1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (C) 2000-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * file name: ucnv_lmb.cpp
9 * encoding: US-ASCII
10 * tab size: 4 (not used)
11 * indentation:4
12 *
13 * created on: 2000feb09
14 * created by: Brendan Murray
15 * extensively hacked up by: Jim Snyder-Grant
16 *
17 * Modification History:
18 *
19 * Date Name Description
20 *
21 * 06/20/2000 helena OS/400 port changes; mostly typecast.
22 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
23 * Add comments to document LMBCS format and implementation
24 * restructured order & breakdown of functions
25 * 06/28/2000 helena Major rewrite for the callback API changes.
26 */
27
28 #include "unicode/utypes.h"
29
30 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
31
32 #include "unicode/ucnv_err.h"
33 #include "unicode/ucnv.h"
34 #include "unicode/uset.h"
35 #include "cmemory.h"
36 #include "cstring.h"
37 #include "uassert.h"
38 #include "ucnv_imp.h"
39 #include "ucnv_bld.h"
40 #include "ucnv_cnv.h"
41
42 #ifdef EBCDIC_RTL
43 #include "ascii_a.h"
44 #endif
45
46 /*
47 LMBCS
48
49 (Lotus Multi-Byte Character Set)
50
51 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53 into these products will sometimes need to deal with strings in this format.
54
55 The code in this file provides an implementation for an ICU converter of
56 LMBCS to and from Unicode.
57
58 Since the LMBCS character set is only sparsely documented in existing
59 printed or online material, we have added extensive annotation to this
60 file to serve as a guide to understanding LMBCS.
61
62 LMBCS was originally designed with these four sometimes-competing design goals:
63
64 -Provide encodings for the characters in 12 existing national standards
65 (plus a few other characters)
66 -Minimal memory footprint
67 -Maximal speed of conversion into the existing national character sets
68 -No need to track a changing state as you interpret a string.
69
70
71 All of the national character sets LMBCS was trying to encode are 'ANSI'
72 based, in that the bytes from 0x20 - 0x7F are almost exactly the
73 same common Latin unaccented characters and symbols in all character sets.
74
75 So, in order to help meet the speed & memory design goals, the common ANSI
76 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
77
78 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79 follows:
80
81 [G] D1 [D2]
82
83 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
85 */
86 #define ULMBCS_CHARSIZE_MAX 3
87 /*
88 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89 We often have to figure out if byte values are below or above this, so we
90 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91 characters just above & below the common lower-ANSI range */
92 #define ULMBCS_C0END 0x1F
93 #define ULMBCS_C1START 0x80
94 /*
95 Since LMBCS is always dealing in byte units. we create a local type here for
96 dealing with these units of LMBCS code units:
97
98 */
99 typedef uint8_t ulmbcs_byte_t;
100
101 /*
102 Most of the values less than 0x20 are reserved in LMBCS to announce
103 which national character standard is being used for the 'D' bytes.
104 In the comments we show the common name and the IBM character-set ID
105 for these character-set announcers:
106 */
107
108 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
109 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
110 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
111 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
112 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
113 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
114 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
115 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
116 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
117 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
118 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
119 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
120
121 /*
122 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123 character is one of those 12 values, you can interpret the remaining bytes of
124 that character as coming from one of those character sets. Since the lower
125 ANSI bytes already are represented in single bytes, using one of the character
126 set announcers is used to announce a character that starts with a byte of
127 0x80 or greater.
128
129 The character sets are arranged so that the single byte sets all appear
130 before the multi-byte character sets. When we need to tell whether a
131 group byte is for a single byte char set or not we use this define: */
132
133 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
134
135 /*
136 However, to fully understand LMBCS, you must also understand a series of
137 exceptions & optimizations made in service of the design goals.
138
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to
143 count characters), we use a convention of doubling up on the group byte
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146 same as '0xAE' in the Japanese code page 943.
147
148 Next, you will notice that the list of group bytes has some gaps.
149 These are used in various ways.
150
151 We reserve a few special single byte values for common control
152 characters. These are in the same place as their ANSI eqivalents for speed.
153 */
154
155 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
157 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
158
159 /* Then, 1-2-3 reserved a special single-byte character to put at the
160 beginning of internal 'system' range names: */
161
162 #define ULMBCS_123SYSTEMRANGE 0x19
163
164 /* Then we needed a place to put all the other ansi control characters
165 that must be moved to different values because LMBCS reserves those
166 values for other purposes. To represent the control characters, we start
167 with a first byte of 0xF & add the control chaarcter value as the
168 second byte */
169 #define ULMBCS_GRP_CTRL 0x0F
170
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET 0x20
175
176 /*
177 Where to put the characters that aren't part of any of the 12 national
178 character sets? The first thing that was done, in the earlier years of
179 LMBCS, was to use up the spaces of the form
180
181 [G] D1,
182
183 where 'G' was one of the single-byte character groups, and
184 D1 was less than 0x80. These sequences are gathered together
185 into a Lotus-invented doublebyte character set to represent a
186 lot of stray values. Internally, in this implementation, we track this
187 as group '0', as a place to tuck this exceptions list.*/
188
189 #define ULMBCS_GRP_EXCEPT 0x00
190 /*
191 Finally, as the durability and usefulness of UNICODE became clear,
192 LOTUS added a new group 0x14 to hold Unicode values not otherwise
193 represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE 0x14
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO 0xF6
202
203 /* It is also useful in our code to have a constant for the size of
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE 3
206
207 /*
208 To squish the LMBCS representations down even further, and to make
209 translations even faster,sometimes the optimization group byte can be dropped
210 from a LMBCS character. This is decided on a process-by-process basis. The
211 group byte that is dropped is called the 'optimization group'.
