL character in the middle.  This should fail.
4806   static ::std::string str3(str1);
4807   str3.at(2) = '\0';
4808   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4809                        "Value of: str3\n"
4810                        "  Actual: \"A \\0 in the middle\"");
4811 }
4812 
4813 #if GTEST_HAS_STD_WSTRING
4814 
4815 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4816 TEST(EqAssertionTest, StdWideString) {
4817   // Compares two identical std::wstrings.
4818   const ::std::wstring wstr1(L"A * in the middle");
4819   const ::std::wstring wstr2(wstr1);
4820   ASSERT_EQ(wstr1, wstr2);
4821 
4822   // Compares an std::wstring to a const wchar_t* that has identical
4823   // content.
4824   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4825   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4826 
4827   // Compares an std::wstring to a const wchar_t* that has different
4828   // content.
4829   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4830   EXPECT_NONFATAL_FAILURE({  // NOLINT
4831     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4832   }, "kTestX8120");
4833 
4834   // Compares two std::wstrings that have different contents, one of
4835   // which having a NUL character in the middle.
4836   ::std::wstring wstr3(wstr1);
4837   wstr3.at(2) = L'\0';
4838   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4839                           "wstr3");
4840 
4841   // Compares a wchar_t* to an std::wstring that has different
4842   // content.
4843   EXPECT_FATAL_FAILURE({  // NOLINT
4844     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4845   }, "");
4846 }
4847 
4848 #endif  // GTEST_HAS_STD_WSTRING
4849 
4850 #if GTEST_HAS_GLOBAL_STRING
4851 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalString)4852 TEST(EqAssertionTest, GlobalString) {
4853   // Compares a const char* to a ::string that has identical content.
4854   EXPECT_EQ("Test", ::string("Test"));
4855 
4856   // Compares two identical ::strings.
4857   const ::string str1("A * in the middle");
4858   const ::string str2(str1);
4859   ASSERT_EQ(str1, str2);
4860 
4861   // Compares a ::string to a const char* that has different content.
4862   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4863                           "test");
4864 
4865   // Compares two ::strings that have different contents, one of which
4866   // having a NUL character in the middle.
4867   ::string str3(str1);
4868   str3.at(2) = '\0';
4869   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4870                           "str3");
4871 
4872   // Compares a ::string to a char* that has different content.
4873   EXPECT_FATAL_FAILURE({  // NOLINT
4874     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4875   }, "");
4876 }
4877 
4878 #endif  // GTEST_HAS_GLOBAL_STRING
4879 
4880 #if GTEST_HAS_GLOBAL_WSTRING
4881 
4882 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalWideString)4883 TEST(EqAssertionTest, GlobalWideString) {
4884   // Compares two identical ::wstrings.
4885   static const ::wstring wstr1(L"A * in the middle");
4886   static const ::wstring wstr2(wstr1);
4887   EXPECT_EQ(wstr1, wstr2);
4888 
4889   // Compares a const wchar_t* to a ::wstring that has identical content.
4890   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4891   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4892 
4893   // Compares a const wchar_t* to a ::wstring that has different
4894   // content.
4895   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4896   EXPECT_NONFATAL_FAILURE({  // NOLINT
4897     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4898   }, "Test\\x8119");
4899 
4900   // Compares a wchar_t* to a ::wstring that has different content.
4901   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4902   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4903                           "bar");
4904 
4905   // Compares two ::wstrings that have different contents, one of which
4906   // having a NUL character in the middle.
4907   static ::wstring wstr3;
4908   wstr3 = wstr1;
4909   wstr3.at(2) = L'\0';
4910   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4911                        "wstr3");
4912 }
4913 
4914 #endif  // GTEST_HAS_GLOBAL_WSTRING
4915 
4916 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4917 TEST(EqAssertionTest, CharPointer) {
4918   char* const p0 = NULL;
4919   // Only way to get the Nokia compiler to compile the cast
4920   // is to have a separate void* variable first. Putting
4921   // the two casts on the same line doesn't work, neither does
4922   // a direct C-style to char*.
4923   void* pv1 = (void*)0x1234;  // NOLINT
4924   void* pv2 = (void*)0xABC0;  // NOLINT
4925   char* const p1 = reinterpret_cast<char*>(pv1);
4926   char* const p2 = reinterpret_cast<char*>(pv2);
4927   ASSERT_EQ(p1, p1);
4928 
4929   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4930                           "Value of: p2");
4931   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4932                           "p2");
4933   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4934                                  reinterpret_cast<char*>(0xABC0)),
4935                        "ABC0");
4936 }
4937 
4938 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4939 TEST(EqAssertionTest, WideCharPointer) {
4940   wchar_t* const p0 = NULL;
4941   // Only way to get the Nokia compiler to compile the cast
4942   // is to have a separate void* variable first. Putting
4943   // the two casts on the same line doesn't work, neither does
4944   // a direct C-style to char*.
4945   void* pv1 = (void*)0x1234;  // NOLINT
4946   void* pv2 = (void*)0xABC0;  // NOLINT
4947   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4948   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4949   EXPECT_EQ(p0, p0);
4950 
4951   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4952                           "Value of: p2");
4953   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4954                           "p2");
4955   void* pv3 = (void*)0x1234;  // NOLINT
4956   void* pv4 = (void*)0xABC0;  // NOLINT
4957   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4958   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4959   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4960                           "p4");
4961 }
4962 
4963 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4964 TEST(EqAssertionTest, OtherPointer) {
4965   ASSERT_EQ(static_cast<const int*>(NULL),
4966             static_cast<const int*>(NULL));
4967   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4968                                  reinterpret_cast<const int*>(0x1234)),
4969                        "0x1234");
4970 }
4971 
4972 // A class that supports binary comparison operators but not streaming.
4973 class UnprintableChar {
4974  public:
UnprintableChar(char ch)4975   explicit UnprintableChar(char ch) : char_(ch) {}
4976 
operator ==(const UnprintableChar & rhs) const4977   bool operator==(const UnprintableChar& rhs) const {
4978     return char_ == rhs.char_;
4979   }
operator !=(const UnprintableChar & rhs) const4980   bool operator!=(const UnprintableChar& rhs) const {
4981     return char_ != rhs.char_;
4982   }
operator <(const UnprintableChar & rhs) const4983   bool operator<(const UnprintableChar& rhs) const {
4984     return char_ < rhs.char_;
4985   }
operator <=(const UnprintableChar & rhs) const4986   bool operator<=(const UnprintableChar& rhs) const {
4987     return char_ <= rhs.char_;
4988   }
operator >(const UnprintableChar & rhs) const4989   bool operator>(const UnprintableChar& rhs) const {
4990     return char_ > rhs.char_;
4991   }
operator >=(const UnprintableChar & rhs) const4992   bool operator>=(const UnprintableChar& rhs) const {
4993     return char_ >= rhs.char_;
4994   }
4995 
4996  private:
4997   char char_;
4998 };
4999 
5000 // Tests that ASSERT_EQ() and friends don't require the arguments to
5001 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)5002 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
5003   const UnprintableChar x('x'), y('y');
5004   ASSERT_EQ(x, x);
5005   EXPECT_NE(x, y);
5006   ASSERT_LT(x, y);
5007   EXPECT_LE(x, y);
5008   ASSERT_GT(y, x);
5009   EXPECT_GE(x, x);
5010 
5011   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
5012   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
5013   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
5014   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
5015   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
5016 
5017   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
5018   // variables, so we have to write UnprintableChar('x') instead of x.
5019 #ifndef __BORLANDC__
5020   // ICE's in C++Builder.
5021   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
5022                        "1-byte object <78>");
5023   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5024                        "1-byte object <78>");
5025 #endif
5026   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5027                        "1-byte object <79>");
5028   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5029                        "1-byte object <78>");
5030   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5031                        "1-byte object <79>");
5032 }
5033 
5034 // Tests the FRIEND_TEST macro.
5035 
5036 // This class has a private member we want to test.  We will test it
5037 // both in a TEST and in a TEST_F.
5038 class Foo {
5039  public:
Foo()5040   Foo() {}
5041 
5042  private:
Bar() const5043   int Bar() const { return 1; }
5044 
5045   // Declares the friend tests that can access the private member
5046   // Bar().
5047   FRIEND_TEST(FRIEND_TEST_Test, TEST);
5048   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5049 };
5050 
5051 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5052 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)5053 TEST(FRIEND_TEST_Test, TEST) {
5054   ASSERT_EQ(1, Foo().Bar());
5055 }
5056 
5057 // The fixture needed to test using FRIEND_TEST with TEST_F.
5058 class FRIEND_TEST_Test2 : public Test {
5059  protected:
5060   Foo foo;
5061 };
5062 
5063 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5064 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5065 TEST_F(FRIEND_TEST_Test2, TEST_F) {
5066   ASSERT_EQ(1, foo.Bar());
5067 }
5068 
5069 // Tests the life cycle of Test objects.
5070 
5071 // The test fixture for testing the life cycle of Test objects.
5072 //
5073 // This class counts the number of live test objects that uses this
5074 // fixture.
5075 class TestLifeCycleTest : public Test {
5076  protected:
5077   // Constructor.  Increments the number of test objects that uses
5078   // this fixture.
TestLifeCycleTest()5079   TestLifeCycleTest() { count_++; }
5080 
5081   // Destructor.  Decrements the number of test objects that uses this
5082   // fixture.
~TestLifeCycleTest()5083   ~TestLifeCycleTest() { count_--; }
5084 
5085   // Returns the number of live test objects that uses this fixture.
count() const5086   int count() const { return count_; }
5087 
5088  private:
5089   static int count_;
5090 };
5091 
5092 int TestLifeCycleTest::count_ = 0;
5093 
5094 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5095 TEST_F(TestLifeCycleTest, Test1) {
5096   // There should be only one test object in this test case that's
5097   // currently alive.
5098   ASSERT_EQ(1, count());
5099 }
5100 
5101 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5102 TEST_F(TestLifeCycleTest, Test2) {
5103   // After Test1 is done and Test2 is started, there should still be
5104   // only one live test object, as the object for Test1 should've been
5105   // deleted.
