1 /* GENERATED SOURCE. DO NOT MODIFY. */ 2 // © 2016 and later: Unicode, Inc. and others. 3 // License & terms of use: http://www.unicode.org/copyright.html#License 4 /* 5 ******************************************************************************* 6 * Copyright (C) 1996-2011, International Business Machines Corporation and * 7 * others. All Rights Reserved. * 8 ******************************************************************************* 9 */ 10 11 package android.icu.impl; 12 13 import java.util.Date; 14 import java.util.TimeZone; 15 16 /** 17 * <code>CalendarAstronomer</code> is a class that can perform the calculations to 18 * determine the positions of the sun and moon, the time of sunrise and 19 * sunset, and other astronomy-related data. The calculations it performs 20 * are in some cases quite complicated, and this utility class saves you 21 * the trouble of worrying about them. 22 * <p> 23 * The measurement of time is a very important part of astronomy. Because 24 * astronomical bodies are constantly in motion, observations are only valid 25 * at a given moment in time. Accordingly, each <code>CalendarAstronomer</code> 26 * object has a <code>time</code> property that determines the date 27 * and time for which its calculations are performed. You can set and 28 * retrieve this property with {@link #setDate setDate}, {@link #getDate getDate} 29 * and related methods. 30 * <p> 31 * Almost all of the calculations performed by this class, or by any 32 * astronomer, are approximations to various degrees of accuracy. The 33 * calculations in this class are mostly modelled after those described 34 * in the book 35 * <a href="http://www.amazon.com/exec/obidos/ISBN=0521356997" target="_top"> 36 * Practical Astronomy With Your Calculator</a>, by Peter J. 37 * Duffett-Smith, Cambridge University Press, 1990. This is an excellent 38 * book, and if you want a greater understanding of how these calculations 39 * are performed it a very good, readable starting point. 40 * <p> 41 * <strong>WARNING:</strong> This class is very early in its development, and 42 * it is highly likely that its API will change to some degree in the future. 43 * At the moment, it basically does just enough to support {@link android.icu.util.IslamicCalendar} 44 * and {@link android.icu.util.ChineseCalendar}. 45 * 46 * @author Laura Werner 47 * @author Alan Liu 48 * @hide Only a subset of ICU is exposed in Android 49 * @hide draft / provisional / internal are hidden on Android 50 */ 51 public class CalendarAstronomer { 52 53 //------------------------------------------------------------------------- 54 // Astronomical constants 55 //------------------------------------------------------------------------- 56 57 /** 58 * The number of standard hours in one sidereal day. 59 * Approximately 24.93. 60 * @hide draft / provisional / internal are hidden on Android 61 */ 62 public static final double SIDEREAL_DAY = 23.93446960027; 63 64 /** 65 * The number of sidereal hours in one mean solar day. 66 * Approximately 24.07. 67 * @hide draft / provisional / internal are hidden on Android 68 */ 69 public static final double SOLAR_DAY = 24.065709816; 70 71 /** 72 * The average number of solar days from one new moon to the next. This is the time 73 * it takes for the moon to return the same ecliptic longitude as the sun. 74 * It is longer than the sidereal month because the sun's longitude increases 75 * during the year due to the revolution of the earth around the sun. 76 * Approximately 29.53. 77 * 78 * @see #SIDEREAL_MONTH 79 * @hide draft / provisional / internal are hidden on Android 80 */ 81 public static final double SYNODIC_MONTH = 29.530588853; 82 83 /** 84 * The average number of days it takes 85 * for the moon to return to the same ecliptic longitude relative to the 86 * stellar background. This is referred to as the sidereal month. 87 * It is shorter than the synodic month due to 88 * the revolution of the earth around the sun. 89 * Approximately 27.32. 90 * 91 * @see #SYNODIC_MONTH 92 * @hide draft / provisional / internal are hidden on Android 93 */ 94 public static final double SIDEREAL_MONTH = 27.32166; 95 96 /** 97 * The average number number of days between successive vernal equinoxes. 98 * Due to the precession of the earth's 99 * axis, this is not precisely the same as the sidereal year. 100 * Approximately 365.24 101 * 102 * @see #SIDEREAL_YEAR 103 * @hide draft / provisional / internal are hidden on Android 104 */ 105 public static final double TROPICAL_YEAR = 365.242191; 106 107 /** 108 * The average number of days it takes 109 * for the sun to return to the same position against the fixed stellar 110 * background. This is the duration of one orbit of the earth about the sun 111 * as it would appear to an outside observer. 112 * Due to the precession of the earth's 113 * axis, this is not precisely the same as the tropical year. 114 * Approximately 365.25. 115 * 116 * @see #TROPICAL_YEAR 117 * @hide draft / provisional / internal are hidden on Android 118 */ 119 public static final double SIDEREAL_YEAR = 365.25636; 120 121 //------------------------------------------------------------------------- 122 // Time-related constants 123 //------------------------------------------------------------------------- 124 125 /** 126 * The number of milliseconds in one second. 127 * @hide draft / provisional / internal are hidden on Android 128 */ 129 public static final int SECOND_MS = 1000; 130 131 /** 132 * The number of milliseconds in one minute. 133 * @hide draft / provisional / internal are hidden on Android 134 */ 135 public static final int MINUTE_MS = 60*SECOND_MS; 136 137 /** 138 * The number of milliseconds in one hour. 139 * @hide draft / provisional / internal are hidden on Android 140 */ 141 public static final int HOUR_MS = 60*MINUTE_MS; 142 143 /** 144 * The number of milliseconds in one day. 145 * @hide draft / provisional / internal are hidden on Android 146 */ 147 public static final long DAY_MS = 24*HOUR_MS; 148 149 /** 150 * The start of the julian day numbering scheme used by astronomers, which 151 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds 152 * since 1/1/1970 AD (Gregorian), a negative number. 153 * Note that julian day numbers and 154 * the Julian calendar are <em>not</em> the same thing. Also note that 155 * julian days start at <em>noon</em>, not midnight. 156 * @hide draft / provisional / internal are hidden on Android 157 */ 158 public static final long JULIAN_EPOCH_MS = -210866760000000L; 159 160 // static { 161 // Calendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT")); 162 // cal.clear(); 163 // cal.set(cal.ERA, 0); 164 // cal.set(cal.YEAR, 4713); 165 // cal.set(cal.MONTH, cal.JANUARY); 166 // cal.set(cal.DATE, 1); 167 // cal.set(cal.HOUR_OF_DAY, 12); 168 // System.out.println("1.5 Jan 4713 BC = " + cal.getTime().getTime()); 169 170 // cal.clear(); 171 // cal.set(cal.YEAR, 2000); 172 // cal.set(cal.MONTH, cal.JANUARY); 173 // cal.set(cal.DATE, 1); 174 // cal.add(cal.DATE, -1); 175 // System.out.println("0.0 Jan 2000 = " + cal.getTime().getTime()); 176 // } 177 178 /** 179 * Milliseconds value for 0.0 January 2000 AD. 180 */ 181 static final long EPOCH_2000_MS = 946598400000L; 182 183 //------------------------------------------------------------------------- 184 // Assorted private data used for conversions 185 //------------------------------------------------------------------------- 186 187 // My own copies of these so compilers are more likely to optimize them away 188 static private final double PI = 3.14159265358979323846; 189 static private final double PI2 = PI * 2.0; 190 191 static private final double RAD_HOUR = 12 / PI; // radians -> hours 192 static private final double DEG_RAD = PI / 180; // degrees -> radians 193 static private final double RAD_DEG = 180 / PI; // radians -> degrees 194 195 //------------------------------------------------------------------------- 196 // Constructors 197 //------------------------------------------------------------------------- 198 199 /** 200 * Construct a new <code>CalendarAstronomer</code> object that is initialized to 201 * the current date and time. 202 * @hide draft / provisional / internal are hidden on Android 203 */ CalendarAstronomer()204 public CalendarAstronomer() { 205 this(System.currentTimeMillis()); 206 } 207 208 /** 209 * Construct a new <code>CalendarAstronomer</code> object that is initialized to 210 * the specified date and time. 211 * @hide draft / provisional / internal are hidden on Android 212 */ CalendarAstronomer(Date d)213 public CalendarAstronomer(Date d) { 214 this(d.getTime()); 215 } 216 217 /** 218 * Construct a new <code>CalendarAstronomer</code> object that is initialized to 219 * the specified time. The time is expressed as a number of milliseconds since 220 * January 1, 1970 AD (Gregorian). 