1 /* 2 * Copyright (C) 2010 The Guava Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.google.common.cache; 18 19 import com.google.caliper.AfterExperiment; 20 import com.google.caliper.BeforeExperiment; 21 import com.google.caliper.Benchmark; 22 import com.google.caliper.Param; 23 import com.google.common.primitives.Ints; 24 25 import java.util.Random; 26 import java.util.concurrent.atomic.AtomicLong; 27 28 /** 29 * Single-threaded benchmark for {@link LoadingCache}. 30 * 31 * @author Charles Fry 32 */ 33 public class LoadingCacheSingleThreadBenchmark { 34 @Param({"1000", "2000"}) int maximumSize; 35 @Param("5000") int distinctKeys; 36 @Param("4") int segments; 37 38 // 1 means uniform likelihood of keys; higher means some keys are more popular 39 // tweak this to control hit rate 40 @Param("2.5") double concentration; 41 42 Random random = new Random(); 43 44 LoadingCache<Integer, Integer> cache; 45 46 int max; 47 48 static AtomicLong requests = new AtomicLong(0); 49 static AtomicLong misses = new AtomicLong(0); 50 setUp()51 @BeforeExperiment void setUp() { 52 // random integers will be generated in this range, then raised to the 53 // power of (1/concentration) and floor()ed 54 max = Ints.checkedCast((long) Math.pow(distinctKeys, concentration)); 55 56 cache = CacheBuilder.newBuilder() 57 .concurrencyLevel(segments) 58 .maximumSize(maximumSize) 59 .build( 60 new CacheLoader<Integer, Integer>() { 61 @Override public Integer load(Integer from) { 62 return (int) misses.incrementAndGet(); 63 } 64 }); 65 66 // To start, fill up the cache. 67 // Each miss both increments the counter and causes the map to grow by one, 68 // so until evictions begin, the size of the map is the greatest return 69 // value seen so far 70 while (cache.getUnchecked(nextRandomKey()) < maximumSize) {} 71 72 requests.set(0); 73 misses.set(0); 74 } 75 time(int reps)76 @Benchmark int time(int reps) { 77 int dummy = 0; 78 for (int i = 0; i < reps; i++) { 79 dummy += cache.getUnchecked(nextRandomKey()); 80 } 81 requests.addAndGet(reps); 82 return dummy; 83 } 84 nextRandomKey()85 private int nextRandomKey() { 86 int a = random.nextInt(max); 87 88 /* 89 * For example, if concentration=2.0, the following takes the square root of 90 * the uniformly-distributed random integer, then truncates any fractional 91 * part, so higher integers would appear (in this case linearly) more often 92 * than lower ones. 93 */ 94 return (int) Math.pow(a, 1.0 / concentration); 95 } 96 tearDown()97 @AfterExperiment void tearDown() { 98 double req = requests.get(); 99 double hit = req - misses.get(); 100 101 // Currently, this is going into /dev/null, but I'll fix that 102 System.out.println("hit rate: " + hit / req); 103 } 104 105 // for proper distributions later: 106 // import JSci.maths.statistics.ProbabilityDistribution; 107 // int key = (int) dist.inverse(random.nextDouble()); 108 } 109