5106   ASSERT_EQ(1, count());
5107 }
5108 
5109 }  // namespace
5110 
5111 // Tests that the copy constructor works when it is NOT optimized away by
5112 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5113 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5114   // Checks that the copy constructor doesn't try to dereference NULL pointers
5115   // in the source object.
5116   AssertionResult r1 = AssertionSuccess();
5117   AssertionResult r2 = r1;
5118   // The following line is added to prevent the compiler from optimizing
5119   // away the constructor call.
5120   r1 << "abc";
5121 
5122   AssertionResult r3 = r1;
5123   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5124   EXPECT_STREQ("abc", r1.message());
5125 }
5126 
5127 // Tests that AssertionSuccess and AssertionFailure construct
5128 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5129 TEST(AssertionResultTest, ConstructionWorks) {
5130   AssertionResult r1 = AssertionSuccess();
5131   EXPECT_TRUE(r1);
5132   EXPECT_STREQ("", r1.message());
5133 
5134   AssertionResult r2 = AssertionSuccess() << "abc";
5135   EXPECT_TRUE(r2);
5136   EXPECT_STREQ("abc", r2.message());
5137 
5138   AssertionResult r3 = AssertionFailure();
5139   EXPECT_FALSE(r3);
5140   EXPECT_STREQ("", r3.message());
5141 
5142   AssertionResult r4 = AssertionFailure() << "def";
5143   EXPECT_FALSE(r4);
5144   EXPECT_STREQ("def", r4.message());
5145 
5146   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5147   EXPECT_FALSE(r5);
5148   EXPECT_STREQ("ghi", r5.message());
5149 }
5150 
5151 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5152 TEST(AssertionResultTest, NegationWorks) {
5153   AssertionResult r1 = AssertionSuccess() << "abc";
5154   EXPECT_FALSE(!r1);
5155   EXPECT_STREQ("abc", (!r1).message());
5156 
5157   AssertionResult r2 = AssertionFailure() << "def";
5158   EXPECT_TRUE(!r2);
5159   EXPECT_STREQ("def", (!r2).message());
5160 }
5161 
TEST(AssertionResultTest,StreamingWorks)5162 TEST(AssertionResultTest, StreamingWorks) {
5163   AssertionResult r = AssertionSuccess();
5164   r << "abc" << 'd' << 0 << true;
5165   EXPECT_STREQ("abcd0true", r.message());
5166 }
5167 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5168 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5169   AssertionResult r = AssertionSuccess();
5170   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5171   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5172 }
5173 
5174 // Tests streaming a user type whose definition and operator << are
5175 // both in the global namespace.
5176 class Base {
5177  public:
Base(int an_x)5178   explicit Base(int an_x) : x_(an_x) {}
x() const5179   int x() const { return x_; }
5180  private:
5181   int x_;
5182 };
operator <<(std::ostream & os,const Base & val)5183 std::ostream& operator<<(std::ostream& os,
5184                          const Base& val) {
5185   return os << val.x();
5186 }
operator <<(std::ostream & os,const Base * pointer)5187 std::ostream& operator<<(std::ostream& os,
5188                          const Base* pointer) {
5189   return os << "(" << pointer->x() << ")";
5190 }
5191 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5192 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5193   Message msg;
5194   Base a(1);
5195 
5196   msg << a << &a;  // Uses ::operator<<.
5197   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5198 }
5199 
5200 // Tests streaming a user type whose definition and operator<< are
5201 // both in an unnamed namespace.
5202 namespace {
5203 class MyTypeInUnnamedNameSpace : public Base {
5204  public:
MyTypeInUnnamedNameSpace(int an_x)5205   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5206 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5207 std::ostream& operator<<(std::ostream& os,
5208                          const MyTypeInUnnamedNameSpace& val) {
5209   return os << val.x();
5210 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5211 std::ostream& operator<<(std::ostream& os,
5212                          const MyTypeInUnnamedNameSpace* pointer) {
5213   return os << "(" << pointer->x() << ")";
5214 }
5215 }  // namespace
5216 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5217 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5218   Message msg;
5219   MyTypeInUnnamedNameSpace a(1);
5220 
5221   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5222   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5223 }
5224 
5225 // Tests streaming a user type whose definition and operator<< are
5226 // both in a user namespace.
5227 namespace namespace1 {
5228 class MyTypeInNameSpace1 : public Base {
5229  public:
MyTypeInNameSpace1(int an_x)5230   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5231 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5232 std::ostream& operator<<(std::ostream& os,
5233                          const MyTypeInNameSpace1& val) {
5234   return os << val.x();
5235 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5236 std::ostream& operator<<(std::ostream& os,
5237                          const MyTypeInNameSpace1* pointer) {
5238   return os << "(" << pointer->x() << ")";
5239 }
5240 }  // namespace namespace1
5241 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5242 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5243   Message msg;
5244   namespace1::MyTypeInNameSpace1 a(1);
5245 
5246   msg << a << &a;  // Uses namespace1::operator<<.
5247   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5248 }
5249 
5250 // Tests streaming a user type whose definition is in a user namespace
5251 // but whose operator<< is in the global namespace.
5252 namespace namespace2 {
5253 class MyTypeInNameSpace2 : public ::Base {
5254  public:
MyTypeInNameSpace2(int an_x)5255   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5256 };
5257 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5258 std::ostream& operator<<(std::ostream& os,
5259                          const namespace2::MyTypeInNameSpace2& val) {
5260   return os << val.x();
5261 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5262 std::ostream& operator<<(std::ostream& os,
5263                          const namespace2::MyTypeInNameSpace2* pointer) {
5264   return os << "(" << pointer->x() << ")";
5265 }
5266 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5267 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5268   Message msg;
5269   namespace2::MyTypeInNameSpace2 a(1);
5270 
5271   msg << a << &a;  // Uses ::operator<<.
5272   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5273 }
5274 
5275 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5276 TEST(MessageTest, NullPointers) {
5277   Message msg;
5278   char* const p1 = NULL;
5279   unsigned char* const p2 = NULL;
5280   int* p3 = NULL;
5281   double* p4 = NULL;
5282   bool* p5 = NULL;
5283   Message* p6 = NULL;
5284 
5285   msg << p1 << p2 << p3 << p4 << p5 << p6;
5286   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5287                msg.GetString().c_str());
5288 }
5289 
5290 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5291 TEST(MessageTest, WideStrings) {
5292   // Streams a NULL of type const wchar_t*.
5293   const wchar_t* const_wstr = NULL;
5294   EXPECT_STREQ("(null)",
5295                (Message() << const_wstr).GetString().c_str());
5296 
5297   // Streams a NULL of type wchar_t*.
5298   wchar_t* wstr = NULL;
5299   EXPECT_STREQ("(null)",
5300                (Message() << wstr).GetString().c_str());
5301 
5302   // Streams a non-NULL of type const wchar_t*.
5303   const_wstr = L"abc\x8119";
5304   EXPECT_STREQ("abc\xe8\x84\x99",
5305                (Message() << const_wstr).GetString().c_str());
5306 
5307   // Streams a non-NULL of type wchar_t*.
5308   wstr = const_cast<wchar_t*>(const_wstr);
5309   EXPECT_STREQ("abc\xe8\x84\x99",
5310                (Message() << wstr).GetString().c_str());
5311 }
5312 
5313 
5314 // This line tests that we can define tests in the testing namespace.
5315 namespace testing {
5316 
5317 // Tests the TestInfo class.
5318 
5319 class TestInfoTest : public Test {
5320  protected:
GetTestInfo(const char * test_name)5321   static const TestInfo* GetTestInfo(const char* test_name) {
5322     const TestCase* const test_case = GetUnitTestImpl()->
5323         GetTestCase("TestInfoTest", "", NULL, NULL);
5324 
5325     for (int i = 0; i < test_case->total_test_count(); ++i) {
5326       const TestInfo* const test_info = test_case->GetTestInfo(i);
5327       if (strcmp(test_name, test_info->name()) == 0)
5328         return test_info;
5329     }
5330     return NULL;
5331   }
5332 
GetTestResult(const TestInfo * test_info)5333   static const TestResult* GetTestResult(
5334       const TestInfo* test_info) {
5335     return test_info->result();
5336   }
5337 };
5338 
5339 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5340 TEST_F(TestInfoTest, Names) {
5341   const TestInfo* const test_info = GetTestInfo("Names");
5342 
5343   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5344   ASSERT_STREQ("Names", test_info->name());
5345 }
5346 
5347 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5348 TEST_F(TestInfoTest, result) {
5349   const TestInfo* const test_info = GetTestInfo("result");
5350 
5351   // Initially, there is no TestPartResult for this test.
5352   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5353 
5354   // After the previous assertion, there is still none.
5355   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5356 }
5357 
5358 // Tests setting up and tearing down a test case.
5359 
5360 class SetUpTestCaseTest : public Test {
5361  protected:
5362   // This will be called once before the first test in this test case
5363   // is run.
SetUpTestCase()5364   static void SetUpTestCase() {
5365     printf("Setting up the test case . . .\n");
5366 
5367     // Initializes some shared resource.  In this simple example, we
5368     // just create a C string.  More complex stuff can be done if
5369     // desired.
5370     shared_resource_ = "123";
5371 
5372     // Increments the number of test cases that have been set up.
5373     counter_++;
5374 
5375     // SetUpTestCase() should be called only once.
5376     EXPECT_EQ(1, counter_);
5377   }
5378 
5379   // This will be called once after the last test in this test case is
5380   // run.
TearDownTestCase()5381   static void TearDownTestCase() {
5382     printf("Tearing down the test case . . .\n");
5383 
5384     // Decrements the number of test cases that have been set up.
5385     counter_--;
5386 
5387     // TearDownTestCase() should be called only once.
5388     EXPECT_EQ(0, counter_);
5389 
5390     // Cleans up the shared resource.
5391     shared_resource_ = NULL;
5392   }
5393 
5394   // This will be called before each test in this test case.
SetUp()5395   virtual void SetUp() {
5396     // SetUpTestCase() should be called only once, so counter_ should
5397     // always be 1.
5398     EXPECT_EQ(1, counter_);
5399   }
5400 
5401   // Number of test cases that have been set up.
5402   static int counter_;
5403 
5404   // Some resource to be shared by all tests in this test case.