212
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216 file.
217
218 In any case, when using ICU, you either pass in the
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220 etc.). Using plain 'LMBCS' as the name of the converter will give you
221 LMBCS-1.
222
223
224 *** Implementation strategy ***
225
226
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
230
231 /* As you can see, even though any byte below 0x20 could be an optimization
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
234
235 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
236
237 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239 /* 0x0001 */ "ibm-850",
240 /* 0x0002 */ "ibm-851",
241 /* 0x0003 */ "windows-1255",
242 /* 0x0004 */ "windows-1256",
243 /* 0x0005 */ "windows-1251",
244 /* 0x0006 */ "ibm-852",
245 /* 0x0007 */ NULL, /* Unused */
246 /* 0x0008 */ "windows-1254",
247 /* 0x0009 */ NULL, /* Control char HT */
248 /* 0x000A */ NULL, /* Control char LF */
249 /* 0x000B */ "windows-874",
250 /* 0x000C */ NULL, /* Unused */
251 /* 0x000D */ NULL, /* Control char CR */
252 /* 0x000E */ NULL, /* Unused */
253 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254 /* 0x0010 */ "windows-932",
255 /* 0x0011 */ "windows-949",
256 /* 0x0012 */ "windows-950",
257 /* 0x0013 */ "windows-936"
258
259 /* The rest are null, including the 0x0014 Unicode compatibility region
260 and 0x0019, the 1-2-3 system range control char */
261 };
262
263
264 /* That's approximately all the data that's needed for translating
265 LMBCS to Unicode.
266
267
268 However, to translate Unicode to LMBCS, we need some more support.
269
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets. (If the character exists in both DBCS &
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
279
280 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
281 LMBCS sbcs native encoding
282 (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
284 LMBCS mbcs native encoding
285 (example: Unihan) */
286 #define ULMBCS_AMBIGUOUS_ALL 0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294
295
296 /* The table & some code to use it: */
297
298
299 static const struct _UniLMBCSGrpMap
300 {
301 const UChar uniStartRange;
302 const UChar uniEndRange;
303 const ulmbcs_byte_t GrpType;
304 } UniLMBCSGrpMap[]
305 =
306 {
307
308 {0x0001, 0x001F, ULMBCS_GRP_CTRL},
309 {0x0080, 0x009F, ULMBCS_GRP_CTRL},
310 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS},
311 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL},
312 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS},
313 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL},
314 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS},
315 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL},
316 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS},
317 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL},
318 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS},
319 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL},
320 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS},
321 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL},
322 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS},
323 {0x01CE, 0x01CE, ULMBCS_GRP_TW },
324 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS},
325 {0x02BA, 0x02BA, ULMBCS_GRP_CN},
326 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS},
327 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS},
328 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS},
329 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS},
330 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL},
331 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS},
332 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL},
333 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS},
334 {0x0400, 0x0400, ULMBCS_GRP_RU},
335 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL},
336 {0x0402, 0x040F, ULMBCS_GRP_RU},
337 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL},
338 {0x0432, 0x044E, ULMBCS_GRP_RU},
339 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL},
340 {0x0450, 0x0491, ULMBCS_GRP_RU},
341 {0x05B0, 0x05F2, ULMBCS_GRP_HE},
342 {0x060C, 0x06AF, ULMBCS_GRP_AR},
343 {0x0E01, 0x0E5B, ULMBCS_GRP_TH},
344 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS},
345 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS},
346 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS},
347 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS},
348 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS},
349 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS},
350 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL},
351 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS},
352 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL},
353 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS},
354 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL},
355 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS},
356 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS},
357 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL},
358 {0x2027, 0x2027, ULMBCS_GRP_TW},
359 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL},
360 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS},
361 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS},
362 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS},
363 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS},
364 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS},
365 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT},
366 {0x2074, 0x2074, ULMBCS_GRP_KO},
367 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT},
368 {0x2081, 0x2084, ULMBCS_GRP_KO},
369 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS},
370 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS},
371 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS},
372 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS},
374 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS},
375 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS},
376 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS},
377 {0x2153, 0x2154, ULMBCS_GRP_KO},