221 * 222 * @see java.util.Date#getTime() 223 * @hide draft / provisional / internal are hidden on Android 224 */ CalendarAstronomer(long aTime)225 public CalendarAstronomer(long aTime) { 226 time = aTime; 227 } 228 229 /** 230 * Construct a new <code>CalendarAstronomer</code> object with the given 231 * latitude and longitude. The object's time is set to the current 232 * date and time. 233 * <p> 234 * @param longitude The desired longitude, in <em>degrees</em> east of 235 * the Greenwich meridian. 236 * 237 * @param latitude The desired latitude, in <em>degrees</em>. Positive 238 * values signify North, negative South. 239 * 240 * @see java.util.Date#getTime() 241 * @hide draft / provisional / internal are hidden on Android 242 */ CalendarAstronomer(double longitude, double latitude)243 public CalendarAstronomer(double longitude, double latitude) { 244 this(); 245 fLongitude = normPI(longitude * DEG_RAD); 246 fLatitude = normPI(latitude * DEG_RAD); 247 fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2); 248 } 249 250 251 //------------------------------------------------------------------------- 252 // Time and date getters and setters 253 //------------------------------------------------------------------------- 254 255 /** 256 * Set the current date and time of this <code>CalendarAstronomer</code> object. All 257 * astronomical calculations are performed based on this time setting. 258 * 259 * @param aTime the date and time, expressed as the number of milliseconds since 260 * 1/1/1970 0:00 GMT (Gregorian). 261 * 262 * @see #setDate 263 * @see #getTime 264 * @hide draft / provisional / internal are hidden on Android 265 */ setTime(long aTime)266 public void setTime(long aTime) { 267 time = aTime; 268 clearCache(); 269 } 270 271 /** 272 * Set the current date and time of this <code>CalendarAstronomer</code> object. All 273 * astronomical calculations are performed based on this time setting. 274 * 275 * @param date the time and date, expressed as a <code>Date</code> object. 276 * 277 * @see #setTime 278 * @see #getDate 279 * @hide draft / provisional / internal are hidden on Android 280 */ setDate(Date date)281 public void setDate(Date date) { 282 setTime(date.getTime()); 283 } 284 285 /** 286 * Set the current date and time of this <code>CalendarAstronomer</code> object. All 287 * astronomical calculations are performed based on this time setting. 288 * 289 * @param jdn the desired time, expressed as a "julian day number", 290 * which is the number of elapsed days since 291 * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day 292 * numbers start at <em>noon</em>. To get the jdn for 293 * the corresponding midnight, subtract 0.5. 294 * 295 * @see #getJulianDay 296 * @see #JULIAN_EPOCH_MS 297 * @hide draft / provisional / internal are hidden on Android 298 */ setJulianDay(double jdn)299 public void setJulianDay(double jdn) { 300 time = (long)(jdn * DAY_MS) + JULIAN_EPOCH_MS; 301 clearCache(); 302 julianDay = jdn; 303 } 304 305 /** 306 * Get the current time of this <code>CalendarAstronomer</code> object, 307 * represented as the number of milliseconds since 308 * 1/1/1970 AD 0:00 GMT (Gregorian). 309 * 310 * @see #setTime 311 * @see #getDate 312 * @hide draft / provisional / internal are hidden on Android 313 */ getTime()314 public long getTime() { 315 return time; 316 } 317 318 /** 319 * Get the current time of this <code>CalendarAstronomer</code> object, 320 * represented as a <code>Date</code> object. 321 * 322 * @see #setDate 323 * @see #getTime 324 * @hide draft / provisional / internal are hidden on Android 325 */ getDate()326 public Date getDate() { 327 return new Date(time); 328 } 329 330 /** 331 * Get the current time of this <code>CalendarAstronomer</code> object, 332 * expressed as a "julian day number", which is the number of elapsed 333 * days since 1/1/4713 BC (Julian), 12:00 GMT. 334 * 335 * @see #setJulianDay 336 * @see #JULIAN_EPOCH_MS 337 * @hide draft / provisional / internal are hidden on Android 338 */ getJulianDay()339 public double getJulianDay() { 340 if (julianDay == INVALID) { 341 julianDay = (double)(time - JULIAN_EPOCH_MS) / (double)DAY_MS; 342 } 343 return julianDay; 344 } 345 346 /** 347 * Return this object's time expressed in julian centuries: 348 * the number of centuries after 1/1/1900 AD, 12:00 GMT 349 * 350 * @see #getJulianDay 351 * @hide draft / provisional / internal are hidden on Android 352 */ getJulianCentury()353 public double getJulianCentury() { 354 if (julianCentury == INVALID) { 355 julianCentury = (getJulianDay() - 2415020.0) / 36525; 356 } 357 return julianCentury; 358 } 359 360 /** 361 * Returns the current Greenwich sidereal time, measured in hours 362 * @hide draft / provisional / internal are hidden on Android 363 */ getGreenwichSidereal()364 public double getGreenwichSidereal() { 365 if (siderealTime == INVALID) { 366 // See page 86 of "Practial Astronomy with your Calculator", 367 // by Peter Duffet-Smith, for details on the algorithm. 368 369 double UT = normalize((double)time/HOUR_MS, 24); 370 371 siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24); 372 } 373 return siderealTime; 374 } 375 getSiderealOffset()376 private double getSiderealOffset() { 377 if (siderealT0 == INVALID) { 378 double JD = Math.floor(getJulianDay() - 0.5) + 0.5; 379 double S = JD - 2451545.0; 380 double T = S / 36525.0; 381 siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); 382 } 383 return siderealT0; 384 } 385 386 /** 387 * Returns the current local sidereal time, measured in hours 388 * @hide draft / provisional / internal are hidden on Android 389 */ getLocalSidereal()390 public double getLocalSidereal() { 391 return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24); 392 } 393 394 /** 395 * Converts local sidereal time to Universal Time. 396 * 397 * @param lst The Local Sidereal Time, in hours since sidereal midnight 398 * on this object's current date. 399 * 400 * @return The corresponding Universal Time, in milliseconds since 401 * 1 Jan 1970, GMT. 402 */ lstToUT(double lst)403 private long lstToUT(double lst) { 404 // Convert to local mean time 405 double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); 406 407 // Then find local midnight on this day 408 long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset; 409 410 //out(" lt =" + lt + " hours"); 411 //out(" base=" + new Date(base)); 412 413 return base + (long)(lt * HOUR_MS); 414 } 415 416 417 //------------------------------------------------------------------------- 418 // Coordinate transformations, all based on the current time of this object 419 //------------------------------------------------------------------------- 420 421 /** 422 * Convert from ecliptic to equatorial coordinates. 