1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2008-2011, International Business Machines
7 *   Corporation, Google and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 */
11 // Author : eldawy@google.com (Mohamed Eldawy)
12 // ucnvsel.cpp
13 //
14 // Purpose: To generate a list of encodings capable of handling
15 // a given Unicode text
16 //
17 // Started 09-April-2008
18 
19 /**
20  * \file
21  *
22  * This is an implementation of an encoding selector.
23  * The goal is, given a unicode string, find the encodings
24  * this string can be mapped to. To make processing faster
25  * a trie is built when you call ucnvsel_open() that
26  * stores all encodings a codepoint can map to
27  */
28 
29 #include "unicode/ucnvsel.h"
30 
31 #if !UCONFIG_NO_CONVERSION
32 
33 #include <string.h>
34 
35 #include "unicode/uchar.h"
36 #include "unicode/uniset.h"
37 #include "unicode/ucnv.h"
38 #include "unicode/ustring.h"
39 #include "unicode/uchriter.h"
40 #include "utrie2.h"
41 #include "propsvec.h"
42 #include "uassert.h"
43 #include "ucmndata.h"
44 #include "uenumimp.h"
45 #include "cmemory.h"
46 #include "cstring.h"
47 
48 U_NAMESPACE_USE
49 
50 struct UConverterSelector {
51   UTrie2 *trie;              // 16 bit trie containing offsets into pv
52   uint32_t* pv;              // table of bits!
53   int32_t pvCount;
54   char** encodings;          // which encodings did user ask to use?
55   int32_t encodingsCount;
56   int32_t encodingStrLength;
57   uint8_t* swapped;
58   UBool ownPv, ownEncodingStrings;
59 };
60 
generateSelectorData(UConverterSelector * result,UPropsVectors * upvec,const USet * excludedCodePoints,const UConverterUnicodeSet whichSet,UErrorCode * status)61 static void generateSelectorData(UConverterSelector* result,
62                                  UPropsVectors *upvec,
63                                  const USet* excludedCodePoints,
64                                  const UConverterUnicodeSet whichSet,
65                                  UErrorCode* status) {
66   if (U_FAILURE(*status)) {
67     return;
68   }
69 
70   int32_t columns = (result->encodingsCount+31)/32;
71 
72   // set errorValue to all-ones
73   for (int32_t col = 0; col < columns; col++) {
74     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
75                    col, ~0, ~0, status);
76   }
77 
78   for (int32_t i = 0; i < result->encodingsCount; ++i) {
79     uint32_t mask;
80     uint32_t column;
81     int32_t item_count;
82     int32_t j;
83     UConverter* test_converter = ucnv_open(result->encodings[i], status);
84     if (U_FAILURE(*status)) {
85       return;
86     }
87     USet* unicode_point_set;
88     unicode_point_set = uset_open(1, 0);  // empty set
89 
90     ucnv_getUnicodeSet(test_converter, unicode_point_set,
91                        whichSet, status);
92     if (U_FAILURE(*status)) {
93       ucnv_close(test_converter);
94       return;
95     }
96 
97     column = i / 32;
98     mask = 1 << (i%32);
99     // now iterate over intervals on set i!
100     item_count = uset_getItemCount(unicode_point_set);
101 
102     for (j = 0; j < item_count; ++j) {
103       UChar32 start_char;
104       UChar32 end_char;
105       UErrorCode smallStatus = U_ZERO_ERROR;
106       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
107                    &smallStatus);
108       if (U_FAILURE(smallStatus)) {
109         // this will be reached for the converters that fill the set with
110         // strings. Those should be ignored by our system
111       } else {
112         upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
113                        status);
114       }
115     }
116     ucnv_close(test_converter);
117     uset_close(unicode_point_set);
118     if (U_FAILURE(*status)) {
119       return;
120     }
121   }
122 
123   // handle excluded encodings! Simply set their values to all 1's in the upvec
124   if (excludedCodePoints) {
125     int32_t item_count = uset_getItemCount(excludedCodePoints);
126     for (int32_t j = 0; j < item_count; ++j) {
127       UChar32 start_char;
128       UChar32 end_char;
129 
130       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
131                    status);
132       for (int32_t col = 0; col < columns; col++) {
133         upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
134                       status);
135       }
136     }
137   }
138 
139   // alright. Now, let's put things in the same exact form you'd get when you
140   // unserialize things.