5405   static const char* shared_resource_;
5406 };
5407 
5408 int SetUpTestCaseTest::counter_ = 0;
5409 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5410 
5411 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5412 TEST_F(SetUpTestCaseTest, Test1) {
5413   EXPECT_STRNE(NULL, shared_resource_);
5414 }
5415 
5416 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5417 TEST_F(SetUpTestCaseTest, Test2) {
5418   EXPECT_STREQ("123", shared_resource_);
5419 }
5420 
5421 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5422 
5423 // The Flags struct stores a copy of all Google Test flags.
5424 struct Flags {
5425   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5426   Flags() : also_run_disabled_tests(false),
5427             break_on_failure(false),
5428             catch_exceptions(false),
5429             death_test_use_fork(false),
5430             filter(""),
5431             list_tests(false),
5432             output(""),
5433             print_time(true),
5434             random_seed(0),
5435             repeat(1),
5436             shuffle(false),
5437             stack_trace_depth(kMaxStackTraceDepth),
5438             stream_result_to(""),
5439             throw_on_failure(false) {}
5440 
5441   // Factory methods.
5442 
5443   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5444   // the given value.
AlsoRunDisabledTeststesting::Flags5445   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5446     Flags flags;
5447     flags.also_run_disabled_tests = also_run_disabled_tests;
5448     return flags;
5449   }
5450 
5451   // Creates a Flags struct where the gtest_break_on_failure flag has
5452   // the given value.
BreakOnFailuretesting::Flags5453   static Flags BreakOnFailure(bool break_on_failure) {
5454     Flags flags;
5455     flags.break_on_failure = break_on_failure;
5456     return flags;
5457   }
5458 
5459   // Creates a Flags struct where the gtest_catch_exceptions flag has
5460   // the given value.
CatchExceptionstesting::Flags5461   static Flags CatchExceptions(bool catch_exceptions) {
5462     Flags flags;
5463     flags.catch_exceptions = catch_exceptions;
5464     return flags;
5465   }
5466 
5467   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5468   // the given value.
DeathTestUseForktesting::Flags5469   static Flags DeathTestUseFork(bool death_test_use_fork) {
5470     Flags flags;
5471     flags.death_test_use_fork = death_test_use_fork;
5472     return flags;
5473   }
5474 
5475   // Creates a Flags struct where the gtest_filter flag has the given
5476   // value.
Filtertesting::Flags5477   static Flags Filter(const char* filter) {
5478     Flags flags;
5479     flags.filter = filter;
5480     return flags;
5481   }
5482 
5483   // Creates a Flags struct where the gtest_list_tests flag has the
5484   // given value.
ListTeststesting::Flags5485   static Flags ListTests(bool list_tests) {
5486     Flags flags;
5487     flags.list_tests = list_tests;
5488     return flags;
5489   }
5490 
5491   // Creates a Flags struct where the gtest_output flag has the given
5492   // value.
Outputtesting::Flags5493   static Flags Output(const char* output) {
5494     Flags flags;
5495     flags.output = output;
5496     return flags;
5497   }
5498 
5499   // Creates a Flags struct where the gtest_print_time flag has the given
5500   // value.
PrintTimetesting::Flags5501   static Flags PrintTime(bool print_time) {
5502     Flags flags;
5503     flags.print_time = print_time;
5504     return flags;
5505   }
5506 
5507   // Creates a Flags struct where the gtest_random_seed flag has
5508   // the given value.
RandomSeedtesting::Flags5509   static Flags RandomSeed(Int32 random_seed) {
5510     Flags flags;
5511     flags.random_seed = random_seed;
5512     return flags;
5513   }
5514 
5515   // Creates a Flags struct where the gtest_repeat flag has the given
5516   // value.
Repeattesting::Flags5517   static Flags Repeat(Int32 repeat) {
5518     Flags flags;
5519     flags.repeat = repeat;
5520     return flags;
5521   }
5522 
5523   // Creates a Flags struct where the gtest_shuffle flag has
5524   // the given value.
Shuffletesting::Flags5525   static Flags Shuffle(bool shuffle) {
5526     Flags flags;
5527     flags.shuffle = shuffle;
5528     return flags;
5529   }
5530 
5531   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5532   // the given value.
StackTraceDepthtesting::Flags5533   static Flags StackTraceDepth(Int32 stack_trace_depth) {
5534     Flags flags;
5535     flags.stack_trace_depth = stack_trace_depth;
5536     return flags;
5537   }
5538 
5539   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5540   // the given value.
StreamResultTotesting::Flags5541   static Flags StreamResultTo(const char* stream_result_to) {
5542     Flags flags;
5543     flags.stream_result_to = stream_result_to;
5544     return flags;
5545   }
5546 
5547   // Creates a Flags struct where the gtest_throw_on_failure flag has
5548   // the given value.
ThrowOnFailuretesting::Flags5549   static Flags ThrowOnFailure(bool throw_on_failure) {
5550     Flags flags;
5551     flags.throw_on_failure = throw_on_failure;
5552     return flags;
5553   }
5554 
5555   // These fields store the flag values.
5556   bool also_run_disabled_tests;
5557   bool break_on_failure;
5558   bool catch_exceptions;
5559   bool death_test_use_fork;
5560   const char* filter;
5561   bool list_tests;
5562   const char* output;
5563   bool print_time;
5564   Int32 random_seed;
5565   Int32 repeat;
5566   bool shuffle;
5567   Int32 stack_trace_depth;
5568   const char* stream_result_to;
5569   bool throw_on_failure;
5570 };
5571 
5572 // Fixture for testing InitGoogleTest().
5573 class InitGoogleTestTest : public Test {
5574  protected:
5575   // Clears the flags before each test.
SetUp()5576   virtual void SetUp() {
5577     GTEST_FLAG(also_run_disabled_tests) = false;
5578     GTEST_FLAG(break_on_failure) = false;
5579     GTEST_FLAG(catch_exceptions) = false;
5580     GTEST_FLAG(death_test_use_fork) = false;
5581     GTEST_FLAG(filter) = "";
5582     GTEST_FLAG(list_tests) = false;
5583     GTEST_FLAG(output) = "";
5584     GTEST_FLAG(print_time) = true;
5585     GTEST_FLAG(random_seed) = 0;
5586     GTEST_FLAG(repeat) = 1;
5587     GTEST_FLAG(shuffle) = false;
5588     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5589     GTEST_FLAG(stream_result_to) = "";
5590     GTEST_FLAG(throw_on_failure) = false;
5591   }
5592 
5593   // Asserts that two narrow or wide string arrays are equal.
5594   template <typename CharType>
AssertStringArrayEq(size_t size1,CharType ** array1,size_t size2,CharType ** array2)5595   static void AssertStringArrayEq(size_t size1, CharType** array1,
5596                                   size_t size2, CharType** array2) {
5597     ASSERT_EQ(size1, size2) << " Array sizes different.";
5598 
5599     for (size_t i = 0; i != size1; i++) {
5600       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5601     }
5602   }
5603 
5604   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5605   static void CheckFlags(const Flags& expected) {
5606     EXPECT_EQ(expected.also_run_disabled_tests,
5607               GTEST_FLAG(also_run_disabled_tests));
5608     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5609     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5610     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5611     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5612     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5613     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5614     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5615     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5616     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5617     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5618     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5619     EXPECT_STREQ(expected.stream_result_to,
5620                  GTEST_FLAG(stream_result_to).c_str());
5621     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5622   }
5623 
5624   // Parses a command line (specified by argc1 and argv1), then
5625   // verifies that the flag values are expected and that the
5626   // recognized flags are removed from the command line.
5627   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5628   static void TestParsingFlags(int argc1, const CharType** argv1,
5629                                int argc2, const CharType** argv2,
5630                                const Flags& expected, bool should_print_help) {
5631     const bool saved_help_flag = ::testing::internal::g_help_flag;
5632     ::testing::internal::g_help_flag = false;
5633 
5634 #if GTEST_HAS_STREAM_REDIRECTION
5635     CaptureStdout();
5636 #endif
5637 
5638     // Parses the command line.
5639     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5640 
5641 #if GTEST_HAS_STREAM_REDIRECTION
5642     const String captured_stdout = GetCapturedStdout();
5643 #endif
5644 
5645     // Verifies the flag values.
5646     CheckFlags(expected);
5647 
5648     // Verifies that the recognized flags are removed from the command
5649     // line.
5650     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5651 
5652     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5653     // help message for the flags it recognizes.
5654     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5655 
5656 #if GTEST_HAS_STREAM_REDIRECTION
5657     const char* const expected_help_fragment =
5658         "This program contains tests written using";
5659     if (should_print_help) {
5660       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5661     } else {
5662       EXPECT_PRED_FORMAT2(IsNotSubstring,
5663                           expected_help_fragment, captured_stdout);
5664     }
5665 #endif  // GTEST_HAS_STREAM_REDIRECTION
5666 
5667     ::testing::internal::g_help_flag = saved_help_flag;
5668   }
5669 
5670   // This macro wraps TestParsingFlags s.t. the user doesn't need
5671   // to specify the array sizes.
5672 
5673 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5674   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5675                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5676                    expected, should_print_help)
5677 };
5678 
5679 // Tests parsing an empty command line.