423 * 424 * @param ecliptic A point in the sky in ecliptic coordinates. 425 * @return The corresponding point in equatorial coordinates. 426 * @hide draft / provisional / internal are hidden on Android 427 */ eclipticToEquatorial(Ecliptic ecliptic)428 public final Equatorial eclipticToEquatorial(Ecliptic ecliptic) 429 { 430 return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude); 431 } 432 433 /** 434 * Convert from ecliptic to equatorial coordinates. 435 * 436 * @param eclipLong The ecliptic longitude 437 * @param eclipLat The ecliptic latitude 438 * 439 * @return The corresponding point in equatorial coordinates. 440 * @hide draft / provisional / internal are hidden on Android 441 */ eclipticToEquatorial(double eclipLong, double eclipLat)442 public final Equatorial eclipticToEquatorial(double eclipLong, double eclipLat) 443 { 444 // See page 42 of "Practial Astronomy with your Calculator", 445 // by Peter Duffet-Smith, for details on the algorithm. 446 447 double obliq = eclipticObliquity(); 448 double sinE = Math.sin(obliq); 449 double cosE = Math.cos(obliq); 450 451 double sinL = Math.sin(eclipLong); 452 double cosL = Math.cos(eclipLong); 453 454 double sinB = Math.sin(eclipLat); 455 double cosB = Math.cos(eclipLat); 456 double tanB = Math.tan(eclipLat); 457 458 return new Equatorial(Math.atan2(sinL*cosE - tanB*sinE, cosL), 459 Math.asin(sinB*cosE + cosB*sinE*sinL) ); 460 } 461 462 /** 463 * Convert from ecliptic longitude to equatorial coordinates. 464 * 465 * @param eclipLong The ecliptic longitude 466 * 467 * @return The corresponding point in equatorial coordinates. 468 * @hide draft / provisional / internal are hidden on Android 469 */ eclipticToEquatorial(double eclipLong)470 public final Equatorial eclipticToEquatorial(double eclipLong) 471 { 472 return eclipticToEquatorial(eclipLong, 0); // TODO: optimize 473 } 474 475 /** 476 * @hide draft / provisional / internal are hidden on Android 477 */ eclipticToHorizon(double eclipLong)478 public Horizon eclipticToHorizon(double eclipLong) 479 { 480 Equatorial equatorial = eclipticToEquatorial(eclipLong); 481 482 double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle 483 484 double sinH = Math.sin(H); 485 double cosH = Math.cos(H); 486 double sinD = Math.sin(equatorial.declination); 487 double cosD = Math.cos(equatorial.declination); 488 double sinL = Math.sin(fLatitude); 489 double cosL = Math.cos(fLatitude); 490 491 double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH); 492 double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude)); 493 494 return new Horizon(azimuth, altitude); 495 } 496 497 498 //------------------------------------------------------------------------- 499 // The Sun 500 //------------------------------------------------------------------------- 501 502 // 503 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 504 // Angles are in radians (after multiplying by PI/180) 505 // 506 static final double JD_EPOCH = 2447891.5; // Julian day of epoch 507 508 static final double SUN_ETA_G = 279.403303 * PI/180; // Ecliptic longitude at epoch 509 static final double SUN_OMEGA_G = 282.768422 * PI/180; // Ecliptic longitude of perigee 510 static final double SUN_E = 0.016713; // Eccentricity of orbit 511 //double sunR0 = 1.495585e8; // Semi-major axis in KM 512 //double sunTheta0 = 0.533128 * PI/180; // Angular diameter at R0 513 514 // The following three methods, which compute the sun parameters 515 // given above for an arbitrary epoch (whatever time the object is 516 // set to), make only a small difference as compared to using the 517 // above constants. E.g., Sunset times might differ by ~12 518 // seconds. Furthermore, the eta-g computation is befuddled by 519 // Duffet-Smith's incorrect coefficients (p.86). I've corrected 520 // the first-order coefficient but the others may be off too - no 521 // way of knowing without consulting another source. 522 523 // /** 524 // * Return the sun's ecliptic longitude at perigee for the current time. 525 // * See Duffett-Smith, p. 86. 526 // * @return radians 527 // */ 528 // private double getSunOmegaG() { 529 // double T = getJulianCentury(); 530 // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; 531 // } 532 533 // /** 534 // * Return the sun's ecliptic longitude for the current time. 535 // * See Duffett-Smith, p. 86. 536 // * @return radians 537 // */ 538 // private double getSunEtaG() { 539 // double T = getJulianCentury(); 540 // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; 541 // // 542 // // The above line is from Duffett-Smith, and yields manifestly wrong 543 // // results. The below constant is derived empirically to match the 544 // // constant he gives for the 1990 EPOCH. 545 // // 546 // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; 547 // } 548 549 // /** 550 // * Return the sun's eccentricity of orbit for the current time. 551 // * See Duffett-Smith, p. 86. 552 // * @return double 553 // */ 554 // private double getSunE() { 555 // double T = getJulianCentury(); 556 // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; 557 // } 558 559 /** 560 * The longitude of the sun at the time specified by this object. 561 * The longitude is measured in radians along the ecliptic 562 * from the "first point of Aries," the point at which the ecliptic 563 * crosses the earth's equatorial plane at the vernal equinox. 564 * <p> 565 * Currently, this method uses an approximation of the two-body Kepler's 566 * equation for the earth and the sun. It does not take into account the 567 * perturbations caused by the other planets, the moon, etc. 568 * @hide draft / provisional / internal are hidden on Android 569 */ getSunLongitude()570 public double getSunLongitude() 571 { 572 // See page 86 of "Practial Astronomy with your Calculator", 573 // by Peter Duffet-Smith, for details on the algorithm. 574 575 if (sunLongitude == INVALID) { 576 double[] result = getSunLongitude(getJulianDay()); 577 sunLongitude = result[0]; 578 meanAnomalySun = result[1]; 579 } 580 return sunLongitude; 581 } 582 583 /** 584 * TODO Make this public when the entire class is package-private. 585 */ getSunLongitude(double julian)586 /*public*/ double[] getSunLongitude(double julian) 587 { 588 // See page 86 of "Practial Astronomy with your Calculator", 589 // by Peter Duffet-Smith, for details on the algorithm. 590 591 double day = julian - JD_EPOCH; // Days since epoch 592 593 // Find the angular distance the sun in a fictitious 594 // circular orbit has travelled since the epoch. 595 double epochAngle = norm2PI(PI2/TROPICAL_YEAR*day); 596 597 // The epoch wasn't at the sun's perigee; find the angular distance 598 // since perigee, which is called the "mean anomaly" 599 double meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); 600 601 // Now find the "true anomaly", e.g. the real solar longitude 602 // by solving Kepler's equation for an elliptical orbit 603 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different 604 // equations; omega_g is to be correct. 605 return new double[] { 606 norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G), 607 meanAnomaly 608 }; 609 } 610 611 /** 612 * The position of the sun at this object's current date and time, 613 * in equatorial coordinates. 614 * @hide draft / provisional / internal are hidden on Android 615 */ getSunPosition()616 public Equatorial getSunPosition() { 617 return eclipticToEquatorial(getSunLongitude(), 0); 618 } 619 620 private static class SolarLongitude { 621 double value; SolarLongitude(double val)622 SolarLongitude(double val) { value = val; } 623 } 624 625 /** 626 * Constant representing the vernal equinox. 627 * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. 