378 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT},
379 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS},
380 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL},
381 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT},
382 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS},
383 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT},
384 {0x21B8, 0x21B9, ULMBCS_GRP_CN},
385 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT},
386 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS},
387 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT},
388 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS},
389 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT},
390 {0x21E7, 0x21E7, ULMBCS_GRP_CN},
391 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS},
392 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT},
393 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS},
394 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS},
395 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT},
396 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS},
397 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT},
398 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS},
399 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS},
400 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT},
401 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS},
402 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT},
403 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS},
404 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT},
405 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS},
406 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS},
407 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS},
408 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT},
409 {0x224C, 0x224C, ULMBCS_GRP_TW},
410 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS},
411 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS},
412 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT},
413 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS},
414 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS},
415 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT},
416 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS},
417 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT},
418 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS},
419 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT},
420 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT},
421 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS},
422 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT},
423 {0x2318, 0x2321, ULMBCS_GRP_CN},
424 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS},
425 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS},
426 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS},
427 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL},
428 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS},
429 {0x2504, 0x2505, ULMBCS_GRP_TW},
430 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL},
431 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
432 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS},
433 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL},
434 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS},
435 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS},
436 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS},
437 {0x266F, 0x266F, ULMBCS_GRP_JA},
438 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS},
439 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS},
440 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT},
441 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS},
442 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS},
443 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS},
444 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE}
445 };
446
447 static ulmbcs_byte_t
FindLMBCSUniRange(UChar uniChar)448 FindLMBCSUniRange(UChar uniChar)
449 {
450 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451
452 while (uniChar > pTable->uniEndRange)
453 {
454 pTable++;
455 }
456
457 if (uniChar >= pTable->uniStartRange)
458 {
459 return pTable->GrpType;
460 }
461 return ULMBCS_GRP_UNICODE;
462 }
463
464 /*
465 We also ask the creator of a converter to send in a preferred locale
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the
468 LMBCS groups. We use this table, and the associated code, to
469 do the lookup: */
470
471 /**************************************************
472 This table maps locale ID's to LMBCS opt groups.
473 The default return is group 0x01. Note that for
474 performance reasons, the table is sorted in
475 increasing alphabetic order, with the notable
476 exception of zhTW. This is to force the check
477 for Traditonal Chinese before dropping back to
478 Simplified.
479
480 Note too that the Latin-1 groups have been
481 commented out because it's the default, and
482 this shortens the table, allowing a serial
483 search to go quickly.
484 *************************************************/
485
486 static const struct _LocaleLMBCSGrpMap
487 {
488 const char *LocaleID;
489 const ulmbcs_byte_t OptGroup;
490 } LocaleLMBCSGrpMap[] =
491 {
492 {"ar", ULMBCS_GRP_AR},
493 {"be", ULMBCS_GRP_RU},
494 {"bg", ULMBCS_GRP_L2},
495 /* {"ca", ULMBCS_GRP_L1}, */
496 {"cs", ULMBCS_GRP_L2},
497 /* {"da", ULMBCS_GRP_L1}, */
498 /* {"de", ULMBCS_GRP_L1}, */
499 {"el", ULMBCS_GRP_GR},
500 /* {"en", ULMBCS_GRP_L1}, */
501 /* {"es", ULMBCS_GRP_L1}, */
502 /* {"et", ULMBCS_GRP_L1}, */
503 /* {"fi", ULMBCS_GRP_L1}, */
504 /* {"fr", ULMBCS_GRP_L1}, */
505 {"he", ULMBCS_GRP_HE},
506 {"hu", ULMBCS_GRP_L2},
507 /* {"is", ULMBCS_GRP_L1}, */
508 /* {"it", ULMBCS_GRP_L1}, */
509 {"iw", ULMBCS_GRP_HE},
510 {"ja", ULMBCS_GRP_JA},
511 {"ko", ULMBCS_GRP_KO},
512 /* {"lt", ULMBCS_GRP_L1}, */
513 /* {"lv", ULMBCS_GRP_L1}, */
514 {"mk", ULMBCS_GRP_RU},
515 /* {"nl", ULMBCS_GRP_L1}, */
516 /* {"no", ULMBCS_GRP_L1}, */
517 {"pl", ULMBCS_GRP_L2},
518 /* {"pt", ULMBCS_GRP_L1}, */
519 {"ro", ULMBCS_GRP_L2},
520 {"ru", ULMBCS_GRP_RU},
521 {"sh", ULMBCS_GRP_L2},