TEST_F(InitGoogleTestTest,Empty)5680 TEST_F(InitGoogleTestTest, Empty) {
5681   const char* argv[] = {
5682     NULL
5683   };
5684 
5685   const char* argv2[] = {
5686     NULL
5687   };
5688 
5689   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5690 }
5691 
5692 // Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest,NoFlag)5693 TEST_F(InitGoogleTestTest, NoFlag) {
5694   const char* argv[] = {
5695     "foo.exe",
5696     NULL
5697   };
5698 
5699   const char* argv2[] = {
5700     "foo.exe",
5701     NULL
5702   };
5703 
5704   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5705 }
5706 
5707 // Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterBad)5708 TEST_F(InitGoogleTestTest, FilterBad) {
5709   const char* argv[] = {
5710     "foo.exe",
5711     "--gtest_filter",
5712     NULL
5713   };
5714 
5715   const char* argv2[] = {
5716     "foo.exe",
5717     "--gtest_filter",
5718     NULL
5719   };
5720 
5721   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5722 }
5723 
5724 // Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterEmpty)5725 TEST_F(InitGoogleTestTest, FilterEmpty) {
5726   const char* argv[] = {
5727     "foo.exe",
5728     "--gtest_filter=",
5729     NULL
5730   };
5731 
5732   const char* argv2[] = {
5733     "foo.exe",
5734     NULL
5735   };
5736 
5737   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5738 }
5739 
5740 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterNonEmpty)5741 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5742   const char* argv[] = {
5743     "foo.exe",
5744     "--gtest_filter=abc",
5745     NULL
5746   };
5747 
5748   const char* argv2[] = {
5749     "foo.exe",
5750     NULL
5751   };
5752 
5753   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5754 }
5755 
5756 // Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest,BreakOnFailureWithoutValue)5757 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5758   const char* argv[] = {
5759     "foo.exe",
5760     "--gtest_break_on_failure",
5761     NULL
5762 };
5763 
5764   const char* argv2[] = {
5765     "foo.exe",
5766     NULL
5767   };
5768 
5769   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5770 }
5771 
5772 // Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_0)5773 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5774   const char* argv[] = {
5775     "foo.exe",
5776     "--gtest_break_on_failure=0",
5777     NULL
5778   };
5779 
5780   const char* argv2[] = {
5781     "foo.exe",
5782     NULL
5783   };
5784 
5785   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5786 }
5787 
5788 // Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_f)5789 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5790   const char* argv[] = {
5791     "foo.exe",
5792     "--gtest_break_on_failure=f",
5793     NULL
5794   };
5795 
5796   const char* argv2[] = {
5797     "foo.exe",
5798     NULL
5799   };
5800 
5801   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5802 }
5803 
5804 // Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_F)5805 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5806   const char* argv[] = {
5807     "foo.exe",
5808     "--gtest_break_on_failure=F",
5809     NULL
5810   };
5811 
5812   const char* argv2[] = {
5813     "foo.exe",
5814     NULL
5815   };
5816 
5817   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5818 }
5819 
5820 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5821 // definition.
TEST_F(InitGoogleTestTest,BreakOnFailureTrue)5822 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5823   const char* argv[] = {
5824     "foo.exe",
5825     "--gtest_break_on_failure=1",
5826     NULL
5827   };
5828 
5829   const char* argv2[] = {
5830     "foo.exe",
5831     NULL
5832   };
5833 
5834   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5835 }
5836 
5837 // Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest,CatchExceptions)5838 TEST_F(InitGoogleTestTest, CatchExceptions) {
5839   const char* argv[] = {
5840     "foo.exe",
5841     "--gtest_catch_exceptions",
5842     NULL
5843   };
5844 
5845   const char* argv2[] = {
5846     "foo.exe",
5847     NULL
5848   };
5849 
5850   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5851 }
5852 
5853 // Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest,DeathTestUseFork)5854 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5855   const char* argv[] = {
5856     "foo.exe",
5857     "--gtest_death_test_use_fork",
5858     NULL
5859   };
5860 
5861   const char* argv2[] = {
5862     "foo.exe",
5863     NULL
5864   };
5865 
5866   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5867 }
5868 
5869 // Tests having the same flag twice with different values.  The
5870 // expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest,DuplicatedFlags)5871 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5872   const char* argv[] = {
5873     "foo.exe",
5874     "--gtest_filter=a",
5875     "--gtest_filter=b",
5876     NULL
5877   };
5878 
5879   const char* argv2[] = {
5880     "foo.exe",
5881     NULL
5882   };
5883 
5884   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5885 }
5886 
5887 // Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest,UnrecognizedFlag)5888 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5889   const char* argv[] = {
5890     "foo.exe",
5891     "--gtest_break_on_failure",
5892     "bar",  // Unrecognized by Google Test.
5893     "--gtest_filter=b",
5894     NULL
5895   };
5896 
5897   const char* argv2[] = {
5898     "foo.exe",
5899     "bar",
5900     NULL
5901   };
5902 
5903   Flags flags;
5904   flags.break_on_failure = true;
5905   flags.filter = "b";
5906   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5907 }
5908 
5909 // Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest,ListTestsFlag)5910 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5911     const char* argv[] = {
5912       "foo.exe",
5913       "--gtest_list_tests",
5914       NULL
5915     };
5916 
5917     const char* argv2[] = {
5918       "foo.exe",
5919       NULL
5920     };
5921 
5922     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5923 }
5924 
5925 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest,ListTestsTrue)5926 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5927     const char* argv[] = {
5928       "foo.exe",
5929       "--gtest_list_tests=1",
5930       NULL
5931     };
5932 
5933     const char* argv2[] = {
5934       "foo.exe",
5935       NULL
5936     };
5937 
5938     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5939 }
5940 
5941 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest,ListTestsFalse)5942 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5943     const char* argv[] = {
5944       "foo.exe",
5945       "--gtest_list_tests=0",
5946       NULL
5947     };
5948 
5949     const char* argv2[] = {
5950       "foo.exe",
5951       NULL
5952     };
5953 
5954     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5955 }
5956 
5957 // Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest,ListTestsFalse_f)5958 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5959   const char* argv[] = {
5960     "foo.exe",
5961     "--gtest_list_tests=f",
5962     NULL
5963   };
5964 
5965   const char* argv2[] = {
5966     "foo.exe",
5967     NULL
5968   };
5969 
5970   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5971 }
5972 
5973 // Tests parsing --gtest_list_tests=F.
TEST_F(InitGoogleTestTest,ListTestsFalse_F)5974 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5975   const char* argv[] = {
5976     "foo.exe",
5977     "--gtest_list_tests=F",
5978     NULL
5979   };
5980 
5981   const char* argv2[] = {
5982     "foo.exe",
5983     NULL
5984   };
5985 
5986   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5987 }
5988 
5989 // Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest,OutputEmpty)5990 TEST_F(InitGoogleTestTest, OutputEmpty) {
5991   const char* argv[] = {
5992     "foo.exe",
5993     "--gtest_output",
5994     NULL
5995   };
5996 
5997   const char* argv2[] = {
5998     "foo.exe",
5999     "--gtest_output",
6000     NULL
6001   };
6002 
6003   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6004 }
6005 
6006 // Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest,OutputXml)6007 TEST_F(InitGoogleTestTest, OutputXml) {
6008   const char* argv[] = {
6009     "foo.exe",
6010     "--gtest_output=xml",
6011     NULL
6012   };
6013 
6014   const char* argv2[] = {
6015     "foo.exe",
6016     NULL
6017   };
6018 
6019   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6020 }
6021 
6022 // Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest,OutputXmlFile)6023 TEST_F(InitGoogleTestTest, OutputXmlFile) {
6024   const char* argv[] = {
6025     "foo.exe",
6026     "--gtest_output=xml:file",
6027     NULL
6028   };
6029 
6030   const char* argv2[] = {
6031     "foo.exe",
6032     NULL
6033   };
6034 
6035   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6036 }
6037 
6038 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest,OutputXmlDirectory)6039 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
6040   const char* argv[] = {
6041     "foo.exe",
6042     "--gtest_output=xml:directory/path/",
6043     NULL
6044   };
6045 
6046   const char* argv2[] = {
6047     "foo.exe",
6048     NULL
6049   };
6050 
6051   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6052                             Flags::Output("xml:directory/path/"), false);
6053 }
6054 
6055 // Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest,PrintTimeFlag)6056 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
6057     const char* argv[] = {
6058       "foo.exe",
6059       "--gtest_print_time",
6060       NULL
6061     };
6062 
6063     const char* argv2[] = {
6064       "foo.exe",
6065       NULL
6066     };
6067 
6068     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6069 }
6070 
6071 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest,PrintTimeTrue)6072 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
6073     const char* argv[] = {
6074       "foo.exe",
6075       "--gtest_print_time=1",
6076       NULL
6077     };
6078 
6079     const char* argv2[] = {
6080       "foo.exe",
6081       NULL
6082     };
6083 
6084     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6085 }
6086 
6087 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest,PrintTimeFalse)6088 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
6089     const char* argv[] = {
6090       "foo.exe",
6091       "--gtest_print_time=0",
6092       NULL
6093     };
6094 
6095     const char* argv2[] = {
6096       "foo.exe",
6097       NULL
6098     };
6099 
6100     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6101 }
6102 
6103 // Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest,PrintTimeFalse_f)6104 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
6105   const char* argv[] = {
6106     "foo.exe",
6107     "--gtest_print_time=f",
6108     NULL
6109   };
6110 
6111   const char* argv2[] = {
6112     "foo.exe",
6113     NULL
6114   };
6115 
6116   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6117 }
6118 
6119 // Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest,PrintTimeFalse_F)6120 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
6121   const char* argv[] = {
6122     "foo.exe",
6123     "--gtest_print_time=F",
6124     NULL
6125   };
6126 
6127   const char* argv2[] = {
6128     "foo.exe",
6129     NULL
6130   };
6131 
6132   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6133 }
6134 
6135 // Tests parsing --gtest_random_seed=number
TEST_F(InitGoogleTestTest,RandomSeed)6136 TEST_F(InitGoogleTestTest, RandomSeed) {
6137   const char* argv[] = {
6138     "foo.exe",
6139     "--gtest_random_seed=1000",
6140     NULL
6141   };
6142 
6143   const char* argv2[] = {
6144     "foo.exe",
6145     NULL
6146   };
6147 
6148   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6149 }
6150 
6151 // Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest,Repeat)6152 TEST_F(InitGoogleTestTest, Repeat) {
6153   const char* argv[] = {
6154     "foo.exe",
6155     "--gtest_repeat=1000",
6156     NULL
6157   };
6158 
6159   const char* argv2[] = {
6160     "foo.exe",
6161     NULL
6162   };
6163 
6164   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6165 }
6166 
6167 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFlag)6168 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6169     const char* argv[] = {
6170       "foo.exe",
6171       "--gtest_also_run_disabled_tests",
6172       NULL
6173     };
6174 
6175     const char* argv2[] = {
6176       "foo.exe",
6177       NULL
6178     };
6179 
6180     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6181                               Flags::AlsoRunDisabledTests(true), false);
6182 }
6183 
6184 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsTrue)6185 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6186     const char* argv[] = {
6187       "foo.exe",
6188       "--gtest_also_run_disabled_tests=1",
6189       NULL
6190     };
6191 
6192     const char* argv2[] = {
6193       "foo.exe",
6194       NULL
6195     };
6196 
6197     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6198                               Flags::AlsoRunDisabledTests(true), false);
6199 }
6200 
6201 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFalse)6202 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6203     const char* argv[] = {
6204       "foo.exe",
6205       "--gtest_also_run_disabled_tests=0",
6206       NULL
6207     };
6208 
6209     const char* argv2[] = {
6210       "foo.exe",
6211       NULL
6212     };
6213 
6214     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6215                               Flags::AlsoRunDisabledTests(false), false);
6216 }
6217 
6218 // Tests parsing --gtest_shuffle.