141   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
142   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
143   result->pvCount *= columns;  // number of uint32_t = rows * columns
144   result->ownPv = TRUE;
145 }
146 
147 /* open a selector. If converterListSize is 0, build for all converters.
148    If excludedCodePoints is NULL, don't exclude any codepoints */
149 U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_open(const char * const * converterList,int32_t converterListSize,const USet * excludedCodePoints,const UConverterUnicodeSet whichSet,UErrorCode * status)150 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
151              const USet* excludedCodePoints,
152              const UConverterUnicodeSet whichSet, UErrorCode* status) {
153   // check if already failed
154   if (U_FAILURE(*status)) {
155     return NULL;
156   }
157   // ensure args make sense!
158   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
159     *status = U_ILLEGAL_ARGUMENT_ERROR;
160     return NULL;
161   }
162 
163   // allocate a new converter
164   LocalUConverterSelectorPointer newSelector(
165     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
166   if (newSelector.isNull()) {
167     *status = U_MEMORY_ALLOCATION_ERROR;
168     return NULL;
169   }
170   uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
171 
172   if (converterListSize == 0) {
173     converterList = NULL;
174     converterListSize = ucnv_countAvailable();
175   }
176   newSelector->encodings =
177     (char**)uprv_malloc(converterListSize * sizeof(char*));
178   if (!newSelector->encodings) {
179     *status = U_MEMORY_ALLOCATION_ERROR;
180     return NULL;
181   }
182   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
183 
184   // make a backup copy of the list of converters
185   int32_t totalSize = 0;
186   int32_t i;
187   for (i = 0; i < converterListSize; i++) {
188     totalSize +=
189       (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
190   }
191   // 4-align the totalSize to 4-align the size of the serialized form
192   int32_t encodingStrPadding = totalSize & 3;
193   if (encodingStrPadding != 0) {
194     encodingStrPadding = 4 - encodingStrPadding;
195   }
196   newSelector->encodingStrLength = totalSize += encodingStrPadding;
197   char* allStrings = (char*) uprv_malloc(totalSize);
198   if (!allStrings) {
199     *status = U_MEMORY_ALLOCATION_ERROR;
200     return NULL;
201   }
202 
203   for (i = 0; i < converterListSize; i++) {
204     newSelector->encodings[i] = allStrings;
205     uprv_strcpy(newSelector->encodings[i],
206                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
207     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
208   }
209   while (encodingStrPadding > 0) {
210     *allStrings++ = 0;
211     --encodingStrPadding;
212   }
213 
214   newSelector->ownEncodingStrings = TRUE;
215   newSelector->encodingsCount = converterListSize;
216   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
217   generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
218   upvec_close(upvec);
219 
220   if (U_FAILURE(*status)) {
221     return NULL;
222   }
223 
224   return newSelector.orphan();
225 }
226 
227 /* close opened selector */
228 U_CAPI void U_EXPORT2
ucnvsel_close(UConverterSelector * sel)229 ucnvsel_close(UConverterSelector *sel) {
230   if (!sel) {
231     return;
232   }
233   if (sel->ownEncodingStrings) {
234     uprv_free(sel->encodings[0]);
235   }
236   uprv_free(sel->encodings);
237   if (sel->ownPv) {
238     uprv_free(sel->pv);
239   }
240   utrie2_close(sel->trie);
241   uprv_free(sel->swapped);
242   uprv_free(sel);
243 }
244 
245 static const UDataInfo dataInfo = {
246   sizeof(UDataInfo),
247   0,
248 
249   U_IS_BIG_ENDIAN,
250   U_CHARSET_FAMILY,
251   U_SIZEOF_UCHAR,
252   0,
253 
254   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
255   { 1, 0, 0, 0 },               /* formatVersion */
256   { 0, 0, 0, 0 }                /* dataVersion */
257 };
258 
259 enum {
260   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
261   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
262   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
263   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
264   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
265   UCNVSEL_INDEX_COUNT = 16
266 };
267 
268 /*
269  * Serialized form of a UConverterSelector, formatVersion 1:
270  *
271  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
272  * as the template above.