522 {"sk", ULMBCS_GRP_L2},
523 {"sl", ULMBCS_GRP_L2},
524 {"sq", ULMBCS_GRP_L2},
525 {"sr", ULMBCS_GRP_RU},
526 /* {"sv", ULMBCS_GRP_L1}, */
527 {"th", ULMBCS_GRP_TH},
528 {"tr", ULMBCS_GRP_TR},
529 {"uk", ULMBCS_GRP_RU},
530 /* {"vi", ULMBCS_GRP_L1}, */
531 {"zhTW", ULMBCS_GRP_TW},
532 {"zh", ULMBCS_GRP_CN},
533 {NULL, ULMBCS_GRP_L1}
534 };
535
536
537 static ulmbcs_byte_t
FindLMBCSLocale(const char * LocaleID)538 FindLMBCSLocale(const char *LocaleID)
539 {
540 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541
542 if ((!LocaleID) || (!*LocaleID))
543 {
544 return 0;
545 }
546
547 while (pTable->LocaleID)
548 {
549 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550 {
551 /* First char matches - check whole name, for entry-length */
552 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553 return pTable->OptGroup;
554 }
555 else
556 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557 break;
558 pTable++;
559 }
560 return ULMBCS_GRP_L1;
561 }
562
563
564 /*
565 Before we get to the main body of code, here's how we hook up to the rest
566 of ICU. ICU converters are required to define a structure that includes
567 some function pointers, and some common data, in the style of a C++
568 vtable. There is also room in there for converter-specific data. LMBCS
569 uses that converter-specific data to keep track of the 12 subconverters
570 we use, the optimization group, and the group (if any) that matches the
571 locale. We have one structure instantiated for each of the 12 possible
572 optimization groups. To avoid typos & to avoid boring the reader, we
573 put the declarations of these structures and functions into macros. To see
574 the definitions of these structures, see unicode\ucnv_bld.h
575 */
576
577 typedef struct
578 {
579 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */
580 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */
581 uint8_t localeConverterIndex; /* reasonable locale match for index */
582 }
583 UConverterDataLMBCS;
584
585 static void _LMBCSClose(UConverter * _this);
586
587 #define DECLARE_LMBCS_DATA(n) \
588 static const UConverterImpl _LMBCSImpl##n={\
589 UCNV_LMBCS_##n,\
590 NULL,NULL,\
591 _LMBCSOpen##n,\
592 _LMBCSClose,\
593 NULL,\
594 _LMBCSToUnicodeWithOffsets,\
595 _LMBCSToUnicodeWithOffsets,\
596 _LMBCSFromUnicode,\
597 _LMBCSFromUnicode,\
598 NULL,\
599 NULL,\
600 NULL,\
601 NULL,\
602 _LMBCSSafeClone,\
603 ucnv_getCompleteUnicodeSet\
604 };\
605 static const UConverterStaticData _LMBCSStaticData##n={\
606 sizeof(UConverterStaticData),\
607 "LMBCS-" #n,\
608 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
609 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
610 };\
611 const UConverterSharedData _LMBCSData##n= \
612 UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
613
614 /* The only function we needed to duplicate 12 times was the 'open'
615 function, which will do basically the same thing except set a different
616 optimization group. So, we put the common stuff into a worker function,
617 and set up another macro to stamp out the 12 open functions:*/
618 #define DEFINE_LMBCS_OPEN(n) \
619 static void \
620 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
621 { _LMBCSOpenWorker(_this, pArgs, err, n); }
622
623
624
625 /* Here's the open worker & the common close function */
626 static void
_LMBCSOpenWorker(UConverter * _this,UConverterLoadArgs * pArgs,UErrorCode * err,ulmbcs_byte_t OptGroup)627 _LMBCSOpenWorker(UConverter* _this,
628 UConverterLoadArgs *pArgs,
629 UErrorCode* err,
630 ulmbcs_byte_t OptGroup)
631 {
632 UConverterDataLMBCS * extraInfo = _this->extraInfo =
633 (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
634 if(extraInfo != NULL)
635 {
636 UConverterNamePieces stackPieces;
637 UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
638 ulmbcs_byte_t i;
639
640 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
641
642 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
643
644 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
645 {
646 if(OptGroupByteToCPName[i] != NULL) {
647 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
648 }
649 }
650
651 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
652 _LMBCSClose(_this);
653 return;
654 }
655 extraInfo->OptGroup = OptGroup;
656 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
657 }
658 else
659 {
660 *err = U_MEMORY_ALLOCATION_ERROR;
661 }
662 }
663
664 static void
_LMBCSClose(UConverter * _this)665 _LMBCSClose(UConverter * _this)
666 {
667 if (_this->extraInfo != NULL)
668 {
669 ulmbcs_byte_t Ix;
670 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
671
672 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
673 {
674 if (extraInfo->OptGrpConverter[Ix] != NULL)
675 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
676 }
677 if (!_this->isExtraLocal) {
678 uprv_free (_this->extraInfo);
679 _this->extraInfo = NULL;
680 }
681 }
682 }
683
684 typedef struct LMBCSClone {
685 UConverter cnv;
686 UConverterDataLMBCS lmbcs;
687 } LMBCSClone;
688
689 static UConverter *
_LMBCSSafeClone(const UConverter * cnv,void * stackBuffer,int32_t * pBufferSize,UErrorCode * status)690 _LMBCSSafeClone(const UConverter *cnv,
691 void *stackBuffer,
692 int32_t *pBufferSize,
693 UErrorCode *status) {
694 LMBCSClone *newLMBCS;
695 UConverterDataLMBCS *extraInfo;
696 int32_t i;
697
698 if(*pBufferSize<=0) {
699 *pBufferSize=(int32_t)sizeof(LMBCSClone);
700 return NULL;
701 }
702
703 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
704 newLMBCS=(LMBCSClone *)stackBuffer;
705
706 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
707
708 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
709
710 /* share the subconverters */
711 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
712 if(extraInfo->OptGrpConverter[i] != NULL) {
713 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
714 }
715 }
716
717 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
718 newLMBCS->cnv.isExtraLocal = TRUE;
719 return &newLMBCS->cnv;
720 }
721
722 /*
723 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
724 * which added all code points except for U+F6xx
725 * because those cannot be represented in the Unicode group.