TEST_F(InitGoogleTestTest,ShuffleWithoutValue)6219 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6220   const char* argv[] = {
6221     "foo.exe",
6222     "--gtest_shuffle",
6223     NULL
6224 };
6225 
6226   const char* argv2[] = {
6227     "foo.exe",
6228     NULL
6229   };
6230 
6231   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6232 }
6233 
6234 // Tests parsing --gtest_shuffle=0.
TEST_F(InitGoogleTestTest,ShuffleFalse_0)6235 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6236   const char* argv[] = {
6237     "foo.exe",
6238     "--gtest_shuffle=0",
6239     NULL
6240   };
6241 
6242   const char* argv2[] = {
6243     "foo.exe",
6244     NULL
6245   };
6246 
6247   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6248 }
6249 
6250 // Tests parsing a --gtest_shuffle flag that has a "true"
6251 // definition.
TEST_F(InitGoogleTestTest,ShuffleTrue)6252 TEST_F(InitGoogleTestTest, ShuffleTrue) {
6253   const char* argv[] = {
6254     "foo.exe",
6255     "--gtest_shuffle=1",
6256     NULL
6257   };
6258 
6259   const char* argv2[] = {
6260     "foo.exe",
6261     NULL
6262   };
6263 
6264   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6265 }
6266 
6267 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(InitGoogleTestTest,StackTraceDepth)6268 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6269   const char* argv[] = {
6270     "foo.exe",
6271     "--gtest_stack_trace_depth=5",
6272     NULL
6273   };
6274 
6275   const char* argv2[] = {
6276     "foo.exe",
6277     NULL
6278   };
6279 
6280   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6281 }
6282 
TEST_F(InitGoogleTestTest,StreamResultTo)6283 TEST_F(InitGoogleTestTest, StreamResultTo) {
6284   const char* argv[] = {
6285     "foo.exe",
6286     "--gtest_stream_result_to=localhost:1234",
6287     NULL
6288   };
6289 
6290   const char* argv2[] = {
6291     "foo.exe",
6292     NULL
6293   };
6294 
6295   GTEST_TEST_PARSING_FLAGS_(
6296       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6297 }
6298 
6299 // Tests parsing --gtest_throw_on_failure.
TEST_F(InitGoogleTestTest,ThrowOnFailureWithoutValue)6300 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6301   const char* argv[] = {
6302     "foo.exe",
6303     "--gtest_throw_on_failure",
6304     NULL
6305 };
6306 
6307   const char* argv2[] = {
6308     "foo.exe",
6309     NULL
6310   };
6311 
6312   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6313 }
6314 
6315 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(InitGoogleTestTest,ThrowOnFailureFalse_0)6316 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6317   const char* argv[] = {
6318     "foo.exe",
6319     "--gtest_throw_on_failure=0",
6320     NULL
6321   };
6322 
6323   const char* argv2[] = {
6324     "foo.exe",
6325     NULL
6326   };
6327 
6328   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6329 }
6330 
6331 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6332 // definition.
TEST_F(InitGoogleTestTest,ThrowOnFailureTrue)6333 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6334   const char* argv[] = {
6335     "foo.exe",
6336     "--gtest_throw_on_failure=1",
6337     NULL
6338   };
6339 
6340   const char* argv2[] = {
6341     "foo.exe",
6342     NULL
6343   };
6344 
6345   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6346 }
6347 
6348 #if GTEST_OS_WINDOWS
6349 // Tests parsing wide strings.
TEST_F(InitGoogleTestTest,WideStrings)6350 TEST_F(InitGoogleTestTest, WideStrings) {
6351   const wchar_t* argv[] = {
6352     L"foo.exe",
6353     L"--gtest_filter=Foo*",
6354     L"--gtest_list_tests=1",
6355     L"--gtest_break_on_failure",
6356     L"--non_gtest_flag",
6357     NULL
6358   };
6359 
6360   const wchar_t* argv2[] = {
6361     L"foo.exe",
6362     L"--non_gtest_flag",
6363     NULL
6364   };
6365 
6366   Flags expected_flags;
6367   expected_flags.break_on_failure = true;
6368   expected_flags.filter = "Foo*";
6369   expected_flags.list_tests = true;
6370 
6371   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6372 }
6373 #endif  // GTEST_OS_WINDOWS
6374 
6375 // Tests current_test_info() in UnitTest.
6376 class CurrentTestInfoTest : public Test {
6377  protected:
6378   // Tests that current_test_info() returns NULL before the first test in
6379   // the test case is run.
SetUpTestCase()6380   static void SetUpTestCase() {
6381     // There should be no tests running at this point.
6382     const TestInfo* test_info =
6383       UnitTest::GetInstance()->current_test_info();
6384     EXPECT_TRUE(test_info == NULL)
6385         << "There should be no tests running at this point.";
6386   }
6387 
6388   // Tests that current_test_info() returns NULL after the last test in
6389   // the test case has run.
TearDownTestCase()6390   static void TearDownTestCase() {
6391     const TestInfo* test_info =
6392       UnitTest::GetInstance()->current_test_info();
6393     EXPECT_TRUE(test_info == NULL)
6394         << "There should be no tests running at this point.";
6395   }
6396 };
6397 
6398 // Tests that current_test_info() returns TestInfo for currently running
6399 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestCase)6400 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6401   const TestInfo* test_info =
6402     UnitTest::GetInstance()->current_test_info();
6403   ASSERT_TRUE(NULL != test_info)
6404       << "There is a test running so we should have a valid TestInfo.";
6405   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6406       << "Expected the name of the currently running test case.";
6407   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6408       << "Expected the name of the currently running test.";
6409 }
6410 
6411 // Tests that current_test_info() returns TestInfo for currently running
6412 // test by checking the expected test name against the actual one.  We
6413 // use this test to see that the TestInfo object actually changed from
6414 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestCase)6415 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6416   const TestInfo* test_info =
6417     UnitTest::GetInstance()->current_test_info();
6418   ASSERT_TRUE(NULL != test_info)
6419       << "There is a test running so we should have a valid TestInfo.";
6420   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6421       << "Expected the name of the currently running test case.";
6422   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6423       << "Expected the name of the currently running test.";
6424 }
6425 
6426 }  // namespace testing
6427 
6428 // These two lines test that we can define tests in a namespace that
6429 // has the name "testing" and is nested in another namespace.
6430 namespace my_namespace {
6431 namespace testing {
6432 
6433 // Makes sure that TEST knows to use ::testing::Test instead of
6434 // ::my_namespace::testing::Test.
6435 class Test {};
6436 
6437 // Makes sure that an assertion knows to use ::testing::Message instead of
6438 // ::my_namespace::testing::Message.
6439 class Message {};
6440 
6441 // Makes sure that an assertion knows to use
6442 // ::testing::AssertionResult instead of
6443 // ::my_namespace::testing::AssertionResult.
6444 class AssertionResult {};
6445 
6446 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6447 TEST(NestedTestingNamespaceTest, Success) {
6448   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6449 }
6450 
6451 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6452 TEST(NestedTestingNamespaceTest, Failure) {
6453   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6454                        "This failure is expected.");
6455 }
6456 
6457 }  // namespace testing
6458 }  // namespace my_namespace
6459 
6460 // Tests that one can call superclass SetUp and TearDown methods--
6461 // that is, that they are not private.
6462 // No tests are based on this fixture; the test "passes" if it compiles
6463 // successfully.