628 * Note: In this case, "vernal" refers to the northern hemisphere's seasons. 629 * @hide draft / provisional / internal are hidden on Android 630 */ 631 public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0); 632 633 /** 634 * Constant representing the summer solstice. 635 * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. 636 * Note: In this case, "summer" refers to the northern hemisphere's seasons. 637 * @hide draft / provisional / internal are hidden on Android 638 */ 639 public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2); 640 641 /** 642 * Constant representing the autumnal equinox. 643 * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. 644 * Note: In this case, "autumn" refers to the northern hemisphere's seasons. 645 * @hide draft / provisional / internal are hidden on Android 646 */ 647 public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI); 648 649 /** 650 * Constant representing the winter solstice. 651 * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. 652 * Note: In this case, "winter" refers to the northern hemisphere's seasons. 653 * @hide draft / provisional / internal are hidden on Android 654 */ 655 public static final SolarLongitude WINTER_SOLSTICE = new SolarLongitude((PI*3)/2); 656 657 /** 658 * Find the next time at which the sun's ecliptic longitude will have 659 * the desired value. 660 * @hide draft / provisional / internal are hidden on Android 661 */ getSunTime(double desired, boolean next)662 public long getSunTime(double desired, boolean next) 663 { 664 return timeOfAngle( new AngleFunc() { @Override 665 public double eval() { return getSunLongitude(); } }, 666 desired, 667 TROPICAL_YEAR, 668 MINUTE_MS, 669 next); 670 } 671 672 /** 673 * Find the next time at which the sun's ecliptic longitude will have 674 * the desired value. 675 * @hide draft / provisional / internal are hidden on Android 676 */ 677 public long getSunTime(SolarLongitude desired, boolean next) { 678 return getSunTime(desired.value, next); 679 } 680 681 /** 682 * Returns the time (GMT) of sunrise or sunset on the local date to which 683 * this calendar is currently set. 684 * 685 * NOTE: This method only works well if this object is set to a 686 * time near local noon. Because of variations between the local 687 * official time zone and the geographic longitude, the 688 * computation can flop over into an adjacent day if this object 689 * is set to a time near local midnight. 690 * 691 * @hide draft / provisional / internal are hidden on Android 692 */ 693 public long getSunRiseSet(boolean rise) { 694 long t0 = time; 695 696 // Make a rough guess: 6am or 6pm local time on the current day 697 long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS; 698 699 setTime(noon + (rise ? -6L : 6L) * HOUR_MS); 700 701 long t = riseOrSet(new CoordFunc() { 702 @Override 703 public Equatorial eval() { return getSunPosition(); } 704 }, 705 rise, 706 .533 * DEG_RAD, // Angular Diameter 707 34 /60.0 * DEG_RAD, // Refraction correction 708 MINUTE_MS / 12); // Desired accuracy 709 710 setTime(t0); 711 return t; 712 } 713 714 // Commented out - currently unused. ICU 2.6, Alan 715 // //------------------------------------------------------------------------- 716 // // Alternate Sun Rise/Set 717 // // See Duffett-Smith p.93 718 // //------------------------------------------------------------------------- 719 // 720 // // This yields worse results (as compared to USNO data) than getSunRiseSet(). 721 // /** 722 // * TODO Make this public when the entire class is package-private. 723 // */ 724 // /*public*/ long getSunRiseSet2(boolean rise) { 725 // // 1. Calculate coordinates of the sun's center for midnight 726 // double jd = Math.floor(getJulianDay() - 0.5) + 0.5; 727 // double[] sl = getSunLongitude(jd); 728 // double lambda1 = sl[0]; 729 // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); 730 // 731 // // 2. Add ... to lambda to get position 24 hours later 732 // double lambda2 = lambda1 + 0.985647*DEG_RAD; 733 // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); 734 // 735 // // 3. Calculate LSTs of rising and setting for these two positions 736 // double tanL = Math.tan(fLatitude); 737 // double H = Math.acos(-tanL * Math.tan(pos1.declination)); 738 // double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2; 739 // double lst1s = (pos1.ascension + H) * 24 / PI2; 740 // H = Math.acos(-tanL * Math.tan(pos2.declination)); 741 // double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2; 742 // double lst2s = (H + pos2.ascension ) * 24 / PI2; 743 // if (lst1r > 24) lst1r -= 24; 744 // if (lst1s > 24) lst1s -= 24; 745 // if (lst2r > 24) lst2r -= 24; 746 // if (lst2s > 24) lst2s -= 24; 747 // 748 // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. 749 // double gst1r = lstToGst(lst1r); 750 // double gst1s = lstToGst(lst1s); 751 // double gst2r = lstToGst(lst2r); 752 // double gst2s = lstToGst(lst2s); 753 // if (gst1r > gst2r) gst2r += 24; 754 // if (gst1s > gst2s) gst2s += 24; 755 // 756 // // 5. Calculate GST at 0h UT of this date 757 // double t00 = utToGst(0); 758 // 759 // // 6. Calculate GST at 0h on the observer's longitude 760 // double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. 761 // double t00p = t00 - offset*1.002737909; 762 // if (t00p < 0) t00p += 24; // do NOT normalize 763 // 764 // // 7. Adjust 765 // if (gst1r < t00p) { 766 // gst1r += 24; 767 // gst2r += 24; 768 // } 769 // if (gst1s < t00p) { 770 // gst1s += 24; 771 // gst2s += 24; 772 // } 773 // 774 // // 8. 775 // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); 776 // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); 777 // 778 // // 9. Correct for parallax, refraction, and sun's diameter 779 // double dec = (pos1.declination + pos2.declination) / 2; 780 // double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec)); 781 // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter 782 // double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG; 783 // double delta_t = 240 * y / Math.cos(dec) / 3600; // hours 784 // 785 // // 10. Add correction to GSTs, subtract from GSTr 786 // gstr -= delta_t; 787 // gsts += delta_t; 788 // 789 // // 11. Convert GST to UT and then to local civil time 790 // double ut = gstToUt(rise ? gstr : gsts); 791 // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); 792 // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day 793 // return midnight + (long) (ut * 3600000); 794 // } 795 796 // Commented out - currently unused. ICU 2.6, Alan 797 // /** 798 // * Convert local sidereal time to Greenwich sidereal time. 799 // * Section 15. Duffett-Smith p.21 800 // * @param lst in hours (0..24) 801 // * @return GST in hours (0..24) 802 // */ 803 // double lstToGst(double lst) { 804 // double delta = fLongitude * 24 / PI2; 805 // return normalize(lst - delta, 24); 806 // } 807 808 // Commented out - currently unused. ICU 2.6, Alan 809 // /** 810 // * Convert UT to GST on this date. 811 // * Section 12. Duffett-Smith p.17 812 // * @param ut in hours 813 // * @return GST in hours 814 // */ 815 // double utToGst(double ut) { 816 // return normalize(getT0() + ut*1.002737909, 24); 817 // } 818 819 // Commented out - currently unused. ICU 2.6, Alan 820 // /** 821 // * Convert GST to UT on this date. 822 // * Section 13. Duffett-Smith p.18 823 // * @param gst in hours 824 // * @return UT in hours 825 // */ 826 // double gstToUt(double gst) { 827 // return normalize(gst - getT0(), 24) * 0.9972695663; 828 // } 829 830 // Commented out - currently unused. ICU 2.6, Alan 831 // double getT0() { 832 // // Common computation for UT <=> GST 833 // 834 // // Find JD for 0h UT 835 // double jd = Math.floor(getJulianDay() - 0.5) + 0.5; 836 // 837 // double s = jd - 2451545.0; 838 // double t = s / 36525.0; 839 // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; 840 // return t0; 841 // } 842 843 // Commented out - currently unused. ICU 2.6, Alan 844 // //------------------------------------------------------------------------- 845 // // Alternate Sun Rise/Set 846 // // See sci.astro FAQ 847 // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html 848 // //------------------------------------------------------------------------- 849 // 850 // // Note: This method appears to produce inferior accuracy as 851 // // compared to getSunRiseSet(). 