273  * This is followed by:
274  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
275  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
276  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
277  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
278  */
279 
280 /* serialize a selector */
281 U_CAPI int32_t U_EXPORT2
ucnvsel_serialize(const UConverterSelector * sel,void * buffer,int32_t bufferCapacity,UErrorCode * status)282 ucnvsel_serialize(const UConverterSelector* sel,
283                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
284   // check if already failed
285   if (U_FAILURE(*status)) {
286     return 0;
287   }
288   // ensure args make sense!
289   uint8_t *p = (uint8_t *)buffer;
290   if (bufferCapacity < 0 ||
291       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
292   ) {
293     *status = U_ILLEGAL_ARGUMENT_ERROR;
294     return 0;
295   }
296   // add up the size of the serialized form
297   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
298   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
299     return 0;
300   }
301   *status = U_ZERO_ERROR;
302 
303   DataHeader header;
304   uprv_memset(&header, 0, sizeof(header));
305   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
306   header.dataHeader.magic1 = 0xda;
307   header.dataHeader.magic2 = 0x27;
308   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
309 
310   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
311     serializedTrieSize,
312     sel->pvCount,
313     sel->encodingsCount,
314     sel->encodingStrLength
315   };
316 
317   int32_t totalSize =
318     header.dataHeader.headerSize +
319     (int32_t)sizeof(indexes) +
320     serializedTrieSize +
321     sel->pvCount * 4 +
322     sel->encodingStrLength;
323   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
324   if (totalSize > bufferCapacity) {
325     *status = U_BUFFER_OVERFLOW_ERROR;
326     return totalSize;
327   }
328   // ok, save!
329   int32_t length = header.dataHeader.headerSize;
330   uprv_memcpy(p, &header, sizeof(header));
331   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
332   p += length;
333 
334   length = (int32_t)sizeof(indexes);
335   uprv_memcpy(p, indexes, length);
336   p += length;
337 
338   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
339   p += serializedTrieSize;
340 
341   length = sel->pvCount * 4;
342   uprv_memcpy(p, sel->pv, length);
343   p += length;
344 
345   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
346   p += sel->encodingStrLength;
347 
348   return totalSize;
349 }
350 
351 /**
352  * swap a selector into the desired Endianness and Asciiness of
353  * the system. Just as FYI, selectors are always saved in the format
354  * of the system that created them. They are only converted if used
355  * on another system. In other words, selectors created on different
356  * system can be different even if the params are identical (endianness
357  * and Asciiness differences only)
358  *
359  * @param ds pointer to data swapper containing swapping info
360  * @param inData pointer to incoming data
361  * @param length length of inData in bytes
362  * @param outData pointer to output data. Capacity should
363  *                be at least equal to capacity of inData
364  * @param status an in/out ICU UErrorCode
365  * @return 0 on failure, number of bytes swapped on success
366  *         number of bytes swapped can be smaller than length
367  */
368 static int32_t
ucnvsel_swap(const UDataSwapper * ds,const void * inData,int32_t length,void * outData,UErrorCode * status)369 ucnvsel_swap(const UDataSwapper *ds,
370              const void *inData, int32_t length,
371              void *outData, UErrorCode *status) {
372   /* udata_swapDataHeader checks the arguments */
373   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
374   if(U_FAILURE(*status)) {
375     return 0;
376   }
377 
378   /* check data format and format version */
379   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
380   if(!(
381     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
382     pInfo->dataFormat[1] == 0x53 &&
383     pInfo->dataFormat[2] == 0x65 &&
384     pInfo->dataFormat[3] == 0x6c
385   )) {
386     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
387                      pInfo->dataFormat[0], pInfo->dataFormat[1],
388                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
389     *status = U_INVALID_FORMAT_ERROR;
390     return 0;
391   }
392   if(pInfo->formatVersion[0] != 1) {
393     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
394                      pInfo->formatVersion[0]);
395     *status = U_UNSUPPORTED_ERROR;
396     return 0;
397   }
398 
399   if(length >= 0) {
400     length -= headerSize;
401     if(length < 16*4) {
402       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
403                        length);