6464 class ProtectedFixtureMethodsTest : public Test {
6465  protected:
SetUp()6466   virtual void SetUp() {
6467     Test::SetUp();
6468   }
TearDown()6469   virtual void TearDown() {
6470     Test::TearDown();
6471   }
6472 };
6473 
6474 // StreamingAssertionsTest tests the streaming versions of a representative
6475 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6476 TEST(StreamingAssertionsTest, Unconditional) {
6477   SUCCEED() << "expected success";
6478   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6479                           "expected failure");
6480   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6481                        "expected failure");
6482 }
6483 
6484 #ifdef __BORLANDC__
6485 // Silences warnings: "Condition is always true", "Unreachable code"
6486 # pragma option push -w-ccc -w-rch
6487 #endif
6488 
TEST(StreamingAssertionsTest,Truth)6489 TEST(StreamingAssertionsTest, Truth) {
6490   EXPECT_TRUE(true) << "unexpected failure";
6491   ASSERT_TRUE(true) << "unexpected failure";
6492   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6493                           "expected failure");
6494   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6495                        "expected failure");
6496 }
6497 
TEST(StreamingAssertionsTest,Truth2)6498 TEST(StreamingAssertionsTest, Truth2) {
6499   EXPECT_FALSE(false) << "unexpected failure";
6500   ASSERT_FALSE(false) << "unexpected failure";
6501   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6502                           "expected failure");
6503   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6504                        "expected failure");
6505 }
6506 
6507 #ifdef __BORLANDC__
6508 // Restores warnings after previous "#pragma option push" supressed them
6509 # pragma option pop
6510 #endif
6511 
TEST(StreamingAssertionsTest,IntegerEquals)6512 TEST(StreamingAssertionsTest, IntegerEquals) {
6513   EXPECT_EQ(1, 1) << "unexpected failure";
6514   ASSERT_EQ(1, 1) << "unexpected failure";
6515   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6516                           "expected failure");
6517   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6518                        "expected failure");
6519 }
6520 
TEST(StreamingAssertionsTest,IntegerLessThan)6521 TEST(StreamingAssertionsTest, IntegerLessThan) {
6522   EXPECT_LT(1, 2) << "unexpected failure";
6523   ASSERT_LT(1, 2) << "unexpected failure";
6524   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6525                           "expected failure");
6526   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6527                        "expected failure");
6528 }
6529 
TEST(StreamingAssertionsTest,StringsEqual)6530 TEST(StreamingAssertionsTest, StringsEqual) {
6531   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6532   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6533   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6534                           "expected failure");
6535   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6536                        "expected failure");
6537 }
6538 
TEST(StreamingAssertionsTest,StringsNotEqual)6539 TEST(StreamingAssertionsTest, StringsNotEqual) {
6540   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6541   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6542   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6543                           "expected failure");
6544   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6545                        "expected failure");
6546 }
6547 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6548 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6549   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6550   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6551   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6552                           "expected failure");
6553   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6554                        "expected failure");
6555 }
6556 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6557 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6558   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6559   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6560   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6561                           "expected failure");
6562   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6563                        "expected failure");
6564 }
6565 
TEST(StreamingAssertionsTest,FloatingPointEquals)6566 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6567   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6568   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6569   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6570                           "expected failure");
6571   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6572                        "expected failure");
6573 }
6574 
6575 #if GTEST_HAS_EXCEPTIONS
6576 
TEST(StreamingAssertionsTest,Throw)6577 TEST(StreamingAssertionsTest, Throw) {
6578   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6579   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6580   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6581                           "expected failure", "expected failure");
6582   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6583                        "expected failure", "expected failure");
6584 }
6585 
TEST(StreamingAssertionsTest,NoThrow)6586 TEST(StreamingAssertionsTest, NoThrow) {
6587   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6588   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6589   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6590                           "expected failure", "expected failure");
6591   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6592                        "expected failure", "expected failure");
6593 }
6594 
TEST(StreamingAssertionsTest,AnyThrow)6595 TEST(StreamingAssertionsTest, AnyThrow) {
6596   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6597   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6598   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6599                           "expected failure", "expected failure");
6600   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6601                        "expected failure", "expected failure");
6602 }
6603 
6604 #endif  // GTEST_HAS_EXCEPTIONS
6605 
6606 // Tests that Google Test correctly decides whether to use colors in the output.
6607 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6608 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6609   GTEST_FLAG(color) = "yes";
6610 
6611   SetEnv("TERM", "xterm");  // TERM supports colors.
6612   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6613   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6614 
6615   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6616   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6617   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6618 }
6619 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6620 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6621   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6622 
6623   GTEST_FLAG(color) = "True";
6624   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6625 
6626   GTEST_FLAG(color) = "t";
6627   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6628 
6629   GTEST_FLAG(color) = "1";
6630   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6631 }
6632 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6633 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6634   GTEST_FLAG(color) = "no";
6635 
6636   SetEnv("TERM", "xterm");  // TERM supports colors.
6637   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6638   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6639 
6640   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6641   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6642   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6643 }
6644 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6645 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6646   SetEnv("TERM", "xterm");  // TERM supports colors.
6647 
6648   GTEST_FLAG(color) = "F";
6649   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6650 
6651   GTEST_FLAG(color) = "0";
6652   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6653 
6654   GTEST_FLAG(color) = "unknown";
6655   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6656 }
6657 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6658 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6659   GTEST_FLAG(color) = "auto";
6660 
6661   SetEnv("TERM", "xterm");  // TERM supports colors.
6662   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6663   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6664 }
6665 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6666 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6667   GTEST_FLAG(color) = "auto";
6668 
6669 #if GTEST_OS_WINDOWS
6670   // On Windows, we ignore the TERM variable as it's usually not set.
6671 
6672   SetEnv("TERM", "dumb");
6673   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6674 
6675   SetEnv("TERM", "");
6676   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6677 
6678   SetEnv("TERM", "xterm");
6679   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6680 #else
6681   // On non-Windows platforms, we rely on TERM to determine if the
6682   // terminal supports colors.
6683 
6684   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6685   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6686 
6687   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6688   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6689 
6690   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6691   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6692 
6693   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6694   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6695 
6696   SetEnv("TERM", "xterm");  // TERM supports colors.
6697   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6698 
6699   SetEnv("TERM", "xterm-color");  // TERM supports colors.
6700   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6701 
6702   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6703   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6704 
6705   SetEnv("TERM", "screen");  // TERM supports colors.
6706   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6707 
6708   SetEnv("TERM", "linux");  // TERM supports colors.
6709   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6710 
6711   SetEnv("TERM", "cygwin");  // TERM supports colors.
6712   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6713 #endif  // GTEST_OS_WINDOWS
6714 }
6715 
6716 // Verifies that StaticAssertTypeEq works in a namespace scope.
6717 
6718 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6719 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6720     StaticAssertTypeEq<const int, const int>();
6721 
6722 // Verifies that StaticAssertTypeEq works in a class.
6723 
6724 template <typename T>
6725 class StaticAssertTypeEqTestHelper {
6726  public:
StaticAssertTypeEqTestHelper()6727   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6728 };
6729 
TEST(StaticAssertTypeEqTest,WorksInClass)6730 TEST(StaticAssertTypeEqTest, WorksInClass) {
6731   StaticAssertTypeEqTestHelper<bool>();
6732 }
6733 
6734 // Verifies that StaticAssertTypeEq works inside a function.
6735 
6736 typedef int IntAlias;
6737 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6738 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6739   StaticAssertTypeEq<int, IntAlias>();
6740   StaticAssertTypeEq<int*, IntAlias*>();
6741 }
6742 
TEST(GetCurrentOsStackTraceExceptTopTest,ReturnsTheStackTrace)6743 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6744   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6745 
6746   // We don't have a stack walker in Google Test yet.
6747   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6748   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6749 }
6750 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6751 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6752   EXPECT_FALSE(HasNonfatalFailure());
6753 }
6754 
FailFatally()6755 static void FailFatally() { FAIL(); }
6756 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6757 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6758   FailFatally();
6759   const bool has_nonfatal_failure = HasNonfatalFailure();
6760   ClearCurrentTestPartResults();
6761   EXPECT_FALSE(has_nonfatal_failure);
6762 }
6763 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6764 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6765   ADD_FAILURE();
6766   const bool has_nonfatal_failure = HasNonfatalFailure();
6767   ClearCurrentTestPartResults();
6768   EXPECT_TRUE(has_nonfatal_failure);
6769 }
6770 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6771 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6772   FailFatally();
6773   ADD_FAILURE();
6774   const bool has_nonfatal_failure = HasNonfatalFailure();
6775   ClearCurrentTestPartResults();
6776   EXPECT_TRUE(has_nonfatal_failure);
6777 }
6778 
6779 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6780 static bool HasNonfatalFailureHelper() {
6781   return testing::Test::HasNonfatalFailure();
6782 }
6783 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6784 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6785   EXPECT_FALSE(HasNonfatalFailureHelper());
6786 }
6787 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6788 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6789   ADD_FAILURE();
6790   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6791   ClearCurrentTestPartResults();
6792   EXPECT_TRUE(has_nonfatal_failure);
6793 }
6794 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6795 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6796   EXPECT_FALSE(HasFailure());
6797 }
6798 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6799 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6800   FailFatally();
6801   const bool has_failure = HasFailure();
6802   ClearCurrentTestPartResults();
6803   EXPECT_TRUE(has_failure);
6804 }
6805 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6806 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6807   ADD_FAILURE();
6808   const bool has_failure = HasFailure();
6809   ClearCurrentTestPartResults();
6810   EXPECT_TRUE(has_failure);
6811 }
6812 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6813 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6814   FailFatally();
6815   ADD_FAILURE();
6816   const bool has_failure = HasFailure();
6817   ClearCurrentTestPartResults();
6818   EXPECT_TRUE(has_failure);
6819 }
6820 
6821 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6822 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6823 
TEST(HasFailureTest,WorksOutsideOfTestBody)6824 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6825   EXPECT_FALSE(HasFailureHelper());
6826 }
6827 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6828 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6829   ADD_FAILURE();
6830   const bool has_failure = HasFailureHelper();
6831   ClearCurrentTestPartResults();
6832   EXPECT_TRUE(has_failure);
6833 }
6834 
6835 class TestListener : public EmptyTestEventListener {
6836  public:
TestListener()6837   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
TestListener(int * on_start_counter,bool * is_destroyed)6838   TestListener(int* on_start_counter, bool* is_destroyed)
6839       : on_start_counter_(on_start_counter),
6840         is_destroyed_(is_destroyed) {}
6841 
~TestListener()6842   virtual ~TestListener() {
6843     if (is_destroyed_)
6844       *is_destroyed_ = true;
6845   }
6846 
6847  protected:
OnTestProgramStart(const UnitTest &)6848   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6849     if (on_start_counter_ != NULL)
6850       (*on_start_counter_)++;
6851   }
6852 
6853  private:
6854   int* on_start_counter_;
6855   bool* is_destroyed_;
6856 };
6857 
6858 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6859 TEST(TestEventListenersTest, ConstructionWorks) {
6860   TestEventListeners listeners;
6861 
6862   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
6863   EXPECT_TRUE(listeners.default_result_printer() == NULL);
6864   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6865 }
6866 
6867 // Tests that the TestEventListeners destructor deletes all the listeners it
6868 // owns.
TEST(TestEventListenersTest,DestructionWorks)6869 TEST(TestEventListenersTest, DestructionWorks) {
6870   bool default_result_printer_is_destroyed = false;
6871   bool default_xml_printer_is_destroyed = false;
6872   bool extra_listener_is_destroyed = false;
6873   TestListener* default_result_printer = new TestListener(
6874       NULL, &default_result_printer_is_destroyed);
6875   TestListener* default_xml_printer = new TestListener(
6876       NULL, &default_xml_printer_is_destroyed);
6877   TestListener* extra_listener = new TestListener(
6878       NULL, &extra_listener_is_destroyed);
6879 
6880   {
6881     TestEventListeners listeners;
6882     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6883                                                         default_result_printer);
6884     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6885                                                        default_xml_printer);
6886     listeners.Append(extra_listener);
6887   }
6888   EXPECT_TRUE(default_result_printer_is_destroyed);
6889   EXPECT_TRUE(default_xml_printer_is_destroyed);
6890   EXPECT_TRUE(extra_listener_is_destroyed);
6891 }
6892 
6893 // Tests that a listener Append'ed to a TestEventListeners list starts
6894 // receiving events.