852 // 853 // /** 854 // * TODO Make this public when the entire class is package-private. 855 // */ 856 // /*public*/ long getSunRiseSet3(boolean rise) { 857 // 858 // // Compute day number for 0.0 Jan 2000 epoch 859 // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; 860 // 861 // // Now compute the Local Sidereal Time, LST: 862 // // 863 // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ 864 // fLongitude*RAD_DEG; 865 // // 866 // // (east long. positive). Note that LST is here expressed in degrees, 867 // // where 15 degrees corresponds to one hour. Since LST really is an angle, 868 // // it's convenient to use one unit---degrees---throughout. 869 // 870 // // COMPUTING THE SUN'S POSITION 871 // // ---------------------------- 872 // // 873 // // To be able to compute the Sun's rise/set times, you need to be able to 874 // // compute the Sun's position at any time. First compute the "day 875 // // number" d as outlined above, for the desired moment. Next compute: 876 // // 877 // double oblecl = 23.4393 - 3.563E-7 * d; 878 // // 879 // double w = 282.9404 + 4.70935E-5 * d; 880 // double M = 356.0470 + 0.9856002585 * d; 881 // double e = 0.016709 - 1.151E-9 * d; 882 // // 883 // // This is the obliquity of the ecliptic, plus some of the elements of 884 // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = 885 // // argument of perihelion, M = mean anomaly, e = eccentricity. 886 // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly 887 // // true, this is still an accurate approximation). Next compute E, the 888 // // eccentric anomaly: 889 // // 890 // double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) ); 891 // // 892 // // where E and M are in degrees. This is it---no further iterations are 893 // // needed because we know e has a sufficiently small value. Next compute 894 // // the true anomaly, v, and the distance, r: 895 // // 896 // /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e; 897 // /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD); 898 // // 899 // // and 900 // // 901 // // r = sqrt( A*A + B*B ) 902 // double v = Math.atan2( B, A )*RAD_DEG; 903 // // 904 // // The Sun's true longitude, slon, can now be computed: 905 // // 906 // double slon = v + w; 907 // // 908 // // Since the Sun is always at the ecliptic (or at least very very close to 909 // // it), we can use simplified formulae to convert slon (the Sun's ecliptic 910 // // longitude) to sRA and sDec (the Sun's RA and Dec): 911 // // 912 // // sin(slon) * cos(oblecl) 913 // // tan(sRA) = ------------------------- 914 // // cos(slon) 915 // // 916 // // sin(sDec) = sin(oblecl) * sin(slon) 917 // // 918 // // As was the case when computing az, the Azimuth, if possible use an 919 // // atan2() function to compute sRA. 920 // 921 // double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG; 922 // 923 // double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD); 924 // double sDec = Math.asin(sin_sDec)*RAD_DEG; 925 // 926 // // COMPUTING RISE AND SET TIMES 927 // // ---------------------------- 928 // // 929 // // To compute when an object rises or sets, you must compute when it 930 // // passes the meridian and the HA of rise/set. Then the rise time is 931 // // the meridian time minus HA for rise/set, and the set time is the 932 // // meridian time plus the HA for rise/set. 933 // // 934 // // To find the meridian time, compute the Local Sidereal Time at 0h local 935 // // time (or 0h UT if you prefer to work in UT) as outlined above---name 936 // // that quantity LST0. The Meridian Time, MT, will now be: 937 // // 938 // // MT = RA - LST0 939 // double MT = normalize(sRA - LST, 360); 940 // // 941 // // where "RA" is the object's Right Ascension (in degrees!). If negative, 942 // // add 360 deg to MT. If the object is the Sun, leave the time as it is, 943 // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from 944 // // sidereal to solar time. Now, compute HA for rise/set, name that 945 // // quantity HA0: 946 // // 947 // // sin(h0) - sin(lat) * sin(Dec) 948 // // cos(HA0) = --------------------------------- 949 // // cos(lat) * cos(Dec) 950 // // 951 // // where h0 is the altitude selected to represent rise/set. For a purely 952 // // mathematical horizon, set h0 = 0 and simplify to: 953 // // 954 // // cos(HA0) = - tan(lat) * tan(Dec) 955 // // 956 // // If you want to account for refraction on the atmosphere, set h0 = -35/60 957 // // degrees (-35 arc minutes), and if you want to compute the rise/set times 958 // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). 959 // // 960 // double h0 = -50/60 * DEG_RAD; 961 // 962 // double HA0 = Math.acos( 963 // (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) / 964 // (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG; 965 // 966 // // When HA0 has been computed, leave it as it is for the Sun but multiply 967 // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to 968 // // solar time. Finally compute: 969 // // 970 // // Rise time = MT - HA0 971 // // Set time = MT + HA0 972 // // 973 // // convert the times from degrees to hours by dividing by 15. 974 // // 975 // // If you'd like to check that your calculations are accurate or just 976 // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, 977 // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. 978 // 979 // double result = MT + (rise ? -HA0 : HA0); // in degrees 980 // 981 // // Find UT midnight on this day 982 // long midnight = DAY_MS * (time / DAY_MS); 983 // 984 // return midnight + (long) (result * 3600000 / 15); 985 // } 986 987 //------------------------------------------------------------------------- 988 // The Moon 989 //------------------------------------------------------------------------- 990 991 static final double moonL0 = 318.351648 * PI/180; // Mean long. at epoch 992 static final double moonP0 = 36.340410 * PI/180; // Mean long. of perigee 993 static final double moonN0 = 318.510107 * PI/180; // Mean long. of node 994 static final double moonI = 5.145366 * PI/180; // Inclination of orbit 995 static final double moonE = 0.054900; // Eccentricity of orbit 996 997 // These aren't used right now 998 static final double moonA = 3.84401e5; // semi-major axis (km) 999 static final double moonT0 = 0.5181 * PI/180; // Angular size at distance A 1000 static final double moonPi = 0.9507 * PI/180; // Parallax at distance A 1001 1002 /** 1003 * The position of the moon at the time set on this 1004 * object, in equatorial coordinates. 1005 * @hide draft / provisional / internal are hidden on Android 1006 */ 1007 public Equatorial getMoonPosition() 1008 { 1009 // 1010 // See page 142 of "Practial Astronomy with your Calculator", 1011 // by Peter Duffet-Smith, for details on the algorithm. 1012 // 1013 if (moonPosition == null) { 1014 // Calculate the solar longitude. Has the side effect of 1015 // filling in "meanAnomalySun" as well. 1016 double sunLong = getSunLongitude(); 1017 1018 // 1019 // Find the # of days since the epoch of our orbital parameters. 1020 // TODO: Convert the time of day portion into ephemeris time 1021 // 1022 double day = getJulianDay() - JD_EPOCH; // Days since epoch 1023 1024 // Calculate the mean longitude and anomaly of the moon, based on 1025 // a circular orbit. Similar to the corresponding solar calculation. 