404       *status = U_INDEX_OUTOFBOUNDS_ERROR;
405       return 0;
406     }
407   }
408 
409   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
410   uint8_t *outBytes = (uint8_t *)outData + headerSize;
411 
412   /* read the indexes */
413   const int32_t *inIndexes = (const int32_t *)inBytes;
414   int32_t indexes[16];
415   int32_t i;
416   for(i = 0; i < 16; ++i) {
417     indexes[i] = udata_readInt32(ds, inIndexes[i]);
418   }
419 
420   /* get the total length of the data */
421   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
422   if(length >= 0) {
423     if(length < size) {
424       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
425                        length);
426       *status = U_INDEX_OUTOFBOUNDS_ERROR;
427       return 0;
428     }
429 
430     /* copy the data for inaccessible bytes */
431     if(inBytes != outBytes) {
432       uprv_memcpy(outBytes, inBytes, size);
433     }
434 
435     int32_t offset = 0, count;
436 
437     /* swap the int32_t indexes[] */
438     count = UCNVSEL_INDEX_COUNT*4;
439     ds->swapArray32(ds, inBytes, count, outBytes, status);
440     offset += count;
441 
442     /* swap the UTrie2 */
443     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
444     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
445     offset += count;
446 
447     /* swap the uint32_t pv[] */
448     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
449     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
450     offset += count;
451 
452     /* swap the encoding names */
453     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
454     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
455     offset += count;
456 
457     U_ASSERT(offset == size);
458   }
459 
460   return headerSize + size;
461 }
462 
463 /* unserialize a selector */
464 U_CAPI UConverterSelector* U_EXPORT2
ucnvsel_openFromSerialized(const void * buffer,int32_t length,UErrorCode * status)465 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
466   // check if already failed
467   if (U_FAILURE(*status)) {
468     return NULL;
469   }
470   // ensure args make sense!
471   const uint8_t *p = (const uint8_t *)buffer;
472   if (length <= 0 ||
473       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
474   ) {
475     *status = U_ILLEGAL_ARGUMENT_ERROR;
476     return NULL;
477   }
478   // header
479   if (length < 32) {
480     // not even enough space for a minimal header
481     *status = U_INDEX_OUTOFBOUNDS_ERROR;
482     return NULL;
483   }
484   const DataHeader *pHeader = (const DataHeader *)p;
485   if (!(
486     pHeader->dataHeader.magic1==0xda &&
487     pHeader->dataHeader.magic2==0x27 &&
488     pHeader->info.dataFormat[0] == 0x43 &&
489     pHeader->info.dataFormat[1] == 0x53 &&
490     pHeader->info.dataFormat[2] == 0x65 &&
491     pHeader->info.dataFormat[3] == 0x6c
492   )) {
493     /* header not valid or dataFormat not recognized */
494     *status = U_INVALID_FORMAT_ERROR;
495     return NULL;
496   }
497   if (pHeader->info.formatVersion[0] != 1) {
498     *status = U_UNSUPPORTED_ERROR;
499     return NULL;
500   }
501   uint8_t* swapped = NULL;
502   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
503       pHeader->info.charsetFamily != U_CHARSET_FAMILY
504   ) {
505     // swap the data
506     UDataSwapper *ds =
507       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
508     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
509     if (U_FAILURE(*status)) {
510       udata_closeSwapper(ds);
511       return NULL;
512     }
513     if (length < totalSize) {
514       udata_closeSwapper(ds);
515       *status = U_INDEX_OUTOFBOUNDS_ERROR;
516       return NULL;
517     }
518     swapped = (uint8_t*)uprv_malloc(totalSize);
519     if (swapped == NULL) {
520       udata_closeSwapper(ds);
521       *status = U_MEMORY_ALLOCATION_ERROR;
522       return NULL;
523     }
524     ucnvsel_swap(ds, p, length, swapped, status);
525     udata_closeSwapper(ds);
526     if (U_FAILURE(*status)) {
527       uprv_free(swapped);
528       return NULL;
529     }
530     p = swapped;
531     pHeader = (const DataHeader *)p;
532   }
533   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
534     // not even enough space for the header and the indexes
535     uprv_free(swapped);
536     *status = U_INDEX_OUTOFBOUNDS_ERROR;
537     return NULL;
538   }
539   p += pHeader->dataHeader.headerSize;
540   length -= pHeader->dataHeader.headerSize;
541   // indexes
542   const int32_t *indexes = (const int32_t *)p;
543   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
544     uprv_free(swapped);
545     *status = U_INDEX_OUTOFBOUNDS_ERROR;
546     return NULL;
547   }
548   p += UCNVSEL_INDEX_COUNT * 4;
549   // create and populate the selector object
550   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
551   char **encodings =
552     (char **)uprv_malloc(