TEST(TestEventListenersTest,Append)6895 TEST(TestEventListenersTest, Append) {
6896   int on_start_counter = 0;
6897   bool is_destroyed = false;
6898   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6899   {
6900     TestEventListeners listeners;
6901     listeners.Append(listener);
6902     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6903         *UnitTest::GetInstance());
6904     EXPECT_EQ(1, on_start_counter);
6905   }
6906   EXPECT_TRUE(is_destroyed);
6907 }
6908 
6909 // Tests that listeners receive events in the order they were appended to
6910 // the list, except for *End requests, which must be received in the reverse
6911 // order.
6912 class SequenceTestingListener : public EmptyTestEventListener {
6913  public:
SequenceTestingListener(std::vector<String> * vector,const char * id)6914   SequenceTestingListener(std::vector<String>* vector, const char* id)
6915       : vector_(vector), id_(id) {}
6916 
6917  protected:
OnTestProgramStart(const UnitTest &)6918   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6919     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6920   }
6921 
OnTestProgramEnd(const UnitTest &)6922   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6923     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6924   }
6925 
OnTestIterationStart(const UnitTest &,int)6926   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6927                                     int /*iteration*/) {
6928     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6929   }
6930 
OnTestIterationEnd(const UnitTest &,int)6931   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6932                                   int /*iteration*/) {
6933     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6934   }
6935 
6936  private:
GetEventDescription(const char * method)6937   String GetEventDescription(const char* method) {
6938     Message message;
6939     message << id_ << "." << method;
6940     return message.GetString();
6941   }
6942 
6943   std::vector<String>* vector_;
6944   const char* const id_;
6945 
6946   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6947 };
6948 
TEST(EventListenerTest,AppendKeepsOrder)6949 TEST(EventListenerTest, AppendKeepsOrder) {
6950   std::vector<String> vec;
6951   TestEventListeners listeners;
6952   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6953   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6954   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6955 
6956   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6957       *UnitTest::GetInstance());
6958   ASSERT_EQ(3U, vec.size());
6959   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6960   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6961   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6962 
6963   vec.clear();
6964   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6965       *UnitTest::GetInstance());
6966   ASSERT_EQ(3U, vec.size());
6967   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6968   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6969   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6970 
6971   vec.clear();
6972   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6973       *UnitTest::GetInstance(), 0);
6974   ASSERT_EQ(3U, vec.size());
6975   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6976   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6977   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6978 
6979   vec.clear();
6980   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6981       *UnitTest::GetInstance(), 0);
6982   ASSERT_EQ(3U, vec.size());
6983   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6984   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6985   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6986 }
6987 
6988 // Tests that a listener removed from a TestEventListeners list stops receiving
6989 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6990 TEST(TestEventListenersTest, Release) {
6991   int on_start_counter = 0;
6992   bool is_destroyed = false;
6993   // Although Append passes the ownership of this object to the list,
6994   // the following calls release it, and we need to delete it before the
6995   // test ends.
6996   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6997   {
6998     TestEventListeners listeners;
6999     listeners.Append(listener);
7000     EXPECT_EQ(listener, listeners.Release(listener));
7001     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7002         *UnitTest::GetInstance());
7003     EXPECT_TRUE(listeners.Release(listener) == NULL);
7004   }
7005   EXPECT_EQ(0, on_start_counter);
7006   EXPECT_FALSE(is_destroyed);
7007   delete listener;
7008 }
7009 
7010 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)7011 TEST(EventListenerTest, SuppressEventForwarding) {
7012   int on_start_counter = 0;
7013   TestListener* listener = new TestListener(&on_start_counter, NULL);
7014 
7015   TestEventListeners listeners;
7016   listeners.Append(listener);
7017   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7018   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7019   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7020   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7021       *UnitTest::GetInstance());
7022   EXPECT_EQ(0, on_start_counter);
7023 }
7024 
7025 // Tests that events generated by Google Test are not forwarded in
7026 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)7027 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
7028   EXPECT_DEATH_IF_SUPPORTED({
7029       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7030           *GetUnitTestImpl()->listeners())) << "expected failure";},
7031       "expected failure");
7032 }
7033 
7034 // Tests that a listener installed via SetDefaultResultPrinter() starts
7035 // receiving events and is returned via default_result_printer() and that
7036 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7037 TEST(EventListenerTest, default_result_printer) {
7038   int on_start_counter = 0;
7039   bool is_destroyed = false;
7040   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7041 
7042   TestEventListeners listeners;
7043   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7044 
7045   EXPECT_EQ(listener, listeners.default_result_printer());
7046 
7047   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7048       *UnitTest::GetInstance());
7049 
7050   EXPECT_EQ(1, on_start_counter);
7051 
7052   // Replacing default_result_printer with something else should remove it
7053   // from the list and destroy it.
7054   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
7055 
7056   EXPECT_TRUE(listeners.default_result_printer() == NULL);
7057   EXPECT_TRUE(is_destroyed);
7058 
7059   // After broadcasting an event the counter is still the same, indicating
7060   // the listener is not in the list anymore.
7061   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7062       *UnitTest::GetInstance());
7063   EXPECT_EQ(1, on_start_counter);
7064 }
7065 
7066 // Tests that the default_result_printer listener stops receiving events
7067 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7068 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7069   int on_start_counter = 0;
7070   bool is_destroyed = false;
7071   // Although Append passes the ownership of this object to the list,
7072   // the following calls release it, and we need to delete it before the
7073   // test ends.
7074   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7075   {
7076     TestEventListeners listeners;
7077     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7078 
7079     EXPECT_EQ(listener, listeners.Release(listener));
7080     EXPECT_TRUE(listeners.default_result_printer() == NULL);
7081     EXPECT_FALSE(is_destroyed);
7082 
7083     // Broadcasting events now should not affect default_result_printer.
7084     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7085         *UnitTest::GetInstance());
7086     EXPECT_EQ(0, on_start_counter);
7087   }
7088   // Destroying the list should not affect the listener now, too.
7089   EXPECT_FALSE(is_destroyed);
7090   delete listener;
7091 }
7092 
7093 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7094 // receiving events and is returned via default_xml_generator() and that
7095 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7096 TEST(EventListenerTest, default_xml_generator) {
7097   int on_start_counter = 0;
7098   bool is_destroyed = false;
7099   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7100 
7101   TestEventListeners listeners;
7102   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7103 
7104   EXPECT_EQ(listener, listeners.default_xml_generator());
7105 
7106   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7107       *UnitTest::GetInstance());
7108 
7109   EXPECT_EQ(1, on_start_counter);
7110 
7111   // Replacing default_xml_generator with something else should remove it
7112   // from the list and destroy it.
7113   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
7114 
7115   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7116   EXPECT_TRUE(is_destroyed);
7117 
7118   // After broadcasting an event the counter is still the same, indicating
7119   // the listener is not in the list anymore.
7120   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7121       *UnitTest::GetInstance());
7122   EXPECT_EQ(1, on_start_counter);
7123 }
7124 
7125 // Tests that the default_xml_generator listener stops receiving events
7126 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7127 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7128   int on_start_counter = 0;
7129   bool is_destroyed = false;
7130   // Although Append passes the ownership of this object to the list,
7131   // the following calls release it, and we need to delete it before the
7132   // test ends.
7133   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7134   {
7135     TestEventListeners listeners;
7136     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7137 
7138     EXPECT_EQ(listener, listeners.Release(listener));
7139     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7140     EXPECT_FALSE(is_destroyed);
7141 
7142     // Broadcasting events now should not affect default_xml_generator.
7143     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7144         *UnitTest::GetInstance());
7145     EXPECT_EQ(0, on_start_counter);
7146   }
7147   // Destroying the list should not affect the listener now, too.
7148   EXPECT_FALSE(is_destroyed);
7149   delete listener;
7150 }
7151 
7152 // Sanity tests to ensure that the alternative, verbose spellings of
7153 // some of the macros work.  We don't test them thoroughly as that
7154 // would be quite involved.  Since their implementations are
7155 // straightforward, and they are rarely used, we'll just rely on the
7156 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7157 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7158   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7159 
7160   // GTEST_FAIL is the same as FAIL.
7161   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7162                        "An expected failure");
7163 
7164   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7165 
7166   GTEST_ASSERT_EQ(0, 0);
7167   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7168                        "An expected failure");
7169   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7170                        "An expected failure");
7171 
7172   GTEST_ASSERT_NE(0, 1);
7173   GTEST_ASSERT_NE(1, 0);
7174   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7175                        "An expected failure");
7176 
7177   GTEST_ASSERT_LE(0, 0);
7178   GTEST_ASSERT_LE(0, 1);
7179   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7180                        "An expected failure");
7181 
7182   GTEST_ASSERT_LT(0, 1);
7183   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7184                        "An expected failure");
7185   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7186                        "An expected failure");
7187 
7188   GTEST_ASSERT_GE(0, 0);
7189   GTEST_ASSERT_GE(1, 0);
7190   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7191                        "An expected failure");
7192 
7193   GTEST_ASSERT_GT(1, 0);
7194   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7195                        "An expected failure");
7196   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7197                        "An expected failure");
7198 }
7199 
7200 // Tests for internal utilities necessary for implementation of the universal
7201 // printing.
7202 // TODO(vladl@google.com): Find a better home for them.
7203 
7204 class ConversionHelperBase {};
7205 class ConversionHelperDerived : public ConversionHelperBase {};
7206 
7207 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest,ValueIsCompileTimeConstant)7208 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7209   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7210                         const_true);
7211   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7212 }
7213 
7214 // Tests that IsAProtocolMessage<T>::value is true when T is
7215 // proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsTrueWhenTypeIsAProtocolMessage)7216 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7217   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7218   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7219 }
7220 
7221 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7222 // ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7223 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7224   EXPECT_FALSE(IsAProtocolMessage<int>::value);
7225   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7226 }
7227 
7228 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7229 // equal.