1026 double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); 1027 double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); 1028 1029 // 1030 // Calculate the following corrections: 1031 // Evection: the sun's gravity affects the moon's eccentricity 1032 // Annual Eqn: variation in the effect due to earth-sun distance 1033 // A3: correction factor (for ???) 1034 // 1035 double evection = 1.2739*PI/180 * Math.sin(2 * (meanLongitude - sunLong) 1036 - meanAnomalyMoon); 1037 double annual = 0.1858*PI/180 * Math.sin(meanAnomalySun); 1038 double a3 = 0.3700*PI/180 * Math.sin(meanAnomalySun); 1039 1040 meanAnomalyMoon += evection - annual - a3; 1041 1042 // 1043 // More correction factors: 1044 // center equation of the center correction 1045 // a4 yet another error correction (???) 1046 // 1047 // TODO: Skip the equation of the center correction and solve Kepler's eqn? 1048 // 1049 double center = 6.2886*PI/180 * Math.sin(meanAnomalyMoon); 1050 double a4 = 0.2140*PI/180 * Math.sin(2 * meanAnomalyMoon); 1051 1052 // Now find the moon's corrected longitude 1053 moonLongitude = meanLongitude + evection + center - annual + a4; 1054 1055 // 1056 // And finally, find the variation, caused by the fact that the sun's 1057 // gravitational pull on the moon varies depending on which side of 1058 // the earth the moon is on 1059 // 1060 double variation = 0.6583*PI/180 * Math.sin(2*(moonLongitude - sunLong)); 1061 1062 moonLongitude += variation; 1063 1064 // 1065 // What we've calculated so far is the moon's longitude in the plane 1066 // of its own orbit. Now map to the ecliptic to get the latitude 1067 // and longitude. First we need to find the longitude of the ascending 1068 // node, the position on the ecliptic where it is crossed by the moon's 1069 // orbit as it crosses from the southern to the northern hemisphere. 1070 // 1071 double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); 1072 1073 nodeLongitude -= 0.16*PI/180 * Math.sin(meanAnomalySun); 1074 1075 double y = Math.sin(moonLongitude - nodeLongitude); 1076 double x = Math.cos(moonLongitude - nodeLongitude); 1077 1078 moonEclipLong = Math.atan2(y*Math.cos(moonI), x) + nodeLongitude; 1079 double moonEclipLat = Math.asin(y * Math.sin(moonI)); 1080 1081 moonPosition = eclipticToEquatorial(moonEclipLong, moonEclipLat); 1082 } 1083 return moonPosition; 1084 } 1085 1086 /** 1087 * The "age" of the moon at the time specified in this object. 1088 * This is really the angle between the 1089 * current ecliptic longitudes of the sun and the moon, 1090 * measured in radians. 1091 * 1092 * @see #getMoonPhase 1093 * @hide draft / provisional / internal are hidden on Android 1094 */ 1095 public double getMoonAge() { 1096 // See page 147 of "Practial Astronomy with your Calculator", 1097 // by Peter Duffet-Smith, for details on the algorithm. 1098 // 1099 // Force the moon's position to be calculated. We're going to use 1100 // some the intermediate results cached during that calculation. 1101 // 1102 getMoonPosition(); 1103 1104 return norm2PI(moonEclipLong - sunLongitude); 1105 } 1106 1107 /** 1108 * Calculate the phase of the moon at the time set in this object. 1109 * The returned phase is a <code>double</code> in the range 1110 * <code>0 <= phase < 1</code>, interpreted as follows: 1111 * <ul> 1112 * <li>0.00: New moon 1113 * <li>0.25: First quarter 1114 * <li>0.50: Full moon 1115 * <li>0.75: Last quarter 1116 * </ul> 1117 * 1118 * @see #getMoonAge 1119 * @hide draft / provisional / internal are hidden on Android 1120 */ 1121 public double getMoonPhase() { 1122 // See page 147 of "Practial Astronomy with your Calculator", 1123 // by Peter Duffet-Smith, for details on the algorithm. 1124 return 0.5 * (1 - Math.cos(getMoonAge())); 1125 } 1126 1127 private static class MoonAge { 1128 double value; 1129 MoonAge(double val) { value = val; } 1130 } 1131 1132 /** 1133 * Constant representing a new moon. 1134 * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} 1135 * @hide draft / provisional / internal are hidden on Android 1136 */ 1137 public static final MoonAge NEW_MOON = new MoonAge(0); 1138 1139 /** 1140 * Constant representing the moon's first quarter. 1141 * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} 1142 * @hide draft / provisional / internal are hidden on Android 1143 */ 1144 public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2); 1145 1146 /** 1147 * Constant representing a full moon. 1148 * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} 1149 * @hide draft / provisional / internal are hidden on Android 1150 */ 1151 public static final MoonAge FULL_MOON = new MoonAge(PI); 1152 1153 /** 1154 * Constant representing the moon's last quarter. 1155 * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} 1156 * @hide draft / provisional / internal are hidden on Android 1157 */ 1158 public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2); 1159 1160 /** 1161 * Find the next or previous time at which the Moon's ecliptic 1162 * longitude will have the desired value. 1163 * <p> 1164 * @param desired The desired longitude. 1165 * @param next <tt>true</tt> if the next occurrance of the phase 1166 * is desired, <tt>false</tt> for the previous occurrance. 1167 * @hide draft / provisional / internal are hidden on Android 1168 */ 1169 public long getMoonTime(double desired, boolean next) 1170 { 1171 return timeOfAngle( new AngleFunc() { 1172 @Override 1173 public double eval() { return getMoonAge(); } }, 1174 desired, 1175 SYNODIC_MONTH, 1176 MINUTE_MS, 1177 next); 1178 } 1179 1180 /** 1181 * Find the next or previous time at which the moon will be in the 1182 * desired phase. 1183 * <p> 1184 * @param desired The desired phase of the moon. 1185 * @param next <tt>true</tt> if the next occurrance of the phase 1186 * is desired, <tt>false</tt> for the previous occurrance. 1187 * @hide draft / provisional / internal are hidden on Android 1188 */ 1189 public long getMoonTime(MoonAge desired, boolean next) { 1190 return getMoonTime(desired.value, next); 1191 } 1192 1193 /** 1194 * Returns the time (GMT) of sunrise or sunset on the local date to which 1195 * this calendar is currently set. 1196 * @hide draft / provisional / internal are hidden on Android 1197 */ 1198 public long getMoonRiseSet(boolean rise) 1199 { 1200 return riseOrSet(new CoordFunc() { 1201 @Override 1202 public Equatorial eval() { return getMoonPosition(); } 1203 }, 1204 rise, 1205 .533 * DEG_RAD, // Angular Diameter 1206 34 /60.0 * DEG_RAD, // Refraction correction 1207 MINUTE_MS); // Desired accuracy 1208 } 1209 1210 //------------------------------------------------------------------------- 1211 // Interpolation methods for finding the time at which a given event occurs 1212 //------------------------------------------------------------------------- 1213 1214 private interface AngleFunc { 1215 public double eval(); 1216 } 1217 1218 private long timeOfAngle(AngleFunc func, double desired, 1219 double periodDays, long epsilon, boolean next) 1220 { 1221 // Find the value of the function at the current time 1222 double lastAngle = func.eval(); 1223 1224 // Find out how far we are from the desired angle 1225 double deltaAngle = norm2PI(desired - lastAngle) ; 1226 1227 // Using the average period, estimate the next (or previous) time at 1228 // which the desired angle occurs. 1229 double deltaT = (deltaAngle + (next ? 0 : -PI2)) * (periodDays*DAY_MS) / PI2; 1230 1231 double lastDeltaT = deltaT; // Liu 1232 long startTime = time; // Liu 1233 1234 setTime(time + (long)deltaT); 1235 1236 // Now iterate until we get the error below epsilon. Throughout 1237 // this loop we use normPI to get values in the range -Pi to Pi, 1238 // since we're using them as correction factors rather than absolute angles. 