726 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
727 * which means that LMBCS can convert all Unicode code points after all.
728 * We now simply use ucnv_getCompleteUnicodeSet().
729 *
730 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
731 */
732
733 /*
734 Here's the basic helper function that we use when converting from
735 Unicode to LMBCS, and we suspect that a Unicode character will fit into
736 one of the 12 groups. The return value is the number of bytes written
737 starting at pStartLMBCS (if any).
738 */
739
740 static size_t
LMBCSConversionWorker(UConverterDataLMBCS * extraInfo,ulmbcs_byte_t group,ulmbcs_byte_t * pStartLMBCS,UChar * pUniChar,ulmbcs_byte_t * lastConverterIndex,UBool * groups_tried)741 LMBCSConversionWorker (
742 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */
743 ulmbcs_byte_t group, /* The group to try */
744 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */
745 UChar * pUniChar, /* The input unicode character */
746 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
747 UBool * groups_tried /* output: track any unsuccessful groups */
748 )
749 {
750 ulmbcs_byte_t * pLMBCS = pStartLMBCS;
751 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
752
753 int bytesConverted;
754 uint32_t value;
755 ulmbcs_byte_t firstByte;
756
757 U_ASSERT(xcnv);
758 U_ASSERT(group<ULMBCS_GRP_UNICODE);
759
760 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
761
762 /* get the first result byte */
763 if(bytesConverted > 0) {
764 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
765 } else {
766 /* most common failure mode is an unassigned character */
767 groups_tried[group] = TRUE;
768 return 0;
769 }
770
771 *lastConverterIndex = group;
772
773 /* All initial byte values in lower ascii range should have been caught by now,
774 except with the exception group.
775 */
776 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
777
778 /* use converted data: first write 0, 1 or two group bytes */
779 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
780 {
781 *pLMBCS++ = group;
782 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
783 {
784 *pLMBCS++ = group;
785 }
786 }
787
788 /* don't emit control chars */
789 if ( bytesConverted == 1 && firstByte < 0x20 )
790 return 0;
791
792
793 /* then move over the converted data */
794 switch(bytesConverted)
795 {
796 case 4:
797 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
798 U_FALLTHROUGH;
799 case 3:
800 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
801 U_FALLTHROUGH;
802 case 2:
803 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
804 U_FALLTHROUGH;
805 case 1:
806 *pLMBCS++ = (ulmbcs_byte_t)value;
807 U_FALLTHROUGH;
808 default:
809 /* will never occur */
810 break;
811 }
812
813 return (pLMBCS - pStartLMBCS);
814 }
815
816
817 /* This is a much simpler version of above, when we
818 know we are writing LMBCS using the Unicode group
819 */
820 static size_t
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS,UChar uniChar)821 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
822 {
823 /* encode into LMBCS Unicode range */
824 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF);
825 uint8_t HighCh = (uint8_t)(uniChar >> 8);
826
827 *pLMBCS++ = ULMBCS_GRP_UNICODE;
828
829 if (LowCh == 0)
830 {
831 *pLMBCS++ = ULMBCS_UNICOMPATZERO;
832 *pLMBCS++ = HighCh;
833 }
834 else
835 {
836 *pLMBCS++ = HighCh;
837 *pLMBCS++ = LowCh;
838 }
839 return ULMBCS_UNICODE_SIZE;
840 }
841
842
843
844 /* The main Unicode to LMBCS conversion function */
845 static void
_LMBCSFromUnicode(UConverterFromUnicodeArgs * args,UErrorCode * err)846 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args,
847 UErrorCode* err)
848 {
849 ulmbcs_byte_t lastConverterIndex = 0;
850 UChar uniChar;
851 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX];
852 ulmbcs_byte_t * pLMBCS;
853 int32_t bytes_written;
854 UBool groups_tried[ULMBCS_GRP_LAST+1];
855 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
856 int sourceIndex = 0;
857
858 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
859 If that succeeds, see if it will all fit into the target & copy it over
860 if it does.
861
862 We try conversions in the following order:
863
864 1. Single-byte ascii & special fixed control chars (&null)
865 2. Look up group in table & try that (could be
866 A) Unicode group
867 B) control group,
868 C) national encoding,
869 or ambiguous SBCS or MBCS group (on to step 4...)