553       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
554   if (sel == NULL || encodings == NULL) {
555     uprv_free(swapped);
556     uprv_free(sel);
557     uprv_free(encodings);
558     *status = U_MEMORY_ALLOCATION_ERROR;
559     return NULL;
560   }
561   uprv_memset(sel, 0, sizeof(UConverterSelector));
562   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
563   sel->encodings = encodings;
564   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
565   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
566   sel->swapped = swapped;
567   // trie
568   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
569                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
570                                         status);
571   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
572   if (U_FAILURE(*status)) {
573     ucnvsel_close(sel);
574     return NULL;
575   }
576   // bit vectors
577   sel->pv = (uint32_t *)p;
578   p += sel->pvCount * 4;
579   // encoding names
580   char* s = (char*)p;
581   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
582     sel->encodings[i] = s;
583     s += uprv_strlen(s) + 1;
584   }
585   p += sel->encodingStrLength;
586 
587   return sel;
588 }
589 
590 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
591 // iterate over the selected encodings
592 struct Enumerator {
593   int16_t* index;
594   int16_t length;
595   int16_t cur;
596   const UConverterSelector* sel;
597 };
598 
599 U_CDECL_BEGIN
600 
601 static void U_CALLCONV
ucnvsel_close_selector_iterator(UEnumeration * enumerator)602 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
603   uprv_free(((Enumerator*)(enumerator->context))->index);
604   uprv_free(enumerator->context);
605   uprv_free(enumerator);
606 }
607 
608 
609 static int32_t U_CALLCONV
ucnvsel_count_encodings(UEnumeration * enumerator,UErrorCode * status)610 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
611   // check if already failed
612   if (U_FAILURE(*status)) {
613     return 0;
614   }
615   return ((Enumerator*)(enumerator->context))->length;
616 }
617 
618 
ucnvsel_next_encoding(UEnumeration * enumerator,int32_t * resultLength,UErrorCode * status)619 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
620                                                  int32_t* resultLength,
621                                                  UErrorCode* status) {
622   // check if already failed
623   if (U_FAILURE(*status)) {
624     return NULL;
625   }
626 
627   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
628   const UConverterSelector* sel;
629   const char* result;
630   if (cur >= ((Enumerator*)(enumerator->context))->length) {
631     return NULL;
632   }
633   sel = ((Enumerator*)(enumerator->context))->sel;
634   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
635   ((Enumerator*)(enumerator->context))->cur++;
636   if (resultLength) {
637     *resultLength = (int32_t)uprv_strlen(result);
638   }
639   return result;
640 }
641 
ucnvsel_reset_iterator(UEnumeration * enumerator,UErrorCode * status)642 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
643                                            UErrorCode* status) {
644   // check if already failed
645   if (U_FAILURE(*status)) {
646     return ;
647   }
648   ((Enumerator*)(enumerator->context))->cur = 0;
649 }
650 
651 U_CDECL_END
652 
653 
654 static const UEnumeration defaultEncodings = {
655   NULL,
656     NULL,
657     ucnvsel_close_selector_iterator,
658     ucnvsel_count_encodings,
659     uenum_unextDefault,
660     ucnvsel_next_encoding,
661     ucnvsel_reset_iterator
662 };
663 
664 
665 // internal fn to intersect two sets of masks
666 // returns whether the mask has reduced to all zeros
intersectMasks(uint32_t * dest,const uint32_t * source1,int32_t len)667 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
668   int32_t i;
669   uint32_t oredDest = 0;
670   for (i = 0 ; i < len ; ++i) {
671     oredDest |= (dest[i] &= source1[i]);
672   }
673   return oredDest == 0;
674 }
675 
676 // internal fn to count how many 1's are there in a mask
677 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
countOnes(uint32_t * mask,int32_t len)678 static int16_t countOnes(uint32_t* mask, int32_t len) {
679   int32_t i, totalOnes = 0;
680   for (i = 0 ; i < len ; ++i) {
681     uint32_t ent = mask[i];
682     for (; ent; totalOnes++)
683     {
684       ent &= ent - 1; // clear the least significant bit set
685     }
686   }
687   return totalOnes;
688 }
689 
690 
691 /* internal function! */
selectForMask(const UConverterSelector * sel,uint32_t * mask,UErrorCode * status)692 static UEnumeration *selectForMask(const UConverterSelector* sel,
693                                    uint32_t *mask, UErrorCode *status) {
694   // this is the context we will use. Store a table of indices to which
695   // encodings are legit.