1239 do { 1240 // Evaluate the function at the time we've estimated 1241 double angle = func.eval(); 1242 1243 // Find the # of milliseconds per radian at this point on the curve 1244 double factor = Math.abs(deltaT / normPI(angle-lastAngle)); 1245 1246 // Correct the time estimate based on how far off the angle is 1247 deltaT = normPI(desired - angle) * factor; 1248 1249 // HACK: 1250 // 1251 // If abs(deltaT) begins to diverge we need to quit this loop. 1252 // This only appears to happen when attempting to locate, for 1253 // example, a new moon on the day of the new moon. E.g.: 1254 // 1255 // This result is correct: 1256 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= 1257 // Sun Jul 22 10:57:41 CST 1990 1258 // 1259 // But attempting to make the same call a day earlier causes deltaT 1260 // to diverge: 1261 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> 1262 // 1.3649828540224032E9 1263 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= 1264 // Sun Jul 08 13:56:15 CST 1990 1265 // 1266 // As a temporary solution, we catch this specific condition and 1267 // adjust our start time by one eighth period days (either forward 1268 // or backward) and try again. 1269 // Liu 11/9/00 1270 if (Math.abs(deltaT) > Math.abs(lastDeltaT)) { 1271 long delta = (long) (periodDays * DAY_MS / 8); 1272 setTime(startTime + (next ? delta : -delta)); 1273 return timeOfAngle(func, desired, periodDays, epsilon, next); 1274 } 1275 1276 lastDeltaT = deltaT; 1277 lastAngle = angle; 1278 1279 setTime(time + (long)deltaT); 1280 } 1281 while (Math.abs(deltaT) > epsilon); 1282 1283 return time; 1284 } 1285 1286 private interface CoordFunc { 1287 public Equatorial eval(); 1288 } 1289 1290 private long riseOrSet(CoordFunc func, boolean rise, 1291 double diameter, double refraction, 1292 long epsilon) 1293 { 1294 Equatorial pos = null; 1295 double tanL = Math.tan(fLatitude); 1296 long deltaT = Long.MAX_VALUE; 1297 int count = 0; 1298 1299 // 1300 // Calculate the object's position at the current time, then use that 1301 // position to calculate the time of rising or setting. The position 1302 // will be different at that time, so iterate until the error is allowable. 1303 // 1304 do { 1305 // See "Practical Astronomy With Your Calculator, section 33. 1306 pos = func.eval(); 1307 double angle = Math.acos(-tanL * Math.tan(pos.declination)); 1308 double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2; 1309 1310 // Convert from LST to Universal Time. 1311 long newTime = lstToUT( lst ); 1312 1313 deltaT = newTime - time; 1314 setTime(newTime); 1315 } 1316 while (++ count < 5 && Math.abs(deltaT) > epsilon); 1317 1318 // Calculate the correction due to refraction and the object's angular diameter 1319 double cosD = Math.cos(pos.declination); 1320 double psi = Math.acos(Math.sin(fLatitude) / cosD); 1321 double x = diameter / 2 + refraction; 1322 double y = Math.asin(Math.sin(x) / Math.sin(psi)); 1323 long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); 1324 1325 return time + (rise ? -delta : delta); 1326 } 1327 1328 //------------------------------------------------------------------------- 1329 // Other utility methods 1330 //------------------------------------------------------------------------- 1331 1332 /*** 1333 * Given 'value', add or subtract 'range' until 0 <= 'value' < range. 1334 * The modulus operator. 1335 */ 1336 private static final double normalize(double value, double range) { 1337 return value - range * Math.floor(value / range); 1338 } 1339 1340 /** 1341 * Normalize an angle so that it's in the range 0 - 2pi. 1342 * For positive angles this is just (angle % 2pi), but the Java 1343 * mod operator doesn't work that way for negative numbers.... 1344 */ 1345 private static final double norm2PI(double angle) { 1346 return normalize(angle, PI2); 1347 } 1348 1349 /** 1350 * Normalize an angle into the range -PI - PI 1351 */ 1352 private static final double normPI(double angle) { 1353 return normalize(angle + PI, PI2) - PI; 1354 } 1355 1356 /** 1357 * Find the "true anomaly" (longitude) of an object from 1358 * its mean anomaly and the eccentricity of its orbit. This uses 1359 * an iterative solution to Kepler's equation. 1360 * 1361 * @param meanAnomaly The object's longitude calculated as if it were in 1362 * a regular, circular orbit, measured in radians 1363 * from the point of perigee. 1364 * 1365 * @param eccentricity The eccentricity of the orbit 1366 * 1367 * @return The true anomaly (longitude) measured in radians 1368 */ 1369 private double trueAnomaly(double meanAnomaly, double eccentricity) 1370 { 1371 // First, solve Kepler's equation iteratively 1372 // Duffett-Smith, p.90 1373 double delta; 1374 double E = meanAnomaly; 1375 do { 1376 delta = E - eccentricity * Math.sin(E) - meanAnomaly; 1377 E = E - delta / (1 - eccentricity * Math.cos(E)); 1378 } 1379 while (Math.abs(delta) > 1e-5); // epsilon = 1e-5 rad 1380 1381 return 2.0 * Math.atan( Math.tan(E/2) * Math.sqrt( (1+eccentricity) 1382 /(1-eccentricity) ) ); 1383 } 1384 1385 /** 1386 * Return the obliquity of the ecliptic (the angle between the ecliptic 1387 * and the earth's equator) at the current time. This varies due to 1388 * the precession of the earth's axis. 1389 * 1390 * @return the obliquity of the ecliptic relative to the equator, 1391 * measured in radians. 1392 */ 1393 private double eclipticObliquity() { 1394 if (eclipObliquity == INVALID) { 1395 final double epoch = 2451545.0; // 2000 AD, January 1.5 1396 1397 double T = (getJulianDay() - epoch) / 36525; 1398 1399 eclipObliquity = 23.439292 1400 - 46.815/3600 * T 1401 - 0.0006/3600 * T*T 1402 + 0.00181/3600 * T*T*T; 1403 1404 eclipObliquity *= DEG_RAD; 1405 } 1406 return eclipObliquity; 1407 } 1408 1409 1410 //------------------------------------------------------------------------- 1411 // Private data 1412 //------------------------------------------------------------------------- 1413 1414 /** 1415 * Current time in milliseconds since 1/1/1970 AD 1416 * @see java.util.Date#getTime 1417 */ 1418 private long time; 1419 1420 /* These aren't used yet, but they'll be needed for sunset calculations 1421 * and equatorial to horizon coordinate conversions 1422 */ 1423 private double fLongitude = 0.0; 1424 private double fLatitude = 0.0; 1425 private long fGmtOffset = 0; 1426 1427 // 1428 // The following fields are used to cache calculated results for improved 1429 // performance. These values all depend on the current time setting 1430 // of this object, so the clearCache method is provided. 1431 // 1432 static final private double INVALID = Double.MIN_VALUE; 1433 1434 private transient double julianDay = INVALID; 1435 private transient double julianCentury = INVALID; 1436 private transient double sunLongitude = INVALID; 1437 private transient double meanAnomalySun = INVALID; 1438 private transient double moonLongitude = INVALID; 1439 private transient double moonEclipLong = INVALID; 1440 //private transient double meanAnomalyMoon = INVALID; 1441 private transient double eclipObliquity = INVALID; 1442 private transient double siderealT0 = INVALID; 1443 private transient double siderealTime = INVALID; 1444 1445 private transient Equatorial moonPosition = null; 1446 1447 private void clearCache() { 1448 julianDay = INVALID; 1449 julianCentury = INVALID; 1450 sunLongitude = INVALID; 1451 meanAnomalySun = INVALID; 1452 moonLongitude = INVALID; 1453 moonEclipLong = INVALID; 1454 //meanAnomalyMoon = INVALID; 1455 eclipObliquity = INVALID; 1456 siderealTime = INVALID; 1457 siderealT0 = INVALID; 1458 moonPosition = null; 1459 } 1460 1461 //private static void out(String s) { 1462 // System.out.println(s); 1463 //} 1464 1465 //private static String deg(double rad) { 1466 // return Double.toString(rad * RAD_DEG); 1467 //} 1468 1469 //private static String hours(long ms) { 1470 // return Double.toString((double)ms / HOUR_MS) + " hours"; 1471 //} 1472 1473 /** 1474 * @hide draft / provisional / internal are hidden on Android 1475 */ 1476 public String local(long localMillis) { 1477 return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString(); 1478 } 1479 1480 1481 /** 1482 * Represents the position of an object in the sky relative to the ecliptic, 1483 * the plane of the earth's orbit around the Sun. 1484 * This is a spherical coordinate system in which the latitude 1485 * specifies the position north or south of the plane of the ecliptic. 