870
871 3. If its ambiguous, try this order:
872 A) The optimization group
873 B) The locale group
874 C) The last group that succeeded with this string.
875 D) every other group that's relevent (single or double)
876 E) If its single-byte ambiguous, try the exceptions group
877
878 4. And as a grand fallback: Unicode
879 */
880
881 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
882 ulmbcs_byte_t OldConverterIndex = 0;
883
884 while (args->source < args->sourceLimit && !U_FAILURE(*err))
885 {
886 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
887 OldConverterIndex = extraInfo->localeConverterIndex;
888
889 if (args->target >= args->targetLimit)
890 {
891 *err = U_BUFFER_OVERFLOW_ERROR;
892 break;
893 }
894 uniChar = *(args->source);
895 bytes_written = 0;
896 pLMBCS = LMBCS;
897
898 /* check cases in rough order of how common they are, for speed */
899
900 /* single byte matches: strategy 1 */
901 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
902 if((uniChar>=0x80) && (uniChar<=0xff)
903 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
904 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
905 {
906 extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
907 }
908 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
909 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
910 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
911 )
912 {
913 *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
914 bytes_written = 1;
915 }
916
917
918 if (!bytes_written)
919 {
920 /* Check by UNICODE range (Strategy 2) */
921 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
922
923 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */
924 {
925 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
926
927 bytes_written = (int32_t)(pLMBCS - LMBCS);
928 }
929 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */
930 {
931 /* Handle control characters here */
932 if (uniChar <= ULMBCS_C0END)
933 {
934 *pLMBCS++ = ULMBCS_GRP_CTRL;
935 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
936 }
937 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
938 {
939 *pLMBCS++ = ULMBCS_GRP_CTRL;
940 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
941 }
942 bytes_written = (int32_t)(pLMBCS - LMBCS);
943 }
944 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */
945 {
946 /* a specific converter has been identified - use it */
947 bytes_written = (int32_t)LMBCSConversionWorker (
948 extraInfo, group, pLMBCS, &uniChar,
949 &lastConverterIndex, groups_tried);
950 }
951 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */
952 {
953 uprv_memset(groups_tried, 0, sizeof(groups_tried));
954
955 /* check for non-default optimization group (Strategy 3A )*/
956 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
957 {
958 /*zhujin: upgrade, merge #39299 here (Lotus) */
959 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
960
961 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
962 {
963 bytes_written = LMBCSConversionWorker (extraInfo,
964 ULMBCS_GRP_L1, pLMBCS, &uniChar,
965 &lastConverterIndex, groups_tried);
966
967 if(!bytes_written)
968 {
969 bytes_written = LMBCSConversionWorker (extraInfo,
970 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
971 &lastConverterIndex, groups_tried);
972 }
973 if(!bytes_written)
974 {
975 bytes_written = LMBCSConversionWorker (extraInfo,
976 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
977 &lastConverterIndex, groups_tried);
978 }
979 }
980 else
981 {
982 bytes_written = LMBCSConversionWorker (extraInfo,
983 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
984 &lastConverterIndex, groups_tried);
985 }
986 }
987 /* check for locale optimization group (Strategy 3B) */
988 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
989 {
990 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
991 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
992 }
993 /* check for last optimization group used for this string (Strategy 3C) */
994 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
995 {
996 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
997 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
998 }
999 if (!bytes_written)
1000 {
1001 /* just check every possible matching converter (Strategy 3D) */
1002 ulmbcs_byte_t grp_start;
1003 ulmbcs_byte_t grp_end;
1004 ulmbcs_byte_t grp_ix;
1005 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1006 ? ULMBCS_DOUBLEOPTGROUP_START
1007 : ULMBCS_GRP_L1);
1008 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1009 ? ULMBCS_GRP_LAST
1010 : ULMBCS_GRP_TH);
1011 if(group == ULMBCS_AMBIGUOUS_ALL)
1012 {
1013 grp_start = ULMBCS_GRP_L1;
1014 grp_end = ULMBCS_GRP_LAST;
1015 }
1016 for (grp_ix = grp_start;
1017 grp_ix <= grp_end && !bytes_written;
1018 grp_ix++)
1019 {
1020 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1021 {
1022 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1023 grp_ix, pLMBCS, &uniChar,
1024 &lastConverterIndex, groups_tried);
1025 }
1026 }
1027 /* a final conversion fallback to the exceptions group if its likely
1028 to be single byte (Strategy 3E) */
1029 if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1030 {
1031 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1032 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1033 &lastConverterIndex, groups_tried);
1034 }
1035 }
1036 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1037 if (!bytes_written)
1038 {
1039
1040 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1041 bytes_written = (int32_t)(pLMBCS - LMBCS);
1042 }
1043 }
1044 }
1045
1046 /* we have a translation. increment source and write as much as posible to target */
1047 args->source++;
1048 pLMBCS = LMBCS;
1049 while (args->target < args->targetLimit && bytes_written--)
1050 {
1051 *(args->target)++ = *pLMBCS++;
1052 if (args->offsets)
1053 {
1054 *(args->offsets)++ = sourceIndex;
1055 }
1056 }
1057 sourceIndex++;
1058 if (bytes_written > 0)
1059 {
1060 /* write any bytes that didn't fit in target to the error buffer,
1061 common code will move this to target if we get called back with
1062 enough target room
1063 */
1064 uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1065 *err = U_BUFFER_OVERFLOW_ERROR;
1066 args->converter->charErrorBufferLength = (int8_t)bytes_written;
1067 while (bytes_written--)
1068 {
1069 *pErrorBuffer++ = *pLMBCS++;
1070 }
1071 }
1072 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1073 extraInfo->localeConverterIndex = OldConverterIndex;
1074 }
1075 }
1076
1077
1078 /* Now, the Unicode from LMBCS section */
1079
1080
1081 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1082 static UChar
GetUniFromLMBCSUni(char const ** ppLMBCSin)1083 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */
1084 {
1085 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/
1086 uint8_t LowCh = *(*ppLMBCSin)++;
1087
1088 if (HighCh == ULMBCS_UNICOMPATZERO )
1089 {
1090 HighCh = LowCh;
1091 LowCh = 0; /* zero-byte in LSB special character */
1092 }
1093 return (UChar)((HighCh << 8) | LowCh);
1094 }
1095
1096
1097
1098 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1099 bytes left in source up to sourceLimit.Errors appropriately if not.