696   struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
697   if (result == NULL) {
698     uprv_free(mask);
699     *status = U_MEMORY_ALLOCATION_ERROR;
700     return NULL;
701   }
702   result->index = NULL;  // this will be allocated later!
703   result->length = result->cur = 0;
704   result->sel = sel;
705 
706   UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
707   if (en == NULL) {
708     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
709     uprv_free(mask);
710     uprv_free(result);
711     *status = U_MEMORY_ALLOCATION_ERROR;
712     return NULL;
713   }
714   memcpy(en, &defaultEncodings, sizeof(UEnumeration));
715   en->context = result;
716 
717   int32_t columns = (sel->encodingsCount+31)/32;
718   int16_t numOnes = countOnes(mask, columns);
719   // now, we know the exact space we need for index
720   if (numOnes > 0) {
721     result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
722 
723     int32_t i, j;
724     int16_t k = 0;
725     for (j = 0 ; j < columns; j++) {
726       uint32_t v = mask[j];
727       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
728         if ((v & 1) != 0) {
729           result->index[result->length++] = k;
730         }
731         v >>= 1;
732       }
733     }
734   } //otherwise, index will remain NULL (and will never be touched by
735     //the enumerator code anyway)
736   uprv_free(mask);
737   return en;
738 }
739 
740 /* check a string against the selector - UTF16 version */
741 U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForString(const UConverterSelector * sel,const UChar * s,int32_t length,UErrorCode * status)742 ucnvsel_selectForString(const UConverterSelector* sel,
743                         const UChar *s, int32_t length, UErrorCode *status) {
744   // check if already failed
745   if (U_FAILURE(*status)) {
746     return NULL;
747   }
748   // ensure args make sense!
749   if (sel == NULL || (s == NULL && length != 0)) {
750     *status = U_ILLEGAL_ARGUMENT_ERROR;
751     return NULL;
752   }
753 
754   int32_t columns = (sel->encodingsCount+31)/32;
755   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
756   if (mask == NULL) {
757     *status = U_MEMORY_ALLOCATION_ERROR;
758     return NULL;
759   }
760   uprv_memset(mask, ~0, columns *4);
761 
762   if(s!=NULL) {
763     const UChar *limit;
764     if (length >= 0) {
765       limit = s + length;
766     } else {
767       limit = NULL;
768     }
769 
770     while (limit == NULL ? *s != 0 : s != limit) {
771       UChar32 c;
772       uint16_t pvIndex;
773       UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
774       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
775         break;
776       }
777     }
778   }
779   return selectForMask(sel, mask, status);
780 }
781 
782 /* check a string against the selector - UTF8 version */
783 U_CAPI UEnumeration * U_EXPORT2
ucnvsel_selectForUTF8(const UConverterSelector * sel,const char * s,int32_t length,UErrorCode * status)784 ucnvsel_selectForUTF8(const UConverterSelector* sel,
785                       const char *s, int32_t length, UErrorCode *status) {
786   // check if already failed
787   if (U_FAILURE(*status)) {
788     return NULL;
789   }
790   // ensure args make sense!
791   if (sel == NULL || (s == NULL && length != 0)) {
792     *status = U_ILLEGAL_ARGUMENT_ERROR;
793     return NULL;
794   }
795 
796   int32_t columns = (sel->encodingsCount+31)/32;
797   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
798   if (mask == NULL) {
799     *status = U_MEMORY_ALLOCATION_ERROR;
800     return NULL;
801   }
802   uprv_memset(mask, ~0, columns *4);
803 
804   if (length < 0) {
805     length = (int32_t)uprv_strlen(s);
806   }
807 
808   if(s!=NULL) {
809     const char *limit = s + length;
810 
811     while (s != limit) {
812       uint16_t pvIndex;
813       UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
814       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
815         break;
816       }
817     }
818   }
819   return selectForMask(sel, mask, status);
820 }
821 
822 #endif  // !UCONFIG_NO_CONVERSION
823