1486 * The longitude specifies the position along the ecliptic plane 1487 * relative to the "First Point of Aries", which is the Sun's position in the sky 1488 * at the Vernal Equinox. 1489 * <p> 1490 * Note that Ecliptic objects are immutable and cannot be modified 1491 * once they are constructed. This allows them to be passed and returned by 1492 * value without worrying about whether other code will modify them. 1493 * 1494 * @see CalendarAstronomer.Equatorial 1495 * @see CalendarAstronomer.Horizon 1496 * @hide draft / provisional / internal are hidden on Android 1497 */ 1498 public static final class Ecliptic { 1499 /** 1500 * Constructs an Ecliptic coordinate object. 1501 * <p> 1502 * @param lat The ecliptic latitude, measured in radians. 1503 * @param lon The ecliptic longitude, measured in radians. 1504 * @hide draft / provisional / internal are hidden on Android 1505 */ 1506 public Ecliptic(double lat, double lon) { 1507 latitude = lat; 1508 longitude = lon; 1509 } 1510 1511 /** 1512 * Return a string representation of this object 1513 * @hide draft / provisional / internal are hidden on Android 1514 */ 1515 @Override 1516 public String toString() { 1517 return Double.toString(longitude*RAD_DEG) + "," + (latitude*RAD_DEG); 1518 } 1519 1520 /** 1521 * The ecliptic latitude, in radians. This specifies an object's 1522 * position north or south of the plane of the ecliptic, 1523 * with positive angles representing north. 1524 * @hide draft / provisional / internal are hidden on Android 1525 */ 1526 public final double latitude; 1527 1528 /** 1529 * The ecliptic longitude, in radians. 1530 * This specifies an object's position along the ecliptic plane 1531 * relative to the "First Point of Aries", which is the Sun's position 1532 * in the sky at the Vernal Equinox, 1533 * with positive angles representing east. 1534 * <p> 1535 * A bit of trivia: the first point of Aries is currently in the 1536 * constellation Pisces, due to the precession of the earth's axis. 1537 * @hide draft / provisional / internal are hidden on Android 1538 */ 1539 public final double longitude; 1540 } 1541 1542 /** 1543 * Represents the position of an 1544 * object in the sky relative to the plane of the earth's equator. 1545 * The <i>Right Ascension</i> specifies the position east or west 1546 * along the equator, relative to the sun's position at the vernal 1547 * equinox. The <i>Declination</i> is the position north or south 1548 * of the equatorial plane. 1549 * <p> 1550 * Note that Equatorial objects are immutable and cannot be modified 1551 * once they are constructed. This allows them to be passed and returned by 1552 * value without worrying about whether other code will modify them. 1553 * 1554 * @see CalendarAstronomer.Ecliptic 1555 * @see CalendarAstronomer.Horizon 1556 * @hide draft / provisional / internal are hidden on Android 1557 */ 1558 public static final class Equatorial { 1559 /** 1560 * Constructs an Equatorial coordinate object. 1561 * <p> 1562 * @param asc The right ascension, measured in radians. 1563 * @param dec The declination, measured in radians. 1564 * @hide draft / provisional / internal are hidden on Android 1565 */ 1566 public Equatorial(double asc, double dec) { 1567 ascension = asc; 1568 declination = dec; 1569 } 1570 1571 /** 1572 * Return a string representation of this object, with the 1573 * angles measured in degrees. 1574 * @hide draft / provisional / internal are hidden on Android 1575 */ 1576 @Override 1577 public String toString() { 1578 return Double.toString(ascension*RAD_DEG) + "," + (declination*RAD_DEG); 1579 } 1580 1581 /** 1582 * Return a string representation of this object with the right ascension 1583 * measured in hours, minutes, and seconds. 1584 * @hide draft / provisional / internal are hidden on Android 1585 */ 1586 public String toHmsString() { 1587 return radToHms(ascension) + "," + radToDms(declination); 1588 } 1589 1590 /** 1591 * The right ascension, in radians. 1592 * This is the position east or west along the equator 1593 * relative to the sun's position at the vernal equinox, 1594 * with positive angles representing East. 1595 * @hide draft / provisional / internal are hidden on Android 1596 */ 1597 public final double ascension; 1598 1599 /** 1600 * The declination, in radians. 1601 * This is the position north or south of the equatorial plane, 1602 * with positive angles representing north. 1603 * @hide draft / provisional / internal are hidden on Android 1604 */ 1605 public final double declination; 1606 } 1607 1608 /** 1609 * Represents the position of an object in the sky relative to 1610 * the local horizon. 1611 * The <i>Altitude</i> represents the object's elevation above the horizon, 1612 * with objects below the horizon having a negative altitude. 1613 * The <i>Azimuth</i> is the geographic direction of the object from the 1614 * observer's position, with 0 representing north. The azimuth increases 1615 * clockwise from north. 1616 * <p> 1617 * Note that Horizon objects are immutable and cannot be modified 1618 * once they are constructed. This allows them to be passed and returned by 1619 * value without worrying about whether other code will modify them. 1620 * 1621 * @see CalendarAstronomer.Ecliptic 1622 * @see CalendarAstronomer.Equatorial 1623 * @hide draft / provisional / internal are hidden on Android 1624 */ 1625 public static final class Horizon { 1626 /** 1627 * Constructs a Horizon coordinate object. 1628 * <p> 1629 * @param alt The altitude, measured in radians above the horizon. 1630 * @param azim The azimuth, measured in radians clockwise from north. 1631 * @hide draft / provisional / internal are hidden on Android 1632 */ 1633 public Horizon(double alt, double azim) { 1634 altitude = alt; 1635 azimuth = azim; 1636 } 1637 1638 /** 1639 * Return a string representation of this object, with the 1640 * angles measured in degrees. 1641 * @hide draft / provisional / internal are hidden on Android 1642 */ 1643 @Override 1644 public String toString() { 1645 return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG); 1646 } 1647 1648 /** 1649 * The object's altitude above the horizon, in radians. 1650 * @hide draft / provisional / internal are hidden on Android 1651 */ 1652 public final double altitude; 1653 1654 /** 1655 * The object's direction, in radians clockwise from north. 1656 * @hide draft / provisional / internal are hidden on Android 1657 */ 1658 public final double azimuth; 1659 } 1660 1661 static private String radToHms(double angle) { 1662 int hrs = (int) (angle*RAD_HOUR); 1663 int min = (int)((angle*RAD_HOUR - hrs) * 60); 1664 int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); 1665 1666 return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; 1667 } 1668 1669 static private String radToDms(double angle) { 1670 int deg = (int) (angle*RAD_DEG); 1671 int min = (int)((angle*RAD_DEG - deg) * 60); 1672 int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); 1673 1674 return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; 1675 } 1676 } 1677