1100 If we reach the limit, then update the source pointer to there to consume
1101 all input as required by ICU converter semantics.
1102 */
1103
1104 #define CHECK_SOURCE_LIMIT(index) \
1105 if (args->source+index > args->sourceLimit){\
1106 *err = U_TRUNCATED_CHAR_FOUND;\
1107 args->source = args->sourceLimit;\
1108 return 0xffff;}
1109
1110 /* Return the Unicode representation for the current LMBCS character */
1111
1112 static UChar32
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs * args,UErrorCode * err)1113 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args,
1114 UErrorCode* err)
1115 {
1116 UChar32 uniChar = 0; /* an output UNICODE char */
1117 ulmbcs_byte_t CurByte; /* A byte from the input stream */
1118
1119 /* error check */
1120 if (args->source >= args->sourceLimit)
1121 {
1122 *err = U_ILLEGAL_ARGUMENT_ERROR;
1123 return 0xffff;
1124 }
1125 /* Grab first byte & save address for error recovery */
1126 CurByte = *((ulmbcs_byte_t *) (args->source++));
1127
1128 /*
1129 * at entry of each if clause:
1130 * 1. 'CurByte' points at the first byte of a LMBCS character
1131 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1132 *
1133 * the job of each if clause is:
1134 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1135 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1136 */
1137
1138 /* First lets check the simple fixed values. */
1139
1140 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1141 || (CurByte == 0)
1142 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1143 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1144 {
1145 uniChar = CurByte;
1146 }
1147 else
1148 {
1149 UConverterDataLMBCS * extraInfo;
1150 ulmbcs_byte_t group;
1151 UConverterSharedData *cnv;
1152
1153 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */
1154 {
1155 ulmbcs_byte_t C0C1byte;
1156 CHECK_SOURCE_LIMIT(1);
1157 C0C1byte = *(args->source)++;
1158 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1159 }
1160 else
1161 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1162 {
1163 CHECK_SOURCE_LIMIT(2);
1164
1165 /* don't check for error indicators fffe/ffff below */
1166 return GetUniFromLMBCSUni(&(args->source));
1167 }
1168 else if (CurByte <= ULMBCS_CTRLOFFSET)
1169 {
1170 group = CurByte; /* group byte is in the source */
1171 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1172 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1173 {
1174 /* this is not a valid group byte - no converter*/
1175 *err = U_INVALID_CHAR_FOUND;
1176 }
1177 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1178 {
1179
1180 CHECK_SOURCE_LIMIT(2);
1181
1182 /* check for LMBCS doubled-group-byte case */
1183 if (*args->source == group) {
1184 /* single byte */
1185 ++args->source;
1186 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1187 ++args->source;
1188 } else {
1189 /* double byte */
1190 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1191 args->source += 2;
1192 }
1193 }
1194 else { /* single byte conversion */
1195 CHECK_SOURCE_LIMIT(1);
1196 CurByte = *(args->source)++;
1197
1198 if (CurByte >= ULMBCS_C1START)
1199 {
1200 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1201 }
1202 else
1203 {
1204 /* The non-optimizable oddballs where there is an explicit byte
1205 * AND the second byte is not in the upper ascii range
1206 */
1207 char bytes[2];
1208
1209 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1210 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1211
1212 /* Lookup value must include opt group */
1213 bytes[0] = group;
1214 bytes[1] = CurByte;
1215 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1216 }
1217 }
1218 }
1219 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1220 {
1221 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1222 group = extraInfo->OptGroup;
1223 cnv = extraInfo->OptGrpConverter[group];
1224 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1225 {
1226 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1227 {
1228 CHECK_SOURCE_LIMIT(0);
1229
1230 /* let the MBCS conversion consume CurByte again */
1231 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1232 }
1233 else
1234 {
1235 CHECK_SOURCE_LIMIT(1);
1236 /* let the MBCS conversion consume CurByte again */