TEST(CompileAssertTypesEqual,CompilesWhenTypesAreEqual)7230 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7231   CompileAssertTypesEqual<void, void>();
7232   CompileAssertTypesEqual<int*, int*>();
7233 }
7234 
7235 // Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest,DoesNotAffectNonReferenceType)7236 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7237   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7238   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7239 }
7240 
7241 // Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest,RemovesReference)7242 TEST(RemoveReferenceTest, RemovesReference) {
7243   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7244   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7245 }
7246 
7247 // Tests GTEST_REMOVE_REFERENCE_.
7248 
7249 template <typename T1, typename T2>
TestGTestRemoveReference()7250 void TestGTestRemoveReference() {
7251   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7252 }
7253 
TEST(RemoveReferenceTest,MacroVersion)7254 TEST(RemoveReferenceTest, MacroVersion) {
7255   TestGTestRemoveReference<int, int>();
7256   TestGTestRemoveReference<const char, const char&>();
7257 }
7258 
7259 
7260 // Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest,DoesNotAffectNonConstType)7261 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7262   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7263   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7264 }
7265 
7266 // Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest,RemovesConst)7267 TEST(RemoveConstTest, RemovesConst) {
7268   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7269   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7270   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7271 }
7272 
7273 // Tests GTEST_REMOVE_CONST_.
7274 
7275 template <typename T1, typename T2>
TestGTestRemoveConst()7276 void TestGTestRemoveConst() {
7277   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7278 }
7279 
TEST(RemoveConstTest,MacroVersion)7280 TEST(RemoveConstTest, MacroVersion) {
7281   TestGTestRemoveConst<int, int>();
7282   TestGTestRemoveConst<double&, double&>();
7283   TestGTestRemoveConst<char, const char>();
7284 }
7285 
7286 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7287 
7288 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7289 void TestGTestRemoveReferenceAndConst() {
7290   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7291 }
7292 
TEST(RemoveReferenceToConstTest,Works)7293 TEST(RemoveReferenceToConstTest, Works) {
7294   TestGTestRemoveReferenceAndConst<int, int>();
7295   TestGTestRemoveReferenceAndConst<double, double&>();
7296   TestGTestRemoveReferenceAndConst<char, const char>();
7297   TestGTestRemoveReferenceAndConst<char, const char&>();
7298   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7299 }
7300 
7301 // Tests that AddReference does not affect reference types.
TEST(AddReferenceTest,DoesNotAffectReferenceType)7302 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7303   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7304   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7305 }
7306 
7307 // Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest,AddsReference)7308 TEST(AddReferenceTest, AddsReference) {
7309   CompileAssertTypesEqual<int&, AddReference<int>::type>();
7310   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7311 }
7312 
7313 // Tests GTEST_ADD_REFERENCE_.
7314 
7315 template <typename T1, typename T2>
TestGTestAddReference()7316 void TestGTestAddReference() {
7317   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7318 }
7319 
TEST(AddReferenceTest,MacroVersion)7320 TEST(AddReferenceTest, MacroVersion) {
7321   TestGTestAddReference<int&, int>();
7322   TestGTestAddReference<const char&, const char&>();
7323 }
7324 
7325 // Tests GTEST_REFERENCE_TO_CONST_.
7326 
7327 template <typename T1, typename T2>
TestGTestReferenceToConst()7328 void TestGTestReferenceToConst() {
7329   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7330 }
7331 
TEST(GTestReferenceToConstTest,Works)7332 TEST(GTestReferenceToConstTest, Works) {
7333   TestGTestReferenceToConst<const char&, char>();
7334   TestGTestReferenceToConst<const int&, const int>();
7335   TestGTestReferenceToConst<const double&, double>();
7336   TestGTestReferenceToConst<const String&, const String&>();
7337 }
7338 
7339 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest,ValueIsCompileTimeConstant)7340 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7341   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7342   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7343                         const_false);
7344 }
7345 
7346 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7347 // be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsTrueWhenConvertible)7348 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7349   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7350   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7351   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7352   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7353   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7354                                      const ConversionHelperBase&>::value));
7355   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7356                                      ConversionHelperBase>::value));
7357 }
7358 
7359 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7360 // cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsFalseWhenNotConvertible)7361 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7362   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7363   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7364   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7365   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7366                                       ConversionHelperDerived&>::value));
7367 }
7368 
7369 // Tests IsContainerTest.
7370 
7371 class NonContainer {};
7372 
TEST(IsContainerTestTest,WorksForNonContainer)7373 TEST(IsContainerTestTest, WorksForNonContainer) {
7374   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7375   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7376   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7377 }
7378 
TEST(IsContainerTestTest,WorksForContainer)7379 TEST(IsContainerTestTest, WorksForContainer) {
7380   EXPECT_EQ(sizeof(IsContainer),
7381             sizeof(IsContainerTest<std::vector<bool> >(0)));
7382   EXPECT_EQ(sizeof(IsContainer),
7383             sizeof(IsContainerTest<std::map<int, double> >(0)));
7384 }
7385 
7386 // Tests ArrayEq().
7387 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7388 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7389   EXPECT_TRUE(ArrayEq(5, 5L));
7390   EXPECT_FALSE(ArrayEq('a', 0));
7391 }
7392 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7393 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7394   // Note that a and b are distinct but compatible types.
7395   const int a[] = { 0, 1 };
7396   long b[] = { 0, 1 };
7397   EXPECT_TRUE(ArrayEq(a, b));
7398   EXPECT_TRUE(ArrayEq(a, 2, b));
7399 
7400   b[0] = 2;
7401   EXPECT_FALSE(ArrayEq(a, b));
7402   EXPECT_FALSE(ArrayEq(a, 1, b));
7403 }
7404 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7405 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7406   const char a[][3] = { "hi", "lo" };
7407   const char b[][3] = { "hi", "lo" };
7408   const char c[][3] = { "hi", "li" };
7409 
7410   EXPECT_TRUE(ArrayEq(a, b));
7411   EXPECT_TRUE(ArrayEq(a, 2, b));
7412 
7413   EXPECT_FALSE(ArrayEq(a, c));
7414   EXPECT_FALSE(ArrayEq(a, 2, c));
7415 }
7416 
7417 // Tests ArrayAwareFind().
7418 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7419 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7420   const char a[] = "hello";
7421   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7422   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7423 }
7424 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7425 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7426   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7427   const int b[2] = { 2, 3 };
7428   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7429 
7430   const int c[2] = { 6, 7 };
7431   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7432 }
7433 
7434 // Tests CopyArray().
7435 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7436 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7437   int n = 0;
7438   CopyArray('a', &n);
7439   EXPECT_EQ('a', n);
7440 }
7441 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7442 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7443   const char a[3] = "hi";
7444   int b[3];
7445 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7446   CopyArray(a, &b);
7447   EXPECT_TRUE(ArrayEq(a, b));
7448 #endif
7449 
7450   int c[3];
7451   CopyArray(a, 3, c);
7452   EXPECT_TRUE(ArrayEq(a, c));
7453 }
7454 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7455 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7456   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7457   int b[2][3];
7458 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7459   CopyArray(a, &b);
7460   EXPECT_TRUE(ArrayEq(a, b));
7461 #endif
7462 
7463   int c[2][3];
7464   CopyArray(a, 2, c);
7465   EXPECT_TRUE(ArrayEq(a, c));
7466 }
7467 
7468 // Tests NativeArray.
7469 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7470 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7471   const int a[3] = { 0, 1, 2 };
7472   NativeArray<int> na(a, 3, kReference);
7473   EXPECT_EQ(3U, na.size());
7474   EXPECT_EQ(a, na.begin());
7475 }
7476 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7477 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7478   typedef int Array[2];
7479   Array* a = new Array[1];
7480   (*a)[0] = 0;
7481   (*a)[1] = 1;
7482   NativeArray<int> na(*a, 2, kCopy);
7483   EXPECT_NE(*a, na.begin());
7484   delete[] a;
7485   EXPECT_EQ(0, na.begin()[0]);
7486   EXPECT_EQ(1, na.begin()[1]);
7487 
7488   // We rely on the heap checker to verify that na deletes the copy of
7489   // array.
7490 }
7491 
TEST(NativeArrayTest,TypeMembersAreCorrect)7492 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7493   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7494   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7495 
7496   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7497   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7498 }
7499 
TEST(NativeArrayTest,MethodsWork)7500 TEST(NativeArrayTest, MethodsWork) {
7501   const int a[3] = { 0, 1, 2 };
7502   NativeArray<int> na(a, 3, kCopy);
7503   ASSERT_EQ(3U, na.size());
7504   EXPECT_EQ(3, na.end() - na.begin());
7505 
7506   NativeArray<int>::const_iterator it = na.begin();
7507   EXPECT_EQ(0, *it);
7508   ++it;
7509   EXPECT_EQ(1, *it);
7510   it++;
7511   EXPECT_EQ(2, *it);
7512   ++it;
7513   EXPECT_EQ(na.end(), it);
7514 
7515   EXPECT_TRUE(na == na);
7516 
7517   NativeArray<int> na2(a, 3, kReference);
7518   EXPECT_TRUE(na == na2);
7519 
7520   const int b1[3] = { 0, 1, 1 };
7521   const int b2[4] = { 0, 1, 2, 3 };
7522   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7523   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7524 }
7525 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7526 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7527   const char a[2][3] = { "hi", "lo" };
7528   NativeArray<char[3]> na(a, 2, kReference);
7529   ASSERT_EQ(2U, na.size());
7530   EXPECT_EQ(a, na.begin());
7531 }
7532 
7533 // Tests SkipPrefix().
7534 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7535 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7536   const char* const str = "hello";
7537 
7538   const char* p = str;
7539   EXPECT_TRUE(SkipPrefix("", &p));
7540   EXPECT_EQ(str, p);
7541 
7542   p = str;
7543   EXPECT_TRUE(SkipPrefix("hell", &p));
7544   EXPECT_EQ(str + 4, p);
7545 }
7546 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7547 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7548   const char* const str = "world";
7549 
7550   const char* p = str;
7551   EXPECT_FALSE(SkipPrefix("W", &p));
7552   EXPECT_EQ(str, p);
7553 
7554   p = str;
7555   EXPECT_FALSE(SkipPrefix("world!", &p));
7556   EXPECT_EQ(str, p);
7557 }
7558