1237 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1238 ++args->source;
1239 }
1240 }
1241 else /* single byte conversion */
1242 {
1243 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1244 }
1245 }
1246 }
1247 return uniChar;
1248 }
1249
1250
1251 /* The exported function that converts lmbcs to one or more
1252 UChars - currently UTF-16
1253 */
1254 static void
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * args,UErrorCode * err)1255 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args,
1256 UErrorCode* err)
1257 {
1258 char LMBCS [ULMBCS_CHARSIZE_MAX];
1259 UChar uniChar; /* one output UNICODE char */
1260 const char * saveSource; /* beginning of current code point */
1261 const char * pStartLMBCS = args->source; /* beginning of whole string */
1262 const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1263 int8_t savebytes = 0;
1264
1265 /* Process from source to limit, or until error */
1266 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1267 {
1268 saveSource = args->source; /* beginning of current code point */
1269
1270 if (args->converter->toULength) /* reassemble char from previous call */
1271 {
1272 const char *saveSourceLimit;
1273 size_t size_old = args->converter->toULength;
1274
1275 /* limit from source is either remainder of temp buffer, or user limit on source */
1276 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1277 size_t size_new_maybe_2 = args->sourceLimit - args->source;
1278 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1279
1280
1281 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1282 uprv_memcpy(LMBCS + size_old, args->source, size_new);
1283 saveSourceLimit = args->sourceLimit;
1284 args->source = errSource = LMBCS;
1285 args->sourceLimit = LMBCS+size_old+size_new;
1286 savebytes = (int8_t)(size_old+size_new);
1287 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1288 args->source = saveSource + ((args->source - LMBCS) - size_old);
1289 args->sourceLimit = saveSourceLimit;
1290
1291 if (*err == U_TRUNCATED_CHAR_FOUND)
1292 {
1293 /* evil special case: source buffers so small a char spans more than 2 buffers */
1294 args->converter->toULength = savebytes;
1295 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1296 args->source = args->sourceLimit;
1297 *err = U_ZERO_ERROR;
1298 return;
1299 }
1300 else
1301 {
1302 /* clear the partial-char marker */
1303 args->converter->toULength = 0;
1304 }
1305 }
1306 else
1307 {
1308 errSource = saveSource;
1309 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1310 savebytes = (int8_t)(args->source - saveSource);
1311 }
1312 if (U_SUCCESS(*err))
1313 {
1314 if (uniChar < 0xfffe)
1315 {
1316 *(args->target)++ = uniChar;
1317 if(args->offsets)
1318 {
1319 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1320 }
1321 }
1322 else if (uniChar == 0xfffe)
1323 {
1324 *err = U_INVALID_CHAR_FOUND;
1325 }
1326 else /* if (uniChar == 0xffff) */
1327 {
1328 *err = U_ILLEGAL_CHAR_FOUND;
1329 }
1330 }
1331 }
1332 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1333 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1334 {
1335 *err = U_BUFFER_OVERFLOW_ERROR;
1336 }
1337 else if (U_FAILURE(*err))
1338 {
1339 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1340 args->converter->toULength = savebytes;
1341 if (savebytes > 0) {
1342 uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1343 }
1344 if (*err == U_TRUNCATED_CHAR_FOUND) {
1345 *err = U_ZERO_ERROR;
1346 }
1347 }
1348 }
1349
1350 /* And now, the macroized declarations of data & functions: */
1351 DEFINE_LMBCS_OPEN(1)
1352 DEFINE_LMBCS_OPEN(2)
1353 DEFINE_LMBCS_OPEN(3)
1354 DEFINE_LMBCS_OPEN(4)
1355 DEFINE_LMBCS_OPEN(5)
1356 DEFINE_LMBCS_OPEN(6)
1357 DEFINE_LMBCS_OPEN(8)
1358 DEFINE_LMBCS_OPEN(11)
1359 DEFINE_LMBCS_OPEN(16)
1360 DEFINE_LMBCS_OPEN(17)
1361 DEFINE_LMBCS_OPEN(18)
1362 DEFINE_LMBCS_OPEN(19)
1363
1364
1365 DECLARE_LMBCS_DATA(1)
1366 DECLARE_LMBCS_DATA(2)
1367 DECLARE_LMBCS_DATA(3)
1368 DECLARE_LMBCS_DATA(4)
1369 DECLARE_LMBCS_DATA(5)
1370 DECLARE_LMBCS_DATA(6)
1371 DECLARE_LMBCS_DATA(8)
1372 DECLARE_LMBCS_DATA(11)
1373 DECLARE_LMBCS_DATA(16)
1374 DECLARE_LMBCS_DATA(17)
1375 DECLARE_LMBCS_DATA(18)
1376 DECLARE_LMBCS_DATA(19)
1377
1378 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1379